Tom Maze has died

Tom Maze, former director of Iowa LTAP and of CTRE and professor of civil and construction engineering at ISU, died of heart failure Monday afternoon, June 8, at University of Minnesota Hospitals.

In many ways, ISU was Tom's home away from home, and his colleagues and students were his family. His presence and contributions to the transportation and education communities will be greatly missed.

In addition to research, teaching, and mentoring, Tom was intensely involved in enhancing transportation technology transfer through professional training and outreach activities. One of his legacies is the Mid-Continent Transportation Research Symposium, a conference he initiated in 1996 in partnership with the Iowa DOT. This biennial event provides a Midwest venue for disseminating national research in a format similar to the Transportation Research Board's annual meeting. (This year's symposium is on August 20–21. See page 11.)

Through ongoing activities like the symposium, as well as the extensive body of work he leaves behind, Tom's accomplishments will continue to have an impact across Iowa, the country, and beyond for a very long time.

Tom's students and colleagues at ISU mourn the loss of their teacher, mentor, research leader, motivator, and friend.

Honoring Tom Maze

You can help preserve and share Tom's legacy in a couple of ways.

First, you can contribute to a memorial student scholarship being established in his name. Make checks payable to Iowa State University Foundation (with the memo “Maze Scholarship Fund”) and send it to the following address:

Chris Knight
Civil, Construction, and Environmental Engineering
394 Town Engineering
Iowa State University
Ames, IA 50011

Second, if you would like to share memories of Tom, you can submit a brief writeup online (www.intrans.iastate.edu/news/2009/mazeremembered.htm). On InTrans's homepage (www.intrans.iastate.edu/), you can find links to other people’s memories as well as to a timeline with more information about Tom's career at ISU.
Shop focus: Thin maintenance surfaces

A thin maintenance surface (TMS)—a surface made of thin applications of an asphalt binder and aggregate that are applied to an existing bituminous pavement—can economically extend the life of a road, enhance its appearance, and improve road users’ driving experience.

In a study sponsored by the IHRB (TR-435 and TR-507) and the Iowa Department of Transportation, Principal Investigator Charles Jahren, associate professor of civil, construction, and environmental engineering at ISU, researched and created guidelines for various TMSs.

It is important to remember that TMS treatments are more effective and perform better when applied to roads in good condition. TMS treatments are usually not as effective on roads that are in poor condition because the base and the existing surface to which they are applied cannot support the freshly applied TMS. Here are some guidelines to help make TMS treatments more effective.

Collect information on candidate roads
A performance survey should be completed to determine the amount and type of distresses the road is experiencing. This information will help in deciding whether a TMS is appropriate.

Determine the input for the surface condition index (SCI). The recommended SCI values range from 60 to 95 for routine maintenance, 50 to 75 for preventive maintenance, 25 to 60 for rehabilitation, and 0 to 60 for rebuilding. TMSs are used for preventive maintenance, so the SCI value should be between 50 and 75 at treatment time.

Other information that helps determine if a TMS is appropriate is the rate of deterioration of the road, the traffic count, and the number and locations of areas that must withstand turning and stopping movements.

Road condition and service need—related factors
“One of the most important factors is figuring out the right treatment in terms of public/property owner/road user acceptance while also considering what a community can afford,” says Jahren.

The following information and the decision matrix in Table 1 can be used to determine the right treatment.

- **Cracking.** Cracking is subjective, but generally, TMSs are not recommended for pavements with medium- to high-intensity cracking or alligator cracking.
- **Traffic volume.** TMSs can be generally recommended for all traffic volumes.
- **Bleeding.** Light to medium bleeding can be effectively addressed with TMSs. TMSs are not recommended for roads with heavy bleeding.
- **Rutting.** Research has shown that microsurfacing is the most effective TMS for repairing ruts as deep as one inch.
- **Raveling.** Raveling, a surface defect, can be easily and effectively repaired with a TMS.
- **Friction.** When properly applied, any TMS can improve the friction of the road.
- **Susceptibility to snowplow damage.** Plow blades remove aggregate from the road, so TMSs are often susceptible to snowplow damage. Fog seals, microsurfacing, and thin hot-mix asphalt overlays are less susceptible.

Construction—related factors
Determing what TMS to use also depends on construction—related factors.

