

Introducing lowa StreamStats Version 4, a Redesign of the **USGS** Application for **Estimating Streamflow Stats** Presented for Iowa County Engineer's Association Ames, IA May 17, 2016 by David Eash **U.S. Geological Survey Iowa Water Science Center** Iowa City, IA 52240 319-358-3615

daeash@usgs.gov

What is StreamStats?

- A map-based Web application that provides information that can be used by engineers, managers, and planners to make informed decisions on water-related activities
- Primary products are basin delineations, basincharacteristic measurements, and estimates of streamflow statistics
- Version 3 released July 2015
 - Beta Version 4: released March 2016

StreamStats Beta Version 4

- Redesigned single user interface for all states
- Streamlined core functionality
- Map interaction that is more intuitive for users
- Improved communication with users
- All functionality will be available as web services
- Batch processing will be available for multiple sites
- V.4 functionality not yet fully implemented for lowa

Users encouraged to provide feedback – Help button

How is StreamStats Information Used?

- Engineering Design—Bridges, culverts, roads, levees, dams, and other structures along streams; flood-plain mapping
- Water and Land Management—Water rights adjudication, in-stream flows, fish passage/habitat studies
- Water Quality Regulation—Low flows, perennial vs. intermittent streams (TMDL's, NPDES Permits)

StreamStats Site Capabilities

- Provides published streamflow statistics and basin characteristics for USGS streamgages
- For user-selected ungaged sites:
 - Delineates drainage basin boundaries
 - Computes basin characteristics
 - Provides estimates of streamflow statistics based on regression equations
 - Allows for download of basin boundary shapefiles

StreamStats Implementation for Iowa

- 90 regression equations from 4 USGS streamflowestimation reports will be implemented in StreamStats
- StreamStats allows users to click on any ungaged or gaged stream site in Iowa and obtain estimates of 30 streamflow statistics
- 7 low-flow statistics that include 4 annual and 2 seasonal low-flow probabilities and the harmonic mean
- 15 flow-duration statistics that include 1% 99% exceedance probabilities

StreamStats Implementation for Iowa

- 8 peak-flow statistics that include 2- to 500-year recurrence-interval floods
- 90-percent prediction intervals are computed for an ungaged site for the peak-flow & low-flow regression estimates
- Peak-flow equations were implemented in June 2013
- Low-flow and flow duration equations were implemented in July 2015

IA StreamStats app uses peak-flow regionalregression equations published in SIR 2013-5086

Prepared in cooperation with the Iowa Department of Transportation and the Iowa Highway Research Board (Project TR-519)

Methods for Estimating Annual Exceedance-Probability Discharges for Streams in Iowa, Based on Data through Water Year 2010

Scientific Investigations Report 2013–5086

U.S. Department of the Interior U.S. Geological Survey

Iowa 2013 Flood Regions

518 streamgages used for defining six flood regions

New Statistical Methodologies included in the Iowa Peak-Flow Estimation Study

- Flood-probability analyses include results of new statewide regional skew analysis (Bayesian GLS/WLS regression analysis – constant value -0.4)
- New flood-probability analysis method used EMA (expected moments algorithm) with new MGB (multiple Grubbs-Beck) test for detecting low-outliers
- New optimization test used for selecting best transformation for drainage area for the regression analyses - either a log 10 or a power transformation

2013 Flood Region 1 Regression Equation

- Regression equations take the form: Q_{1%}=DRNAREA^{0.566}10^{(0.917+0.567 I24H10Y-0.742} CCM^0.55)
- where: (91 streamgages used to develop equations)
 DRNAREA is drainage area, in square miles
 I24H10Y is maximum 24-hour precipitation that occurs on average once in 10 years, in inches
 CCM is constant of channel maintenance (DRNAREA/ total length of all streams in basin), in mi²/mi

2013 Flood Region 2 Regression Equation

- Regression equations take the form:
 - Q_{1%} = 10^(11.1 7.92 × DRNAREA^-0.031 -0.002 × DESMOIN -0.025 × BSHAPE)
- where: (176 streamgages used to develop equations)
 DRNAREA is drainage area, in square miles
 DESMOIN is percent area of basin within Des Moines Lobe landform region (percent area)
 BSHAPE is a shape factor measure of basin shape computed as BASLEN²/DRNAREA

2013 Flood Region 3 Regression Equation

- Regression equations take the form:
 Q_{1%} = 10<sup>(6.41 3.06 × DRNAREA^-0.097 0.009 × KSATSSUR 0.035 × BSHAPE)
 </sup>
- where: (127 streamgages used to develop equations)
 DRNAREA is drainage area, in square miles
 KSATSSUR is the average saturated hydraulic conductivity of soil (micrometers per second)
 BSHAPE is a shape factor measure of basin shape computed as BASLEN²/DRNAREA

IA StreamStats app will use peak-flow regionalregression equations published in SIR 2015-5055

Prepared in cooperation with the lowa Department of Transportation and the lowa Highway Research Board (Project TR-678)

Comparisons of Estimates of Annual Exceedance-Probability Discharges for Small Drainage Basins in Iowa, Based on Data through Water Year 2013

Scientific Investigations Report 2015–5055

U.S. Department of the Interior U.S. Geological Survey

Iowa Landform Regions

Summary of flood-frequency-estimation comparison results from SIR 2015-5055

- For DA < 2 mi², use of the TR-55 method for flood regions 1 and 3 and the 1987 RREs for flood region 2 may provide the best overall results
- For DA from 2-20 mi², use of the 1987 RREs for the Southern Iowa Drift Plain landform region and for flood region 3, the 2013 multi-var RREs for the Iowan Surface landform region, the 2013 or 1987 single-var RREs for flood region 2, and the 2013 single-var RREs elsewhere may provide the best overall results

Iowa 1987 Hydrologic Regions

SHS

1987 Regional Regression Equations

Table 2. -- Regional flood-frequency equations

28

Hydrologic region 1 (19 stations) Equat indic

Q2 Q5 Q₁₀ Q₂₅ Q50

Equa indi	tion for cated	Standard error (percent)
recu	rrence interval	
Q ₂	- 211A ^{0.62}	61
Q ₅	$= 502A^{0.60}$	37
0 ₁₀	= 757A ^{0.60}	28
Q ₂₅	- 1,140A ^{0.57}	24
Q.50	= 1,500A ^{0.60}	21

24

 $Q_{100} = 1,880A^{0.60}$ Hydrologic region 3 (119 stations)

Equation for indicated recurrence interval	Standard error (percent)
Q ₂ - 196A ^{0.57}	55
$Q_5 = 402A^{0.55}$	39
Q ₁₀ - 570A ^{0.55}	34
$Q_{25} = 821A^{0.54}$	32
$Q_{50} = 1,020A^{0.53}$	33
$Q_{100} = 1,230A^{0.53}$	36

Hydrologic region 2

(81 stations)

Hydrologic region 4 (24 stations)

Equation for indicated recurrence interval	Standard error (percent)
$Q_2 = 129A^{0.62}$	44
$Q_5 = 265A^{0.59}$	36
Q ₁₀ - 381A ^{0.57}	35
$Q_{25} = 555A^{0.55}$	37
Q ₅₀ - 695A ^{0.54}	39
$Q_{100} = 851A^{0.53}$	41

