Type IL Cements and Adjustments to the Construction Process

Matt-Sheehan, PE Concrete & Construction Consultants, LLC (3CON)

Iowa Better Concrete Conference November 9, 2023

Overview

Type IL cement
Implementation
Experiences
Adjustments

Type IL – Overview Ordinary Portland Cement (OPC) ASTM C150 – Portland Cement Type I/II (Type III, IV, V) Limestone: 0 to 5 percent Portland Limestone Cement (PLC) ASTM C595 – Blended Cements Type IL (Type IP, IS) Limestone: >5 to 15

Type IL – Local Markets

Indiana – March 2021 First Type IL SOG
Supply of Type I/II – Jan to Mar 2022
Iowa – 2023
Varies in United States
Canada – 2008

Type IL – Why?

The Construction Specifier - January 2023

1/3/23, 1:33 PM

The unintended consequences of 'simple solutions' in reducing embodied carbon in concrete

Concrete's "Cobra" Effect

Cement & concrete responsible for 8% of global carbon emissions ► Industry Goal: Carbon Neutral by 2050 Environmental Product Declarations (EPDs) embodied carbon Concrete Paving Industry Sustainability

Concrete's "Cobra" Effect

Current approaches to reduce

- SCMs (fly ash, slag, limestone, kaolin, etc.)
- Designs (thinner slabs, strength, timber walls, etc.)
- ► Type IL cement
- Quality curing to develop alternative mixes
 - Wet curing, curing compounds, curing "aids"
 - Nanosilicate internal curing

Embodied Carbon Energy

Comparison of embodied energy of construction materials per ton of product [9]

Cement Production

Industry – Sustainability

Data source: BS EN 15978:2011

Life Cycle Stages of Building Materials - Types of Embodied Carbon

Overview

Type IL cement
Implementation
Experience
Adjustments

Type IL – Manufacturing

$CaCO_3 \rightarrow CaO + CO_2$

Type IL – Implementation

1:1 Replacement & Performance

The same durable, resilient concrete you depend on just got better.

pic

portland-limestone

cement

Now you can reduce the carbon footprint of your structure with one simple change.

That easy change will have a big, sustainable impact. Swapping out ordinary portland cement (OPC) for portland-limestone cement (PLC) 10% reduces CO2 by roughly 10%. And because PLC works with other supplementary cementing materials, you can still use fly ash or slag to reduce the carbon footprint of your concrete even further.

Ready mix producers know materials in their market and work with many of them. If a material changes, some testing is warranted until they understand how it works with other ingredients in the mix.

A switch to PLC (Type IL) is handled the same way as a switch to any other new material, with an investigation of fresh mixture

Blended Hydraulic Cement Typ

Production Period : 11/1/2022 To 11

STANDARD REQUIREMENT

Chemical	Data		
Item	Spec. Limit	Results	Item
SiO ₂ (%)		17.9	Air Content of mortar (v
Al ₂ O ₃ (%)		4.5	Blaine fineness (m ² /kg)
Fe ₂ O ₃ (%)		2.9	Retained 325 (%)
CaO (%)		60.2	Specific Gravity (g/cm3
MgO (%)		3.5	Autoclave expansion (%
SO3 (%)*	3.0 max	3.5	Compressive strength (M
Loss of ignition (%)	10.0 max	5.9	l day
Na ₂ O (%)		0.09	3 days
K ₂ O (%)		0.86	7 days
CO2 (%)		5.1	28 days (previous mot
Limestone (%)	15.0 max	11.9	Time of setting (minutes
CaCO ₃ in limestone (%)	70 min	95	(Vicat) Initial
Inorganic process addition(%)	5.0 max	0.0	(Vicat) Final

🕜 нс	LCIM	NSF viitiii	Brand: Material: Type:	OneCem Blended Cen IL(8)	nent		Material Test Period: Date Issued:	Certification I 1-Apr-2023 to 30-Apr-202 15-Apr-23	Report
					Certi	fication			
		This cen	nent meets th	e specifications	of ASTI	M C595 and AASHT	O M240 for Type I	L cement.	
Supplier	Holdim (US) Inc			0	erierai	Source Location:	Ste. Genevie	ve Plant	
Address:	8700 West Bry Chicago, IL 606	Mawr Ave					2942 US Hig Bioomsdale,	hway 61 MO 63627	
Contact:						Contact:	Ben Kist / (63	96) 524-8197	
The foll	owing is based or	average test	data during t	the test period. T	he data	a is typical of produc	t shipped from this	source; individual shipments	may vary.
			Т	est Data on A	STM S	Standard Require	ments		
		Chemica	В					Physical	
Item			Limit	* Re	sult	Item		Limit *	Result
Sulfate as SO3	(%)		3.0 ma	sx ² 3.	18	+45 µm (No. 326)	Sieve (%)		1.9
Loss on Ignition	(%)		10.0 m	ax 4.	50	Blaine Fineness (m²/kg)	-	472
CaCOs in Limestone (%)		70 mi	in I	39	Density (g/cm ³) (S	pecific Gravity)		3.10	
						Autoclave Expans	sion (%) (C161)	-0.20 to +0.80	0.01
						Initial Vicat (minut	tes)	45.420	88
						Air Content (%)		12 max	7
						Compressive Stre	ngth Mpa (psi)		
						3 daf		13.0 (1890) min	31.7 (4600)
						7 daf		20.0 (2900) min	37.4 (5430)
						28 daf (previous)	month's data)	25.0 (3620) min	44.3 (6430)
						Mortar Bar Expan	sion (%) (C1038)	0.02	0.007
8			1	Fest Data on A	STM	Optional Require	ments		
621		Chemica	ľ.					Physical	
Item			Limit	* Re	sult	Item		Limit *	Result