- **Past practices.** Consider if past treatments have been effective, and if not, identify reasons why they may not have been effective.
- **Curing time.** TMSs vary in curing time, causing roads to be closed to traffic for varying amounts of time. Consider how this will impact traffic patterns.
- **Timing.** TMSs are affected by the time of year they are applied. They may not perform as well if the binder does not have sufficient time to cure before the temperature drops.
- **Availability of local aggregates.** When determining what TMS is most appropriate for the pavement, think about what local aggregates could be used. Aggregates such as limestone, quartzite, and pea rock are commonly used in Iowa. Using local aggregates can help reduce transportation costs, helping reduce overall costs.
Timing
In order to be used for preventive maintenance, most experts suggest that TMSs be applied to a road seven to ten years after it is first constructed. The expected life of the treatment is five to ten years.

While TMSs are more effective for roads in good condition, they can be a good strategy for roads in poor shape.

“TMSs can be used on roads in poor condition to buy another year or two of service and are a lot less expensive than rehabilitation,” says Jahren.

For more information
Consult the Thin Maintenance Surfaces Handbook for detailed information about road distresses, treatment options, and costs. This manual is available for download at www.intrans.iastate.edu/pubs/thin_maint_surf/index.cfm. For other questions, contact Charles Jahren, 515-294-3829, cjahren@iastate.edu.

Watch for slow moving vehicles on Iowa’s rural roadways
It may not always be obvious to many motorists, but some of Iowa’s most vulnerable vehicles include farm equipment, construction machinery, horse-drawn buggies, and other slow moving vehicles (SMVs) that cannot maintain a constant speed of at least 25 mph.

A recently completed IHRB Project (TR-572), Improving Safety for Slow Moving Vehicles on Iowa’s High-Speed Rural Roadways, conducted by Principal Investigator Neal Hawkins, associate director for traffic operations at InTrans, examines the safety concerns specific to SMVs and outlines a few ways to improve conditions.

Unique safety issues for slow moving vehicles
While SMV-related crashes are much less frequent than other crash types, the slow, often awkward, and oddly sized SMVs tend to be involved in particularly severe crashes. For instance, crashes involving agricultural vehicles are about five times more likely to result in a fatality than other crash types. Additionally, the mostly rural roads that carry many SMVs around farms and Amish communities are the roads that usually have high posted speed limits. For horse-drawn buggies especially, crashes tend to involve a high-speed differential for the colliding vehicles and minimal safety protection for the SMV’s occupants.

Slow moving vehicle safety: Concerns and countermeasures
To determine ways to improve safety for Iowa’s SMVs, the study involved
- examining crash statistics and in-use countermeasures in Iowa and across the United States, and
- soliciting recommendations from three SMV communities in Iowa: the Amish communities in Buchanan and Davis Counties and farmers in Marion County.

Crash statistics and in-use countermeasures
An examination of Iowa crash statistics showed that a total of 1,203 SMV crashes occurred from 2004 to 2006. Farm vehicles were involved in 50 percent of the crashes,
Slow moving vehicles continued from page 3

Iowa LTAP Mission
To foster a safe, efficient, and environmentally sound transportation system by improving skills and knowledge of local transportation providers through training, technical assistance, and technology transfer, thus improving the quality of life for Iowans.

Staff
Shashi Nambsian
Director of InTrans
shashi@iastate.edu

Marcia Brink
Communications Manager and Editor
mbrink@iastate.edu

Duane Smith
Director of Iowa LTAP
desmith@iastate.edu

Michele Regenold
Issue Editor
maregenold@iastate.edu

Tom McDonald
Safety Circuit Rider
tmcdonal@iastate.edu

Alison Weidemann
Designer
pmcdonal@iastate.edu

Bob Sperry
Local Roads Safety Liaison
rsperry@iastate.edu

Peter Hunsinger
Sabrina Shields-Cook
S. Jones
Jillian Tanner
Contributing Writers
gparham@iastate.edu

Georgia Parham
Secretary

Advisory Board
The professionals listed below help guide the policies and activities of Iowa LTAP. Contact any of the advisory board members to comment, make suggestions, or ask questions about any aspect of LTAP:

Donna Buchwald
Iowa DOT, Office of Local Systems
515-239-1051
donna.buchwald@dot.iowa.gov

Royce Fichtner
Marshall County Engineer
641-754-6343
rfichtner@co.marshall.ia.us

Gary Fox
Transportation Director, City of Des Moines
515-283-4973
gfox@dmgov.org

Neil Guess
Howard R. Green Company
515-278-2913
nguess@hrgreen.com

Bret Hodne
City of West Des Moines
515-222-3480
bret.hodne@wdm-ia.com

Joe Jurasic
Operations Engineer, FHWA-Iowa Division
515-233-7321
joe.jurasic@fhwa.dot.gov