Hydrologic region 5 (8 stations)

Equation for indicated recurrence interval		Standard error (percent)
Q ₂	= 30A ^{0.66}	27
Q ₅	= 37A ^{0.71}	21
Q ₁₀	$= 41A^{0.74}$	20
Q ₂₅	= 45A ^{0.77}	24
Q ₅₀	$= 47A^{0.79}$	24
Q ₁₀₀	$= 50A^{0.80}$	26

Equatindic recut	tion for cated rrence interval	Standard error (percent)
Q ₂	= 31A ^{0.77}	40
Q ₅	$= 67A^{0.72}$	33
Q ₁₀	$= 98A^{0.70}$	31
Q ₂₅	$= 145A^{0.68}$	29
Q ₅₀	= 180A ^{0.66}	30
Q ₁₀₀	- 227A ^{0.65}	30

2013 Flood Region 1 Drainage-Area Only Regression Equation

Regression equations take the form:
Q_{1%}= 462 DRNAREA^{0.524}

where:

DRNAREA is drainage area, in square miles

IA StreamStats app uses low-flow regionalregression equations published in SIR 2012-5171

Prepared in cooperation with the Iowa Department of Natural Resources

Methods for Estimating Selected Low-Flow Frequency Statistics and Harmonic Mean Flows for Streams in Iowa

Scientific Investigations Report 2012-5171

U.S. Department of the Interior U.S. Geological Survey

Iowa Low-Flow Regions

IA StreamStats app uses statewide flow-duration equations published in SIR 2012-5232

Prepared in cooperation with the Iowa Department of Natural Resources

Computing Daily Mean Streamflow at Ungaged Locations in Iowa by using the Flow Anywhere and Flow Duration Curve Transfer Statistical Methods

Scientific Investigations Report 2012–5232

U.S. Department of the Interior U.S. Geological Survey

StreamStats Version 4 App

Watershed Delineation from a Point

- 1. User selects point on stream
- 2. Point is transferred to a cell in a flow-direction grid derived from a DEM
- 3. GIS determines boundary from flow-direction grid up to points at which the boundary for the new site intersects boundaries in boundary map layer
- 4. GIS accumulates all upstream areas and dissolves internal boundaries

StreamStats Integrates NHD Streams, WBD Boundaries and NED Elevation in ArcHydro

National Hydrography Dataset (NHD)

Watershed Boundary Dataset (WBD)

National Elevation Dataset (NED)

Burning and Walling of DEM

Forces DEM to agree with stream network and WBD or locally digitized drainage boundaries

12-digit HUCs Watershed Boundary Dataset

StreamStats Version 4 App

ArcMap showing downloaded Shapefiles

File Edit View Bookmarks Insert Sel	ection Geoprocessing Customize Windows Help			
: 🗅 🖆 🖶 🖨 I % 🗊 🛍 💥 🔊 🍽 🤇	🖕 + 1:200,000 💦 🚽 🔣 📰 🧊 🗊 🗊 😨 💽 🕍 🎌 🚽 Terrain Preprocess	ing • Terrain Morphology • Watershed Processing • Attribute Tools • Network Tools • ApU	tilities - 🌾 🍬 📲 🗶 😫 🐌 🕨 🖊 Help 🖕 🗐 🗐 🕅 🕼 📾 📾 🗃 📾 🚥 🕞	🖻 🖹 👬
i 🔍 🔍 🕎 🥥 💥 🏹 🖛 🔶 🕅 - 🖾	💺 🚯 🖉 💷 🎎 🦓 🖓 💿 😡 🚽 Editor • ト ト _λ ∠ 🖉 🤤 🛞 Έ	🗄 🏣 🕂 🕂 🔍 📰 🔼 🗑 🧧 🤅 Georeferencing 🗸 Layer:	👻 🖓 👻 🖈 🖽 🖕 🗄 Geostatistical Analyst 🕶 🛷 🖕 🤅 Snapping 👻 🔘 🖽 🗖 🛫	
XTools Pro 🔹 🚸 🗐 🥒 🐼 🐼 💽	🖺 🔻 🕕 🗾 📴 🕰 🔠 🐷 📝 🖕 👷 Drawing 🔹 📐 🖓 🚳 🗔 🔹 🗛 🗸 🖄 🙋	vial 🔻 10 🔻 B I U A 🗸 🐎 🗸 🥭 🖬 🖉 Layer:		
Table Of Contents 7 ×			100	
8: 9 😔 📮 🗄				
🗆 🥩 Layers				
GlobalWatershedPoint				
GlobalWatershed				
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5		
		2		
		\sim		
		λ		
		7		
	<pre></pre>	}		
	m	7		
	کے`			
	Attribute teble			
		<u>ر</u> مر		
		`		
	licte bacin (
		5		
		In P		E
	abaractoristis	۲ S		
		5 3		
	and flow) <u>}</u>		
	and now-			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		4.		
Table				
				3
	*			~
FID Shape * HydrolD DrainID N	Jame Descript GlobalWshd RELATEDOID WarningMsg DRNAREA M1D10Y M7	D10Y M30D10Y M30D5Y M1D10Y1012 M7D10Y1012 QAH KSATSSUR STREAM_VA	R DRNFREQ BFI SOILASSURG SOILBSSURG SOILCSSURG SOILDSSURG RSD PRECIP	HYSEP I
0 Polygon 2 2 a	gs101 W07080105 1 229.009778 0.1	0.13 0.45 1.17 0.51 0.67 2.29 0	0 0 0.540912 0 0 0 0 0 0.327329 34.26129	3 54.11327
				۶.
	All and a second s	and the second	and a subscription	-
	All a start of the	Targeneral Plantan	2 Barrow and the the	-
	and the second state of th			Ch .



#### StreamStats Home Page water.usgs.gov/osw/streamstats

#### Welcome to StreamStats

3 State Applications

**Beta Version 4 Application** 

Version 3 User Instructions

StreamStats Description

StreamStats Limitations

**USGS Station Statistics** 

Troubleshooting

Definitions

**Data-Collection Station Reports** 

Version 3 Basin Characteristics

Version 3 Streamflow Statistics

Stream Network Navigation

Frequently Asked Questions

StreamStats Fact Sheet

**Available Web Services** 

Talks and Other Info

Contact StreamStats Team

**Current Streamflow Condition** 

**Batch Processor** 

**Internal Links** 

Beta Version 4 User

Ungaged Site Reports

**Instructions** 

Home News Best viewed in Internet Explorer 10 or higher with pop-up blocker disabled

USGS Home

Contact USGS Search USGS

#### Beta version 4 has arrived!

Beta version 4 is now available for most states on a trial basis, and version 3 remains available. Beta version 4 provides a single user interface (at <a href="http://streamstatsags.cr.usion">http://streamstatsags.cr.usion</a> (ov/streamstats/) for all states that are implemented, rather than separate applications for each state, as in versions 2 and 3, and the user interface is more user friendly than previous versions. Information for user-selected ungaged sites currently cannot be obtained using beta version 4 for the States of Arkansa, Arizona, Georgia, towa, Indiana, Maryland, North Carolina, Oregon, South Carolina, and Tennessee because of unique functionality for those states that is not yet implemented. Users are encouraged to provide comments and report bugs by use of the Help button on the interface, which also provides access to limited beta version 4 documentation. See below for additional information about versions both 3 and 4.