Mortar Bar Expansion (

Notes (*1-9)

Equivalent Alkalies (%)

	OPTIONAL REQUIREMEN				
Item	Spec. Limit	Results			
Equiv. Alkalies (%)	A	0.66			
			Additional Data		
Type	Limestone	Inorganic Pro	ocessing Addition		
Amount (%)	11.9		0.0		
SiO ₂ (%)	3.8				
Al ₂ O ₃ (%)	0.7				
Fe ₂ O _{3 (%)}	1.0				
CaO (%)	50.9				
SO3 (%)	0.0				

This cement meets ASTM C595 and AASHTO M 240 Specification for Blended Hydraulic Type IL Cements. 1 C114, C151, C155, C185, C191, C204, C430, C451 and C1038

"It is permissible to exceed the max value for SO3 content, provided it is demonstrated by C1038 that the cen

December 15, 2022 St. Marys Cement Charlevoix Cement Plant 16000 Bells Bay Road Charlevoix, MI 49719 Tel: (231) 547-1362 - Fax: (231) 547-6202

1 - Dashes in the Limit / Result columns mean Not Applicable.

2 - It is permissible to exceed the specification limit provided that ASTM C1038 Mortar Bar Expansion does not exceed 0.020% at 14 dafs. This data may have been reported on previous mill certificates.

0.52

B- Q. Mat

Benjamin Kist, Quality Manager

Type IL – vs. Type I/II Mixes

 517 lbs./yd³ Type I/II (2.2% Limestone)
 11 lbs./yd³ Limestone
 506 lbs./yd³ Cement

 517 lbs./yd³ Type IL (11.9% Limestone)
 62 lbs./yd³ Limestone
 455 lbs./yd³ Cement

Mix Design Proposal

Client: MIDDLETON CONSTRUCTION Project: ULINE W-8 AND I-7 BUILDINGS - KENOSHA

Mix Design Number	2595MID	1099MID	4302MID	4302MIDR		
Specified Strength (psi)	4000 @ 28 days	4000 @ 28 days	4000 @ 28 days	4000 @ 28 days		
Slump Range	4.00 To 6.00 in.	4.00 To 6.00 in.	4.00 To 6.00 in.	4.00 To 6.00 in.		
Air %	0.00 To 3.00 %	0.00 To 3.00 %	4.50 To 7.50 %	4.50 To 7.50 %		
Slump Range w/ HRWR						
Usage	INTERIOR SOG - HAND POUR WORK	INTERIOR SOG - LASER SCREED WORK	EXTERIOR SOG	EXTERIOR SOG - with RETARDER		
Material Specification & Description		One Cubic Yard Weights (SSD)				
C 150 - CEMENT V Per spec	517 lb	517 lb	550 lb	550 lb		
ASTM C 618 CLASS C - FLY ASH			50 lb	50 lb		
WATER - POTABLE	29.8 gal	29.8 gal	32.4 gal	32.4 gal		
ASTM C260 - AIR ENTRAINER			(*)	(*)		
ASTM C494 TYPE A/D - TYPE A WATER REDUCER			(*)	(")		
ASTM C494 TYPE B/D - TYPE D WATER REDUCER & RETARDER				(*)		
ASTM C494 TYPE A/F - TYPE F HIGH RANGE WATER REDUCER	(")	(1)				
ASTM C33 #4 - COARSE AGGREGATE		700 lb				
ASTM C33 #67 - COARSE AGGREGATE	1945 lb	1315 lb	1810 lb	1810 lb		
ASTM C33 SAND - FINE AGGREGATE	1435 lb 1430 lb on W5	1370 lb	1280 lb 1254 lb on W5	1280 lb		
W / C M RATIO:	0.48	0.48	0.45	0.45		