Wally Mook
Director of Public Works, City of Bettendorf
319-344-4128
wmook@bettendorf.org

Charlie Purcell
Iowa DOT, Office of Local Systems
515-239-1532
charlie.purcell@dot.iowa.gov

Greg Parker
Johnson County Engineer
319-356-6046
gparker@co.johnson.ia.us

Christy VanBuskirk
Keokuk County Engineer
641-622-2610
cvanbuskirk@keokukcountyia.gov

Roger Schleitzbaum
Marion County Engineer
641-828-2225
maroeng@co.marion.ia.us

Dana Waid
Hamilton County Engineer
515-832-9520
dwaid@hamiltoncounty.org

Contributing Writers
Jillian Tanner
Sabrina Shields-Cook
S. Jones
Jillian Tanner
Contributing Writers
gparham@iastate.edu

Observations from slow moving vehicle communities
The Amish communities in Buchanan and Davis Counties expressed the following concerns regarding their horse-drawn SMVs:

- Shoulder width is often insufficient to get out of the way of motorists.
- Shoulder edge drop-off creates a hard transition from road to shoulder.
- High-speed vehicles and impatient or hostile behavior by local motorists can spook the horses.
- Rumble strips and large asphalt chunks used for shoulder maintenance are hard on horses and buggies and add to the horses’ unpredictability.

Farmers in Marion County expressed the following concerns regarding farm vehicles:

- Farm vehicles regularly travel on 55 mph roads and sometimes 65 mph expressways.
- Pulling over to let other motorists pass can put both drivers at risk due to obstacles in the shoulder, a soft shoulder, or limited maneuvering space.
- Passing vehicles do not give enough clear distance away from farm equipment.
- Especially large farm equipment allows

little space for passing maneuvers, and seeing around the SMV to select a safe passing gap is difficult.

- Flashing yellow lights placed on tractors seem to get a better reaction from motorists than the triangular SMV emblem.

Recommendations
To mitigate the identified SMV safety issues on Iowa roadways, the researchers recommend practical approaches for both road agencies and SMV operators. Strategies entail identifying specific safety problems, working closely with local communities, and identifying solutions.

Agencies can take the following steps:

- Identify roadways where SMVs mix with vehicular traffic and routes with horse-drawn buggy traffic to identify problem areas.
- Recognize that the needs and solutions for different SMV types vary greatly.
- Reach out to advocacy groups and communities that rely on SMVs to exchange ideas and plan for long-term solutions.
- Review existing roadway signage, lighting, pavement and shoulder treatments, and shoulder widths and coordinate activities among city, county, and state agencies.
- Develop consistent safety campaign information for driver awareness.

SMV operators can take the following steps:

- Go beyond minimal conspicuity requirements to alert motorists of the SMV’s presence.
- Notify agencies of roadway locations that offer minimal sight distance and no ability to get out of the traveled lane.
- Educate SMV operators about safe roadway driving and vehicle operation.

For more information
Download the complete report, Improving Safety for Slow Moving Vehicles on Iowa’s High-Speed Rural Roadways, from www.intrans.iastate.edu/research/detail.cfm?projectID=923972613, or contact Neal Hawkins, 515-294-7733, hawkins@iastate.edu.
Chain saw safety

According to the U.S. Centers for Disease Control and Prevention, there are more than 36,000 chain saw–related injuries every year. Whether you are a new or experienced chain saw user, it is important for you to know chain saw safety. Before using a chain saw, be sure to read the owner’s manual and make sure that the saw and chain are in good working condition. Here are a few safety tips to help you stay safe while using a chain saw.

Clothing
Wearing proper clothing and protective gear can help reduce chain saw injuries.

The following clothing/protective gear should be worn when operating a chain saw:

- Comfortable, close-fitting clothes that will not get caught in the chain
- Safety boots with steel toes and nonskid soles
- Leg protective pants or chaps that cover the upper thigh to boot tops
- A hard hat with a protective shield or goggles to protect the face and head from flying chips and sawdust
- Ear muffs or earplugs to protect from hearing loss
- Heavy duty leather gloves to protect hands from cuts and scrapes

Planning
Advance planning can help reduce the risk of injury.