Please contact the StreamStats by email at support@streamstats.freshdesk.com if you have any questions.

#### The StreamStats Program

StreamStats is a Web application that incorporates a Geographic Information System (GIS) to provide users with access to an assortment of analytical tools that are useful for a variety of water-resources planning and management purposes, and for engineering and design purposes. In version 3 as well as beta version 4, StreamStats users can select USGS data-collection station locations shown on a map and obtain previously published information for the stations, including descriptive information, and previously published basin characteristics and streamflow statistics. Currently, StreamStats provides additional tools that allow users to select sites on ungaged streams and do the following:

- obtain the drainage-basin boundary (version 3 and beta version 4),
- compute selected basin characteristics (version 3 and beta version 4),
- estimate selected streamflow statistics using regression equations (version 3 and beta version 4),
- download a shapefile of the drainage-basin boundary, as well as any computed basin characteristics and flow statistics (version 3 and beta version 4),
- edit the delineated basin boundary (beta version 4 only),
- modify the basin characteristics that are used as explanatory variables in the regression equations and get new estimates of streamflow statistics (beta version 4 only),
- print the map (beta version 4 only),
- measure distances between user-selected points on the map (beta version 4 only),
- obtain plots of the elevation profile between user-selected points on the map (beta version 4 only).

The streamflow statistics that StreamStats can provide for data-collection stations and for user-selected ungaged sites vary among the states that are implemented in StreamStats and among data-collection stations within states. Unless otherwise noted on a state's introductory page, estimates obtained for ungaged sites assume natural flow conditions at the site.

StreamStats generally is implemented separately for each state, with the needed data preparation work accomplished through cooperative agreements with state or other agencies. When states have not been implemented, it is generally because no state or other agency has been willing to enter into a cooperative agreement with the USGS to assist with funding the needed work.

StreamStats applications for individual states are accessed separately in version 3, whereas beta version 4 provides a single national user interface for all state applications. Use the State Applications link at the left to access a web page that shows where StreamStats version 3 is available and where it is being implemented. Users can select an individual state application from the map or the pull-down list on the State Applications page to view an introductory page for the state, which contains a link to the StreamStats version 3 user interface. The introductory pages explain any unique functionality that is available for the state and provides citations to reports that document the methods implemented for the state. The StreamStats beta version 4 user interface may be accessed at <a href="http://ssdev.cr.ugg.gov/streamstats/">http://ssdev.cr.ugg.gov/streamstats/</a>.

Several tools, mostly related to stream-network navigation, were lost from StreamStats when version 2 was retired and version 3 was introduced on July 14, 2015, before all tools from version 2 were redeveloped for version 3. These tools allowed users to search upstream or downstream along the stream network from user-selected sites to identify stream reaches and water-related activities along the streams, such as dams and point discharges, and obtain information about those activities. In addition, users could (1) estimate flow statistics at ungaged sites based on the statistics at upstream or downstream streamgages, (2) trace the path of a drop of water that falls on any point on the land surface downstream through the stream network, and (3) obtain elevation profiles along stream channels and between points on the land surface. Version 2 was retired because it was operated on computers that used an older operating system that was considered a security risk for use on U.S. government servers. Beta version 4 restores some of the tools that were lost from version 2, including all tools that rely on stream-network navigation, is still in development, with a goal of having completing development by late spring of 2016. Version 3 will remain available and should be used for official purposes until version 4 is more thoroughly tested.



### **State Applications**



For the states that are not yet fully implemented, StreamStats provides a separate application that allows users to <u>obtain information for USGS data-collection stations</u>, including descriptive information, and previously published streamflow statistics and physical and climatic characteristics of the drainage basins for the stations. All of the information provided by this national application is also available from the separate state applications. If your state is not highlighted in the above map and you are interested in making StreamStats operational there, contact the <u>USGS Water Science Center Director</u> for your state. The application continues to be improved and expanded. Please continue to come back to this page to see future enhancements.



