Concrete Pavement Surface Defects

Peter Taylor

Overview

- Definitions
- Causes
- Prevention

The Problem

- Not new...
- Various forms

The Problem

- Popouts
 - Inverted pyramids
 - Cracked aggregate
 - Progresses with deeper aggregates over time
Popouts
- **Causes**
 - Porous aggregate
- **Prevention**
 - Don’t use it
- **Repair**
 - Enjoy

Mortar Flaking
- **Causes**
 - Smooth aggregate
 - Over worked
 - Worked late
 - Poor curing
- **Prevention**
 - Workmanship
- **Repair**
 - Enjoy

The Problem
- **Freeze thaw**
 - Loss of paste
 - Progressive with time
 - Worse in wet zones

Freeze Thaw
- **Causes**
 - Saturated freezing
 - Insufficient air
Freeze Thaw

- **Prevention**
 - Limit SCM dose (~25% fly ash, 50% slag cement)
 - Sufficient air
 - Harder to saturate bubbles
 - Have to be close enough
 - w/cm

- **Repair**
 - Protect
 - Replace

The Problem

- **Flakes**
 - Surface peels off
 - Sound material below
 - Often around the aggregate

Flaking

- Causes are debated...
 - Salt crystallization
 - Soft surface
 - Soft below surface
 - Overworked surface
 - System chemistry
 - Osmosis
 - Glue spalling
 - Cryogenic suction

Salt Crystallization
Salt Crystallization

- Salts expand when they precipitate
- Not necessarily cold weather

Soft Surface

- Water added to the concrete
 - At the truck - “add 10!”
 - Blessing
- Inadequate curing
 - Hydration stopped early

Soft Below the Surface

- Finished before bleeding ended
 - Bleed water trapped
- Over finished
- “Crusting”

Effect of finishing

Mass loss vs. Cycles

- Initial setting
- After fabrication
- After bleeding slows down/stops
System Chemistry

- Cement alkali and C₃A content
- SCM
 - Type
 - Dosage

Slag Cement

- Improves all mechanical properties
- Yet scaling tests are worse
- Increases AFm phases in the concrete
 - Which convert to Freidel’s salt with chloride salts
 - Unstable in acidic environments

Cold

- Osmosis
 - Pressures from salt gradients
 - Glue spalling
 - Ice shrinks while bonded to the surface
 - Cryogenic suction
 - Water moves toward ice

Test methods

- Air void system – ASTM C 457
 - Very aggressive
- Scaling - BNQ
 - Similar to ASTM C 672 except
 - Finishing is early & with a wooden ruler
 - Curing is longer
 - Presoaked in solution before cycling
Prevention

- **Finishing**
 - No added water
 - After bleeding ends
 - Minimum work

Repair

- **Depends on causes**
 - Do nothing
 - See if damage progresses
 - Grind
 - Restores ride
 - Reduces thickness
 - Sealants
 - May slow further distress

But Wait

- Cements are changing
 - Set times move
 - Bleeding moves
 - Strength gain rate moves
- The weather is also a factor

But Wait

- More change is coming
- Means finishing practices must also move
- We need better tools to indicate when the slab is ready
Closing

- It's always been hard
- We have to pay attention
- Define expectations
- It is possible to do good things