- Know the recommended fuel mixture, choke setting, and throttle control.
- Be alert for potential hazards and problems that could occur, such as nails, wires, or other foreign objects in the wood.
- Make sure the chain is sharpened, lubricated, set at the correct tension, and functioning properly.

Handling and operating
When starting a saw, use proper starting techniques; never start a saw on your knee or by drop-starting. Use the following techniques when handling and operating to maintain control:

- Keep a firm footing with your legs apart to maintain balance.
- Do not overreach or cut above waist height.
- When in a crouched position, support your elbows on your knees to prevent back strain.
- Keep the weight of the saw near your body, but keep the body out of the saw’s path.
- Keep wrists straight to prevent muscle strain in the arms.
- Keep the thumb around the front handle to prevent the saw from being wrenched from the hands in the event of a kickback.
- Let the chain saw do the work.
- Know your physical limitations because fatigue leads to accidents.
- Work slowly because working quickly can lead to mistakes and accidents.
- Rest often so that you don’t become too tired.

Kickback
The most common cause of kickback is when the teeth come in contact with an object as they rotate around the tip of the bar, causing the saw to kick backward and upward toward the operator in a matter of 2/10 of a second. Here are some ways to prevent kickback injuries:

- Firmly hold the saw with both hands.
- Keep the thumb around the front handle.
- Use a chain saw equipped with a chain brake or kickback guard.
- Be aware of twigs that can snag or foreign objects in the wood.
- Don’t pinch the bar.
- Use the lower part of the bar to saw.
- Maintain adequate saw speed when beginning or finishing a cut.

Safety
A chain saw accident can happen to the most experienced user, so it is important to have safety measures in place in case an accident should occur.

- Be sure to have a first-aid kit at the work site.
- Never work alone. Have a companion who can be called for assistance, but make sure that s/he maintains his/her distance when the saw is in operation so that s/he isn’t injured by the saw or flying chips.

For more information
Consult DVD 63 “Chain Saw Safety, Maintenance, & Operation” from the LTAP library, or contact LTAP Safety Circuit Rider Tom McDonald, 515-294-6384, tmcdonal@iastate.edu.
Stanley L. Ring Memorial Library: Current materials

Note about delivery of materials: The library now sends orders through the U.S. Postal Service. This change is resulting in important savings for LTAP, but ordered materials do not arrive as quickly. If you have an urgent need for library materials, let us know when you place your order and we will arrange faster delivery.

Three ways to order LTAP library materials

• Use the online catalog, www.intrans.iastate.edu/ltap/library/search.cfm.
• Contact Jim Hogan, library coordinator, 515-294-9481, hoganj@iastate.edu, fax 515-294-0467.
• Mail or fax the order form on the back cover of Technology News.

Videos

DVD258 Some Mistakes Last Forever: West Virginia Logger’s Safety Video
This video provides a comprehensive view of logger safety. It covers topics including manual felling, limbing and bucking, skidding/yarding, loading and transporting, and first aid and emergencies.

DVD 63 Chain Saw Safety, Maintenance & Operation
This video provides information on how to properly use and care for a chain saw. Multiple chapters include chain saw features, maintenance, saw chain sharpening, protective apparel, and proper operation.

Pull-outs on best safety practices

As mentioned in the March–April 2009 issue of Technology News, the Iowa LTAP recently published a manual on low-cost best safety practices for local agencies. To help get the information to the people who can use it, we will be including an insert in each issue of Technology News that highlights a few of the tips from the manual.

The first insert is based on Chapter 1: Signing and Delineation and is included in this issue. Feel free to pull it out, post it, photocopy it, and distribute it to your staff.

Look for the insert on Traffic Calming in the August–September 2009 issue.

Battery-powered bikes come to ISU

Iowa LTAP Director (and bicycle enthusiast) Duane Smith was one of 100 faculty and staff at Iowa State University to test electric-assisted bikes loaned to the university May 22–29, 2009, by X-Treme Scooters of Newton. The lithium battery-powered bikes run on a 300-Watt motor mounted on the rear hub. The cost of the electric bikes runs between $1,200–$1,500.

The electric bike looks like a traditional bike, but it’s a bit heavier and has thicker tires. The rechargeable battery pack is located behind the seat, and a throttle on the handlebars lets riders decide how much of a boost they want at a given time.

The charge on the battery will last for around 20–25 miles. If the charge runs out, riders can still pedal on their own to complete a trip.