### lowa StreamStats Introductory Page

ng world		
to StreamStat	s	Best viewed in Internet Explorer 10 or higher wit
Description	Iowa	Lists statistic
e <u>Reports</u> ion Station Reports : Limitations ations n Statistics	StreamStats Version 3 for Iowa includes new regression equations New regression equations for estimating low-flow frequencies and flow-duration statistics are now available in StreamStats version 3 for Iowa (see the citations below). Version 3 is now available for all states. Version 2 has been retired. Currently, version 3 can only delineate drainage trains, con equations for user-selected states. It takes can provide reports of information for USGS data-collection stations. All other intercolarly that previously was available in version 3 will be added to version 3 as quickly as possible, with a goal of having all functionality available by the end of this. Please help us conserve our server system resources by closing the Interactive Map page, as the URL for the interactive map vany change in the future.	nouve basin characteristic trade to the trad
ser Instructions ting sin Characteristics reamflow Statistics	Low StreamStati incorporates regression equations that can be used obtain estimates of (1) low-flow statistics (the annual 1-, 7-, and 30-day mean low flows for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 30-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual 50-day mean low flow for a recurrence interval of 10 years, the annual the equations, references to 615 data layers used in the analysis, a should familiarize thermaskies with the reports before using StreamState to obtain recurrence interval of 10 years. The annual thermatic mean flow for the streams in flow interval the text interval the streams in flow interval the streams in flow interval the text interval the streams in flow interval the streams in flow interval the text interval	ugh December 31) 1: and 7-day mean low flows for a recurrence inter- which are equivalent to annual flood-frequency recurrence intervals o nd the errors associated with the estimates obtained from the equation
vork Navigation Fact Sheet Asked Questions ab Services	Link to Iowa StreamStats application	reference
<u>ther Info</u> k <u>s</u> amStats Team eamflow Conditions	Hissing outputs: The refyestion come used to estimate streamflow statistics for Low Streamfloats use a number of basin characteristics as explanatory variables that are very computationally demanding to compute. As a result, when using the Estimate Flow (Ling Regression Equations to Characteristics on the internet connoction. This is explained by the statistics that are very computationally demanding to compute. As a result, when using the Estimate Flow (Ling Regression Equations to the internet connoction. This is explained by the statistics that are very computationally demanding to compute. As a result, when using the Estimate Flow (Ling Regression Equations to the internet connoction. This is explained by the region of the explanatory variables is the basin shape factors. Our set of the respection provides is the very computation exceeded that includes values for all basin characteristics are computed for the selected site. Also, when using the Estim Characteristics tool if a value for basin shape factors. Our set of the respective process is required. This use the basin characteristics tool if a value for basin shape factors. Our provides is the very computation exceeded for their specific purposes. When using the Estim Characteristics tool if a value for basin shape factors. Our provides is the very computation exceeded for their specific purposes. When using the Estim factors are equated in the very statistics are exceeded for their specific purposes. When using the Estimate flow togeta as the very statistics are explained first, use the tool to compute either the basin characteristics tool if a value for basin shape factors. Our presention equations to the togeta as the very statistics are explained first, use the tool to compute either the basin length or the use again to compute ESHAPE. Use of ratiosage-area only equations for peak-flow regions 1124,000-ccle streams. For the sum of stream length in the basin with exerce as the statistic peak-flow regions 124,000-ccle streams may be present and the val	of or choosing to compute all possible basin characteristic when upon cally in excess of about 1500 square miles, in peak-flow regions 2 and f tool to obtain a shapefile for the selected basin. The downloaded shap engths in the basin in order to calculate the basin characteristic CCM ( anage-area only equations from table 15 n <u>Easth and others (2013</u> ) will 7 are unknown and use of the drainage-area only equations with the Es- ter unknown and use of the drainage-area only equations with the Es-
	Selected sites with drainage area in multiple hydrologic regions: Eash and others (2013) identified three peak-flow regions for which separate regression equations with regions for exploring to the proportion of the drainage area that is in each peak-flow regions. Because the Das Noines Lobe basin characteristic is a weighting was determined by decreases peak-flow statistics in Iowa. StreamStats provides estimates based on the regression equation in the region of the drainage area that is in each peak-flow region. Because the Das Noines Lobe basin characteristic is a weighting was determined by decreases peak-flow estimates for region 2 relative to the percentage of drainage area within the Des Noines Lobe basin characteristic is a weighting was determined by the region of the drainage area that is in each peak-flow region. Because the Das Noines Lobe basin characteristic is a weighting was determined by decreases peak-flow estimates for region 2 relative to the percentage of drainage area within the Des Noines Lobe basin characteristic is a weighting was determined by decreases peak-flow region in which the selected site is located. The Bas the region in which the selected site is located.	ons for each peak-flow region that is within the drainage area and final .obe landform region, use of the area-averaged peak-flow estimates mu in Characteristics tool can be used to determine the peak-flow region r
	Errors associated with estimated streamlow statistics for ungaged sites: StreamState outputs from the Estimate Flow Using Regression Equations: Toro report the uncertainty of the estimates for ungaged and the structure state stream of the structure stream of the structu	asin characteristics for streamgages that were used to develop the reg <u>cs Definitions</u> page for explanations of the statistics used as indicators rethod was used to develop the equation. Instead, the average standard
	A "jagging" phenomenon can sometimes be encountered with the estimates from flow-duration regression statistics when a discharge estimate for a particular exceedance probability is greater than the discharge estimate for the next successively lower exceedance probability. Jagging can occur when the basin characteristics that are included as evaluatatory variables in the regression equations change between adjacent exceedance probabilities, and is a result of the inherent uncertainty in the estimates obtained from the individual metric of the inherent uncertainty in the estimates obtained from the individual metric of the inherent uncertainty in the estimates obtained from the individual metric of the inherent uncertainty in the estimates obtained from the individual metric of the inherent uncertainty in the estimates obtained from the individual metric of the inherent uncertainty in the estimates obtained from the individual metric of the inherent the inherent estimates obtained from the individual metric of the inherent estimates obtained from the individual metric of the inherent estimates of the inherent estimatestimates of the inherent esti	stefor the 0.15-exceeding probability may be greater than the est putched 1.15 percent where the other of the optimized by 20 percent of
	lowa Department of Transportation	ative statem
	Control IV 2 year consistence was weldone with this polliption	

ST

#### StreamStats Home Page water.usgs.gov/osw/streamstats

#### Welcome to StreamStats

Version 3 State Applications

Version 3 User Instructions

StreamStats Description

StreamStats Limitations

**USGS Station Statistics** 

Troubleshooting

Definitions

**Data-Collection Station Reports** 

Version 3 Basin Characteristics

Version 3 Streamflow Statistics

Stream Network Navigation

Frequently Asked Questions

StreamStats Fact Sheet

**Available Web Services** 

Talks and Other Info

Contact StreamStats Team

**Current Streamflow Condition** 

**Batch Processor** 

**Internal Links** 

Beta Version 4 User

Ungaged Site Reports

**Instructions** 

ersion 4 Application

<u>Home</u> News Best viewed in Internet Explorer 10 or higher with pop-up blocker disabled

USGS Home

Contact USGS Search USGS

#### Beta version 4 has arrived!

Beta version 4 is now available for most states on a trial basis, and version 3 remains available. Beta version 4 provides a single user interface (at <a href="http://streamstatsags.cr.usios">http://streamstatsags.cr.usios</a>, gov/streamstats/) for all states that are implemented, rather than separate applications for each state, as in versions 2 and 3, and the user interface is more user friendly than previous versions. Information for user-selected ungaged sites currently cannot be obtained using beta version 4 for the States of Arkansas, Arizona, Georgia, Iowa, Indiana, Maryland, North Carolina, Oregon, South Carolina, and Tennessee because of unique functionality for those states that is not yet implemented. Users are encouraged to provide comments and report bugs by use of the Help button on the interface, which also provides access to limited beta version 4 documentation. See below for additional information about versions both 3 and 4.

Please contact the StreamStats by email at support@streamstats.freshdesk.com if you have any questions.

#### The StreamStats Program

StreamStats is a Web application that incorporates a Geographic Information System (GIS) to provide users with access to an assortment of analytical tools that are useful for a variety of water-resources planning and management purposes, and for engineering and design purposes. In version 3 as well as beta version 4, StreamStats users can select USGS data-collection station locations shown on a map and obtain previously published information for the stations, including descriptive information, and previously published basin characteristics and streamflow statistics. Currently, StreamStats provides additional tools that allow users to select sites on ungaged streams and do the following:

- obtain the drainage-basin boundary (version 3 and beta version 4),
- compute selected basin characteristics (version 3 and beta version 4),
- estimate selected streamflow statistics using regression equations (version 3 and beta version 4),
- download a shapefile of the drainage-basin boundary, as well as any computed basin characteristics and flow statistics (version 3 and beta version 4),
- edit the delineated basin boundary (beta version 4 only),
- modify the basin characteristics that are used as explanatory variables in the regression equations and get new estimates of streamflow statistics (beta version 4 only),
- print the map (beta version 4 only),
- measure distances between user-selected points on the map (beta version 4 only),
- obtain plots of the elevation profile between user-selected points on the map (beta version 4 only).

The streamflow statistics that StreamStats can provide for data-collection stations and for user-selected ungaged sites vary among the states that are implemented in StreamStats and among data-collection stations within states. Unless otherwise noted on a state's introductory page, estimates obtained for ungaged sites assume natural flow conditions at the site.

StreamStats generally is implemented separately for each state, with the needed data preparation work accomplished through cooperative agreements with state or other agencies. When states have not been implemented, it is generally because no state or other agency has been willing to enter into a cooperative agreement with the USGS to assist with funding the needed work.

StreamStats applications for individual states are accessed separately in version 3, whereas beta version 4 provides a single national user interface for all state applications. Use the State Applications link at the left to access a web page that shows where StreamStats version 3 is available and where it is being implemented. Users can select an individual state application from the map or the pull-down list on the State Applications page to view an introductory page for the state, which contains a link to the StreamStats version 3 user interface. The introductory pages explain any unique functionality that is available for the state and provides citations to reports that document the methods implemented for the state. The StreamStats beta version 4 user interface may be accessed at <a href="http://ssdev.cr.ugg.gov/streamstats/">http://ssdev.cr.ugg.gov/streamstats/</a>.