Additional Comments

2595MID

1099MID

4302MID

4302MIDF

(*) Admixture dosage rates may vary based on concrete temperature, ambient temperature, haul time, etc. Exact proportions on these mixes may be altered for yield, performance, etc.

www.ozinga.com

Type IL – Implementation

1:1 Replacement

- Differences/compared to Type I/II
- Cement shipments timing/availability
- Trial batches and testing
- Submittals

% Limestone/manufacturing variability
 Strength

Overview

Type IL cement
 Implementation
 Experiences
 Adjustments

Type IL – Performance/Experience

Feedback

- Contractors
- Concrete suppliers
- ACI meetings
- World of Concrete
- ASCC survey
- Variability + OPC differencesDepends on location

Type IL – Performance/Experience

- Strength development
- Finishing / Workability
 - Water demand varies / admixtures
 - Bleeding characteristics vary / unpredictable
 - Setting time (finishing / sawcutting)
 - Cold weather placements / admixtures
 - Delaminations / surface scaling

Shrinkage & curling

- Surface durability or wear resistance
- Aesthetics (Color and uniformity)

Type IL – ASCC Survey

ACI-ASCC Concrete Floor and Slab Construction Survey on Type IL Portland-Limestone Cement Concrete

ACI 302 and ASCC are collaborating to survey ACI members on their use and experiences with Type IL Portlandlimestone cement concrete. Currently, Type IL cement (ASTM C595) is available in about 40% of the United States and in less than a year is likely to be about 80% of the market. The responses will be used to evaluate the current state-of-the-art for Type IL cement concrete to provide feedback to the concrete industry.

Type IL – ASCC Survey▶173 Respondents

Type IL – ASCC SurveyExperience problems with Type IL?

Profession	Occur at the Same Frequency	Occur at a Lower Frequency	Occur at a Greater Frequency
Owner	20%	0%	80%
Architect/Engineer	47%	0%	53%
Testing Agency	40%	0%	60%
CM/GC	40%	0%	60%
Concrete Contractor	26%	2%	72%
Ready Mix Producer	60%	2%	38%
Admixture Supplier	11%	0%	89%
Cement Producer	86%	0%	14%
Other	30%	0%	70%

Type IL – ASCC SurveyExperience the following w/Type IL?

Type IL – ASCC Survey Type IL strength vs. OPC?

Type IL – Performance/Experience

- Strength development
- Finishing / Workability
 - Water demand varies / admixtures
 - Bleeding characteristics vary / unpredictable
 - Setting time (finishing / sawcutting)
 - Cold weather placements / admixtures
 - Delaminations / surface scaling

Shrinkage & curling

Surface durability or wear resistance (Curing)
 Aesthetics (Color and uniformity)

Overview

Type IL cement
Implementation
Experience
Adjustments

Type I/II Blaine Fineness ~ 390 to 420 m²/kg

Particle Size Distribution (PSD)

Type IL – Blaine Fineness/PSD Type IL higher Blaine? ► +100 m²/kg? Particle Size Distribution Depends on % limestone ▶ 20% more grinding time Production Strength – Monitor/TBD

Type IL – Strength Adjustments Trial batches and testing Historical performance data Source / changing sources Production variability Materials generally % Limestone Grinding – Blaine fineness or PSD More cement? QA/QC Testing (ASTM C31)

Type IL – Scaling

Type IL – Finishing/Processes

Type IL – Finishing Adjustments Experience based skills / processes Bleeding Setting Timing Variability / different Source / changing sources or production % Limestone Grinding – Blaine fineness or PSD Field bleeding and setting tests

Type IL – Cold Weather Adjustments

ACI PRC-306 Guide to Cold Weather Concreting

- Manage placement temperatures/conditions
- Heated mix water
- Heated aggregates
- Increase cement / decrease SCMs
- Curing and protection period length
- Accelerating admixture dosages

OPC – Curing Processes

Type IL – Curing Options/Risk Full development of strength and durability characteristics Placement & protection conditions Common approaches Wet cure (ASTM C171) Membrane forming (ASTM C309) Cure & seal (ASTM C1315) Tilt-up bond breakers Silicate-based "curing aids"

Spray Applied "Curing Aids"

Type IL – SOG Curing/Appearance

Type IL – Curing Adjustments Strength and durability characteristics more susceptible? Processes: More robust methods for certain applications + longer? Curing/protection environment % Limestone SCMs Functional + Aesthetics

Type IL – Adjustments Re-evaluate practices and processes Strength Trial batches and testing Historical performance data ► Finishing Field bleeding and setting tests Timing varies significantly (cold weather) Curing Full strength and durability potential

Questions?

Matt Sheehan, PE MSheehan@three-con.com 847-636-9135 V/ V/

JZ JZ V