Test riders said they liked the fact that they could bike to work on the electric bike without working up a sweat. The battery power also let them make their commutes in a relatively short time, since the bikes can travel up to 20 miles per hour.

Smith enjoyed the week he spent riding the electric bike, particularly since he was recovering from a knee injury.

“The pedal assistance helped keep the pressure off my knee, so I could still ride without aggravating the injury,” he says.

X-Treme Scooters of Newton loaned the bikes to university employees for one week, in support of ISU’s Live Green Initiative.

For more information

Contact Merry Rankin, ISU director of sustainability, 515-294-5052, mrankin@iastate.edu.
Leadership Academy gets off the ground

The Iowa Public Employees Leadership Academy, a training program designed to create better leaders and supervisors for Iowa’s public agencies, is underway with several opportunities for almost everyone to brush up on important job roles.

The academy consists of ten core modules:

1. Supervisory Techniques and Skills
 Status: available on the ISU Engineering Distance Education website, www.ucs.iastate.edu/mnet/supervisoryskill/about.html

2. Basic Management Skills
 Status: workshop being held at the Streets & Roads Conference in September

3. Effective Communication
 Status: workshop has been taped and will be available online soon

4. Leadership Skills
 Status: workshop was held July 15

5. Community Service/Customer Orientation Skills
 Status: coming soon

6. Legal Understanding

7. Fundamentals of Government
 Status: coming soon

8. Finance

9. Resource Management Skills
 Status: workshop taped in June and will be available online in late summer

10. Public Works Operations

For more information
Contact Duane Smith, 515-294-8103, desmith@iastate.edu.

Mid-Continent Transportation Research Symposium

On August 20–21, 2009, ISU and the Iowa DOT will host Iowa's seventh biennial transportation research symposium.

The symposium covers a broad spectrum of transportation issues, ranging from advances in infrastructure design to transportation policy. Several sessions will be offered, each focusing on specific topics.

Who should attend?
Transportation researchers and practitioners alike will benefit from this unique symposium. Attendees from local, state, and national agencies and from the public and private sectors will find a variety of relevant topics for today's post-interstate, global transportation challenges.

Five concurrent sessions (three on Thursday and two on Friday) will allow attendees to select exactly those presentations that address their interests or sample a broad spectrum of today's transportation issues. One poster session will also be held along with a meet-and-greet on Thursday.

Speakers include Sandra Larson, Director, InTrans, ISU; Sharron Quisenberry, Vice President, Research and Economic Development, ISU; Lubin Quinones, Division Administrator, FHWA; Ed Kannel, Professor, Department of Civil, Construction, and Environmental Engineering, ISU; Marty Wachs, Director, Transportation, Space, and Technology, Rand Corporation; Jon Wickert, Dean, College of Engineering, ISU; Ann Brach, Deputy Director, Strategic Highway Research Program 2, TRB, Bill Fennelly, Head Coach, Women's Basketball, ISU.

Registration fees
The registration fee for non-students is $160 and $60 for students. Participants can register at www.intrans.iastate.edu/events/midcon2009/registration/index.cfm.

Location
The symposium sessions, social hour, and banquet dinner will be held at The Hotel at Gateway Center in Ames.

For more information
Consult the symposium website www.intrans.iastate.edu/events/midcon2009, or contact Judy Thomas, 515-294-1866, mctrs2009@iastate.edu.
LTAP Materials

- Order library materials
- Send Technology News to a friend
- Correct your mailing information

To make a change to the Technology News mail list or to order library materials, please complete the information below and mail or fax this page (including mail label) to InTrans’ address below:

Institute for Transportation
2711 S. Loop Drive, Suite 4700
Ames, IA 50010-8664
Fax: 515.294.0467

☐ Add the following name/address to the Technology News mail list.
☐ Correct the name and/or address below on the Technology News mail list.

New or corrected mailing information:

Name __
Title ___
Organization ___
Address ___
City ___________________________ State __________ Zip ___________

☐ Delete the name/address below from the Technology News mail list.
☐ Send the following library materials to the address below (or to the corrected address above):

Title: ___
P., V., DVD or CR-number: _____________________________

Title: ___
P., V., DVD or CR-number: _____________________________

Subscribe to Technology News online at

P 486-0524

Technology News

Institute for Transportation
ISU Research Park
2711 S. Loop Drive, Suite 4700
Ames, IA 50010-8664

RETURN SERVICE REQUESTED