Several tools, mostly related to stream-network navigation, were lost from StreamStats when version 2 was retired and version 3 was introduced on July 14, 2015, before all tools from version 2 were redeveloped for version 3. These tools allowed users to search upstream or downstream along the stream network from user-selected sites to identify stream reaches and water-related activities along the streams, such as dams and point discharges, and obtain information about those activities. In addition, users could (1) estimate flow statistics at ungaged sites based on the statistics at upstream or downstream streamgages, (2) trace the path of a drop of water that falls on any point on the land surface downstream through the stream network, and (3) obtain elevation profiles along stream channels and between points on the land surface. Version 2 was retired because it was operated on computers that used an older operating system that was considered a security risk for use on U.S. government servers. Beta version 4 restores some of the tools that were lost from version 2, including all tools that rely on stream-network navigation, is still in development, with a goal of having completing development by late spring of 2016. Version 3 will remain available and should be used for official purposes until version 4 is more thoroughly tested.



#### **Version 4 User Interface**



#### Version 4: Iowa User Interface





## Iowa User Interface without Streamgages



#### **Location Search**



# Location Search: Ames, IA: then click on Ames Story County, IA



#### How to Perform a Basin Delineation

#### StreamStats

IDENTIFY A STUDY AREA

the 'Delineate' button, then use vo

• Delineate

SELECT SCENARIOS

BUILD A REPORT

SGS

POWERED BY WIM

l on the map

SELECT A STATE / REGION

IOWA

?HELP i ABOUT 🗐 REPORT



#### Watershed Delineation from a Point

- 1. User selects point on stream
- 2. Point is transferred to a cell in a flow-direction grid derived from a DEM
- 3. GIS determines boundary from flow-direction grid up to points at which the boundary for the new site intersects boundaries in boundary map layer
- 4. GIS accumulates all upstream areas and dissolves internal boundaries

#### StreamStats Integrates NHD Streams, WBD Boundaries and NED Elevation in ArcHydro



National Hydrography Dataset (NHD)

Watershed Boundary Dataset (WBD)

National Elevation Dataset (NED)



#### **Burning and Walling of DEM**



Forces DEM to agree with stream network and WBD or locally digitized drainage boundaries

#### 12-digit HUCs Watershed Boundary Dataset



#### **Basin Delineation**

**USGS** StreamStats

? HELP i ABOUT 🖉 REPORT



#### **Select Scenarios**

StreamStats SELECT A STATE / REGION IOWA IDENTIFY A STUDY AREA **BASIN DELINEATED** SELECT SCENARIOS a scenario below, or expand th Characteristics" panel to select c basin characteristics. Next. clic " to proceed Regression 0 **Based Scenarios** Peak-Flow Statistics Low-Flow Statistics Annual Flow Statistics Flow-Duration Statistics Basin Characteristics

Select a scenario below, or expand the 'Basin Characteristics' panel to select Specific basin characteristics. Next, click 'Continue' to proceed.

REPORT

? HFIP

i ABOUT

One or more basin characteristics must be selected from the 'Basin Characteristics' dropdown above

#### **Regression Based Scenarios**

- Peak-Flow Statistics (8 flood-frequency statistics that include 2- to 500-year recurrenceinterval floods)
- Low-Flow Statistics (4 annual and 2 seasonal low-flow probabilities)
- Annual-Flow Statistics (Harmonic mean)
- Flow-Duration Statistics (15 statistics that include 1% 99% exceedance probabilities)

#### **Peak-Flow Scenario**

REPORT



#### **Build A Report**

?HELP i ABOUT 🗐 REPORT

#### SELECT A STATE / REGION IOWA WIDENTIFY A STUDY AREA BASIN DELINEATED WIDENTIFY A STUDY AREA CONSTRUCTION OF A STUDY AREA SELECT SCENARIOS BASIN CHARACTERISTICS CALCULATED WIDENTIFY A STUDY AREA BUILD A REPORT WIDENTIFY A STUDY AREA SELECT SCENARIOS WIDENTIFY A STUDY AREA WIDENTIFY A STUDY AREA SELECT SCENARIOS SELECT SCENARIO

StreamStats

POWERED BY WIM

oom Level: 11 lap Scale: 1:288,895 at: 42,2234 Jon: -94 3

You can modify computed basin characteristics here, then select the types of reports you wish to generate. Then click the 'Build Report' button



#### **Peak-Flow Report: top half**



#### **Peak-Flow Report: bottom half**

Peak-Flow Statistics Parameters 100 Percent Peak Region 14 43 5086		· 100 F	IUU Percent Peak Regio			
Parameter		Value	Min Li	mit	Max Limit	
Drainage Area	Basin-	210	0.06		5464.00	
24 Hour 10 Year Precipitation		4.46	3.58		4.50	
Constant of Channel Maintenance	haracteristic	0.79	0.11		3.87	
Peak-Flow Statistics Flow Report	values					
Statistic			Value	Unit	Prediction Error	
2 Year Peak Flood [100 Percent Peak Region 1 2	013 5086]		2346	ft^3/s	41.6	
5 Year Peak Flood [100 Percent Peak Region 1 2	013 5086]		4592	ft^3/s	32.6	
10 Year Peak Flood [100 Percent Peak Region 1	2013 5086] Pea	K-	6404	ft^3/s	31.8	
25 Year Peak Flood [100 Percent Peak Region 1	2013 5086]	Λ/	8880	ft^3/s	33.2	
50 Year Peak Flood [100 Percent Peak Region 1	2013 5086]	VV	10767	ft^3/s	35.6	
100 Year Peak Flood [100 Percent Peak Region	1 2013 5086] Estima	ates	12836	ft^3/s	38	
200 Year Peak Flood [100 Percent Peak Region	1 2013 5086]		15082	ft^3/s	41	
500 Year Peak Flood [100 Percent Peak Region	1 2013 5086]		17678	ft^3/s	45.2	

#### Peak-Flow Statistics Citations

Eash, D.A., Barnes, K.K., and Veilleux, A.G., 2013, Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year 2010: U.S. Geological Survey Scientific Investigations Report 2013-5086, 63 p. with a

🛓 Download Basin

🕹 Download CSV

#### Download Basin or CSV or Print



### ArcMap showing downloaded Shapefiles

File Edit View Bookmarks Insert Sel	ection Geoprocessing Customize Windows Help			
: 🗅 🖆 🖶 🖨 I % 🗊 🛍 💥 🔊 🍽 🤇	🖕 +   1:200,000 💦 🚽 🔣 📰 🧊 🗊 🗊 😨 💽   🕍   🎌 🚽 Terrain Preprocess	ing • Terrain Morphology • Watershed Processing • Attribute Tools • Network Tools • ApU	tilities - 🌾 🍬 📲 🗶 😫 🐌 🕨 🖊 Help 🖕 🗐 🗐 🕅 🕼 📾 📾 🗃 📾 🚥 🕞	🖻 🖹 👬
i 🔍 🔍 🕎 🥥   💥 🏹   🖛 🔶   🕅 - 🖾	💺   🚯 🖉 💷   🎎   🦓 🖓   💿   😡 🚽 Editor •   ト ト _λ   ∠ 🖉 🤤 🛞   🏠	🗄 🏣 🕂 🕂 🔍   📰 🔼   🗑 🧧 🤅 Georeferencing 🗸 Layer:	👻 🖓 👻 🖈 🖽 🖕 🗄 Geostatistical Analyst 🕶 🛷 🖕 🤅 Snapping 👻 🔘 🖽 🗖 🛫	
XTools Pro 🔹 🚸 🗐 🥒 🐼 🐼 💽	🖺 🔻 🕕 🗾   📴 🖳 🔄 📰 📝 🖕 👷 Drawing 🔹 📐 💮 🚳   🗔 🔹 🗛 🗸 🖄 🙋	vial 🔻 10 🔻 B I U A 🗸 🐎 🗸 🥭 🖬 🖉 Layer:		
Table Of Contents 7 ×			100	
8: 📮 🐟 📮 🗉				
🗆 🥩 Layers				
GlobalWatershedPoint				
GlobalWatershed				
	A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5		
		2		
		$\sim$		
		λ		
		7		
	<pre></pre>	}		
	m	7		
	کے`			
	Attribute teble			
		<u>ر</u> مر		
		<b>`</b>		
	licte bacin (			
	IISIS DASIII-	5		
		In P		E
	abaractoristis	۲ S		
		5 3		
	and flow	) <u>}</u>		
	and now-			
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		
		4.		
Table				
				3
Lopalwaterspec	*			~
FID Shape * HydrolD DrainID N	Jame Descript GlobalWshd RELATEDOID WarningMsg DRNAREA M1D10Y M7	D10Y M30D10Y M30D5Y M1D10Y1012 M7D10Y1012 QAH KSATSSUR STREAM_VA	R DRNFREQ BFI SOILASSURG SOILBSSURG SOILCSSURG SOILDSSURG RSD PRECIP	HYSEP I
0 Polygon 2 2 a	gs101 W07080105 1 229.009778 0.1	0.13 0.45 1.17 0.51 0.67 2.29 0	0 0 0.540912 0 0 0 0 0 0.327329 34.26129	3 54.11327
				۶.
	All and a second s	and the second	and a subscription	-
	All a start of the	Targeneral Plantan	2 Barrow and the the	-
	and the second state of th			Ch .

CSV Download

StreamStats Output Report			
State/Region ID	IA		
Workspace ID	IA2016022512	0533835000)
Latitude	42.02284		
Longitude	-93.63083		
Time	2/25/2016	1:05:14 PI	M
Parameters			
Name	Value	Unit	
DRNAREA	210	square mi	les
I24H10Y	4.46	inches	
CCM	0.79	square mi	le per mile
DRNAREA	210	square mi	les
I24H10Y	4.46	inches	
CCM	0.79	square mi	le per mile
Peak-Flow Statistics Parameters 100 Per	cent Peak Region	1 2013 5086	i
Name	Value	Min Limit	Max Limit
Drainage Area	210	0.06	5464
24 Hour 10 Year Precipitation	4.46	3.58	4.5
Constant of Channel Maintenance	0.79	0.11	3.87
Peak-Flow Statistics Flow Report			
Name	Value	Unit	Prediction Error
2 Year Peak Flood	2346	ft^3/s	
5 Year Peak Flood	4592	ft^3/s	
10 Year Peak Flood	6404	ft^3/s	
25 Year Peak Flood	8880	ft^3/s	
50 Year Peak Flood	10767	ft^3/s	
100 Year Peak Flood	12836	ft^3/s	
200 Year Peak Flood	15082	ft^3/s	
500 Year Peak Flood	17678	ft^3/s	

≥USGS

Low-Flow Report: bottom half

		1	00 Percer	nt Lo	w Flow	
Low-Flow Statistics Parameters 100 Percen	nt Low Flow Northwest Region 2012 51	71	Northwe	st Re	egion	
Parameter		Value	Min Limit		Max Limit	
Drainage Area	Basin-	210	23.40		5464.00	
Base Flow Index	charactoristic	0.540759	0.36		0.62	
SSURGO Percent Hydrologic Soil Type A	values	1.49	0.00		7.87	
Low-Flow Statistics Flow Report						
Statistic			Value	Unit	Prediction Error	
1 Day 10 Year Low Flow [100 Percent Low Flow No	rthwest Region 2012 5171]		0	ft^3/s	104.8	
7 Day 10 Year Low Flow [100 Percent Low Flow No	rthwest Region 2012 5171]	Low-	0	ft^3/s	111.8	
30 Day 10 Year Low Flow [100 Percent Low Flow N	orthwest Region 2012 5171]	Flow	0	ft^3/s	109.7	
30 Day 5 Year Low Flow [100 Percent Low Flow No	rthwest Region 2012 5171]	Ectimat	1	ft^3/s	87.2	
1 Day 10 Year lowflow Oct to Dec [100 Percent Lo	ow Flow Northwest Region 2012 5171]	ESUIIId	C2 0	ft^3/s	85.8	
7 Day 10 Year lowflow Oct to Dec [100 Percent Lo	ow Flow Northwest Region 2012 5171]		1	ft^3/s	88.4	

Low-Flow Statistics Citations

Eash, D.A., and Barnes, K.K., 2012, Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa: U.S. Geological Survey Scientific Investigations Report 2012-5171, 99 p.

Annual-Flow Report: bottom half

100 Percent Low Flow Northwest Region

Annual Flow Statistics Parameters [100.00 Percent Low Flow Northwest Region 2012 5171]

Parameter		Value	Min Limit	Max Limit
Drainage Area	Basin-	210	23.4	5464
Tau Annual from Grid	characteristic	21.96	21.2	35.8
Relative Stream Density	values	0.34	0.189	0.511
Annual Flow Statistics Flow Re	port [100.00 Percent Low Flow Northwest Regio	n 2012 5171]		
Statistic	Harmonic Mean	Value	Unit	Prediction Error
Harmonic Mean Streamflow	Streamflow	2.159	ft^3/s	71.6
Annual Flow Statistics Citation	Estimate	1 Jan 6 an faar		l hannan la mana flavor far atraa ma in tarras II C

Eash, D.A., and Barnes, K.K., 2012, Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa: U.S. Geological Survey Scientific Investigations Report 2012-5171, 99 p.

Flow-Duration Report: bottom half

Flow-Duration Statistics Parameters 100 Percent Statewide Flow Duration 2012 5232

Parameter		Value	Min Limit	Max Limit	
Drainage Area		210	15.50	7782.00	
Mean Annual Precipitation		34.24	27.70	38.00	
SSURGO Percent Hydrologic Soil Type C	Basin-	4.43	0.09	83.50	
Relative Stream Density		0.34	0.22	0.49	
Hydrograph separation percent	characteristic	54.13	20.30	78.00	
Streamflow Variability Index from Grid		0.63	0.21	0.76	
SSURGO Percent Hydrologic Soil Type B	values	94.1	5.70	99.40	
SSURGO Percent Hydrologic Soil Type D		0	0.00	57.00	

Flow-Duration Statistics Flow Report

Statistic	Value	Unit	Prediction Error
1 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	1256	ft^3/s	23.5
5 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	471	ft^3/s	23.6
10 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	262	ft^3/s	24.2
15 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	225	ft^3/s	24.6
20 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	175	ft^3/s	22.1
30 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	124	ft^3/s	17.1
40 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	87	ft^3/s	14.9
50 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	66	ft^3/s	16.4
60 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	48	ft^3/s	22.1
70 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	31	ft^3/s	32.4
80 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	13	ft^3/s	40.1
85 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	10	ft^3/s	42.5
90 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	7	ft^3/s	51
95 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	4	ft^3/s	74.9
99 Percent Duration [100 Percent Statewide Flow Duration 2012 5232]	1	ft^3/s	97.7

latitude: 42.02279 longitude: -93.63078 sta id: 05470500 sta name: Squaw Creek at Ames, IA NWIS page: link NWIS Link StreamStats Gage page: link StreamStats Link drnarea: 209.65

StreamStats Streamgage Information Physical Characteristics

	Characteristic Name	Value	Units	Citation Number
	Descriptive Information			
	Datum_of_Latitude_Longitude	NAD83	dimensionless	<u>30</u>
	District_Code	19	dimensionless	<u>30</u>
	Begin_date_of_record	5/24/1919	days	<u>41</u>
	End_date_of_record	9/30/2003	days	<u>41</u>
	Number_of_days_of_record	17061	days	<u>41</u>
	Number_of_days_GT_0	16685	days	<u>41</u>
	Precipitation Statistics			
	24_Hour_2_Year_Precipitation	3.2000	inches	<u>31</u>
Racin	24_Hour_10_Year_Precipitation	4.461	inches	244
Dasili	Mean_Annual_Precipitation	30.900	inches	<u>31</u>
Characteristics	Climate Characteristics			
Characteristics	Mean_Annual_Snowfall	32.000	inches	<u>31</u>
	Temperature Statistics			
	Mean_Min_January_Temperature	10.500	degrees F	<u>31</u>
	Mean_Max_July_Temperature	87.000	degrees F	<u>31</u>
	Topographical Characteristics			
	Mean_Basin_Elevation	1060.00	feet	<u>31</u>
	Geological Characteristics			
	Des_Moines_Lobe	100	percent	<u>244</u>
	Loess_Depth	0.1000	feet	<u>31</u>
	Land Cover Characteristics			
	Percent_Forest	2.2000	percent	<u>31</u>
	Soil Properties			
	Soil_Infiltration	3.2000	inches	<u>31</u>
	SSURGO_Percent_Hydrologic_Soil_Type_A	1.487	percent	<u>243</u>
	SSURGO_Percent_Hydrologic_Soil_Type_B	93.732	percent	<u>243</u>
	SSURGO_Percent_Hydrologic_Soil_Type_C	4.358	percent	243
	SSURGO_Saturated_Hydraulic_Conductivity	11.726	micrometers per second	<u>243</u>
	Stream Channel Properties			
	Drainage Frequency	0.534	per square mile	243

Streamflow Statistics

						Years of	Standard		Lower 95%	Jpper 95%			
			C	itation		Record	Error,	Variance log-	Confidence	Confidence	Start Date	End Date	
Statistic Name	Value		Units N	umber	Preferred?		percent	10	Interval	Interval			Remarks
Peak-Flow Statistics													
2_Year_Peak_Flood	2680	cubic feet per second		244	Y	93	9.6	0.00173	2200	3220	6/4/1918	8/11/2010	EMA/MGB
5_Year_Peak_Flood	4960	cubic feet per second		244	Y	93	9.82	0.00181	4080	6040	6/4/1918	8/11/2010	EMA/MGB
10_Year_Peak_Flood	6860	cubic feet per second		244	Y	93	11.1	0.0023	5580	8740	6/4/1918	8/11/2010	EMA/MGB
25_Year_Peak_Flood	9730	cubic feet per second		244	Y	93	13.9	0.0036	7690	13700	6/4/1918	8/11/2010	EMA/MGB
50_Year_Peak_Flood	12200	cubic feet per second		244	Y	93	16.6	0.00512	9350	18900	6/4/1918	8/11/2010	EMA/MGB
100_Year_Peak_Flood	15000	cubic feet per second		244	Y	93	19.6	0.00714	11100	25600	6/4/1918	8/11/2010	EMA/MGB
200_Year_Peak_Flood	18100	cubic feet per second		244	Y	93	23	0.00969	12800	34400	6/4/1918	8/11/2010	EMA/MGB
500_Year_Peak_Flood	22800	cubic feet per second		244	Y	93	27.6	0.01388	15200	49900	6/4/1918	8/11/2010	EMA/MGB
Regression_2_Year_Peak_Flood	2350	cubic feet per second		244	Y								RRE
Regression_5_Year_Peak_Flood	4590	cubic feet per second		244	Y								RRE
Regression_10_Year_Peak_Flood	6400	cubic feet per second		244	Y								RRE
Regression_25_Year_Peak_Flood	8880	cubic feet per second		244	Y		D			-1-1	tatta.		RRE
Regression_50_Year_Peak_Flood	10800	cubic feet per second		244	Y		- P6	зак-г	IOW	SIAI	ISTICS		RRE
Regression_100_Year_Peak_Flood	12800	cubic feet per second		244	Y				1011	orat			RRE
Regression_200_Year_Peak_Flood	15100	cubic feet per second		244	Y								RRE
Regression_500_Year_Peak_Flood	17700	cubic feet per second		244	Y								RRE
Weighted_5_Year_Peak_Flood	4930	cubic feet per second		244	Y		8.6	0.0014	4170	5830			WIE
Weighted_10_Year_Peak_Flood	6810	cubic feet per second		244	Y		10.1	0.0019	5600	8280			WIE
Weighted_25_Year_Peak_Flood	9600	cubic feet per second		244	Y		12.4	0.0029	7520	12300			WIE
Weighted_50_Year_Peak_Flood	11900	cubic feet per second		244	Y		14.8	0.0041	8960	15900			WIE
Weighted_100_Year_Peak_Flood	14500	cubic feet per second		244	Y		17	0.0054	10400	20200			WIE
Weighted_200_Year_Peak_Flood	17300	cubic feet per second		244	Y		19.6	0.0071	11900	25300			WIE
Weighted_500_Year_Peak_Flood	21300	cubic feet per second		244	Y		22.9	0.0096	13700	33100			WIE
Systematic_peak_years	20.000	years		31	Y								
Peak_years_with_historic_adjustmer	nt 0.0000	years		31	Y								
Weighted 2 Year Peak Flood	2670	cubic feet per second		244	Y		7.6	0.0011	2290	3110			WIE
Flood-Volume Statistics					K								
3_Day_2_Year_Maximum	1354.00) cubic feet per second		31	Y								
3_Day_10_Year_Maximum	2015.00	cubic feet per second		<u>31</u>	Y								
3_Day_50_Year_Maximum	2160.00) cubic feet per second		31	Y								
0 Dev 100 Vees Medania	0100.00												

Citation number to report with published statistic

Low-Fi	low S	tati	stics
--------	-------	------	-------

1_Day_10_Year_Low_Flow	0	cubic feet per second	243	Y	40	4/1/1966 3/31/2005
7_Day_10_Year_Low_Flow	0	cubic feet per second	243	Y	40	4/1/1966 3/31/2005
30_Day_5_Year_Low_Flow	0.66	cubic feet per second	243	Y	40	4/1/1966 3/31/2005
30_Day_10_Year_Low_Flow	0.15	cubic feet per second	243	Y	40	4/1/1966 3/31/2005
Low_flow_years	20.000	years	31	Y		
1_Day_10_Year_lowflow_Oct_to_De	c 0	cubic feet per second	243	Y	40	10/1/1966 12/31/2005
7_Day_10_Year_lowflow_Oct_to_De	c 0	cubic feet per second	243	Y	40	10/1/1966 12/31/2005
Flow-Duration Statistics						
1_Percent_Duration	1400	cubic feet per second	<u>41</u>	Y	47	
5_Percent_Duration	571.45	cubic feet per second	<u>41</u>	Y	47	
10_Percent_Duration	339	cubic feet per second	41	Y	47	
20_Percent_Duration	174	cubic feet per second	<u>41</u>	Y	47	
25_Percent_Duration	134	cubic feet per second	41	Y	47	Low-flow and flow-duration
30_Percent_Duration	104	cubic feet per second	<u>41</u>	Y	47	
40_Percent_Duration	68	cubic feet per second	<u>41</u>	Y	47	
50_Percent_Duration	43	cubic feet per second	<u>41</u>	Y	47	etatictice
60_Percent_Duration	27	cubic feet per second	41	Y	47	3101131163
70_Percent_Duration	15	cubic feet per second	41	Y	47	
75_Percent_Duration	10	cubic feet per second	41	Y	47	
80_Percent_Duration	6.4	cubic feet per second	<u>41</u>	Y	47	
90_Percent_Duration	1.6	cubic feet per second	<u>41</u>	Y	47	
95_Percent_Duration	0.44	cubic feet per second	<u>41</u>	Y	47	
99_Percent_Duration	0	cubic feet per second	41	Y	47	
Annual Flow Statistics						
Mean_Annual_Flow	90.390	cubic feet per second	<u>31</u>	Y		
Daily_flow_years	20.000	years	<u>31</u>	Y		
Stand_Dev_of_Mean_Annual_Flow	37.980	cubic feet per second	31	Y		
Harmonic_Mean_Streamflow	2.36	cubic feet per second	243	Y	40	4/1/1966 9/30/2006
Tau_Annual	22.174	days	243	Y		
Monthly Flow Statistics						
January_Mean_Flow	28.000	cubic feet per second	<u>31</u>	Y		
January_STD	24.940	cubic feet per second	<u>31</u>	Y		
February_Mean_Flow	68.570	cubic feet per second	<u>31</u>	Y		
February_STD	48.720	cubic feet per second	<u>31</u>	Y		
March_Mean_Flow	145.40	0 cubic feet per second	<u>31</u>	Y		
March_STD	100.40	0 cubic feet per second	<u>31</u>	Y		
April Mean Flow	126.60	0 cubic feet per second	 31	Y		

August_STD	72.480	cubic feet per second	<u>31</u>	Y	
September_Mean_Flow	148.400) cubic feet per second	<u>31</u>	Y	
September_STD	197.000	cubic feet per second	<u>31</u>	Y	
October_Mean_Flow	97.490	cubic feet per second	<u>31</u>	Y	
October_STD	80.220	cubic feet per second	<u>31</u>	Y	
November_Mean_Flow	80.760	cubic feet per second	<u>31</u>	Y	
November_STD	74.470	cubic feet per second	<u>31</u>	Y	
December_Mean_Flow	39.630	cubic feet per second	<u>31</u>	Y	
December_STD	24.780	cubic feet per second	<u>31</u>	Y	
General Flow Statistics					
Minimum_daily_flow	0	cubic feet per second	<u>41</u>	Y	47
Maximum_daily_flow	12200	cubic feet per second	<u>41</u>	Y	47
Std_Dev_of_daily_flows	316.869	cubic feet per second	<u>41</u>	Y	47
Average_daily_streamflow	137.433	cubic feet per second	<u>41</u>	Y	47
Streamflow_Variability_Index_At_Site	0.629	dimensionless	<u>243</u>	Y	
Base Flow Statistics					
Number_of_years_to_compute_BFI	46	years	<u>42</u>	Y	47
Average_BFI_value	0.365	dimensionless	<u>42</u>	Y	47
Std_dev_of_annual_BFI_values	0.098	dimensionless	<u>42</u>	Y	47
Base_Flow_Index	0.535	dimensionless	<u>243</u>	Y	

Citations

Citation Number	Citation Name and URL published streamflow st	atistics
30	Imported from NWIS file	
31	Imported from Basin Characteristics file	
11	Wolock, D.M., 2003, Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States: U.S. Geological Survey Open-File Report 03-146, digital data set	
12	Wolock, D.M., 2003, Base-flow index grid for the conterminous United States: U.S. Geological Survey Open-File Report 03-263, digital data set	
243	Eash, D.A., and Barnes, K.K., 2012, Methods for estimating selected low-flow frequency statistics and harmonic mean flows for streams in Iowa: U.S. Geological Survey Scientific Investigations Report 2012-5171, 99 p.	
244	Eash, D.A., Barnes, K.K., and Veilleux, A.G., 2013, Methods for estimating annual exceedance-probability discharges for streams in Iowa, based on data through water year 2010; U.S. Geological Survey Scientific Investigations Report 2013-5086, 63 p. with a	· criteritie

Cited reports which include

NWIS Streamgage Information

GS 05470500 Squaw Creek at Ames, IA	\			
	Ava	ailable data for t	this site SUN	/IMARY OF ALL A
ream Site				
DESCRIPTION: Latitude 42°01'23", Longitude 93°37'49" NAD27 Sum Story County, Iowa, Hydrologic Unit 07080105 Drainage area: 204 square miles Datum of gage: 881.00 feet above NGVD29.	mary of	all ava	ailabl	e data
Data Type	Begin Date	End Date	Count	
Current / Historical Observations (availability statement	nt) 2007-10-01	2015-09-21		
Daily Data				
Discharge, cubic feet per second	1919-05-24	2015-09-20	21434	
Daily Statistics			·	
Discharge, cubic feet per second	1919-05-24	2015-04-27	21288	
Monthly Statistics		3		
Discharge, cubic feet per second	1919-05	2015-04		
Annual Statistics				
Discharge, cubic feet per second	1919	2015		
Peak streamflow	1918-06-04	2014-07-01	59	
Field measurements	1918-06-04	2015-09-01	674	
Field/Lab water-quality samples	1969-11-06	2009-09-21	183	
Water-Year Summary	2006	2014	9	
Additional Data Sources	Begin Date	End Date	Count	
Transformer Deter Angling ** - ff-th-**	1000 10 01	2007 00 20	FOCODO	

OPERATION:

Record for this site is maintained by the USGS Iowa Water Science Center Email questions about this site to <u>Iowa Water Science Center Water-Data Inquiries</u>

