Strengthening of Local Bridges in Wisconsin to Remove Load Postings

Alex Pence, PE, SE
WisDOT Bureau of Structures

Local Agency Bridge Innovation and Demonstration Days
Independence, IA

June 15, 2022
Presentation Overview

• Load Postings on WI Local System
• Strengthening Program Overview
• Example Projects
Load Postings on the Local System
Wisconsin Bridge Inventory

<table>
<thead>
<tr>
<th></th>
<th>State</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridges (Length ≥ 20 ft)</td>
<td>5,347</td>
<td>8,935</td>
</tr>
<tr>
<td>Average Age</td>
<td>36 years</td>
<td>41 years</td>
</tr>
<tr>
<td>% Structurally Deficient</td>
<td>134 (2.5%)</td>
<td>771 (8.6%)</td>
</tr>
<tr>
<td>Weight Limit Postings</td>
<td>17 (0.3%)</td>
<td>504 (5.6%)</td>
</tr>
</tbody>
</table>
Design Loads: State vs. Local

<table>
<thead>
<tr>
<th></th>
<th>State</th>
<th>Local</th>
</tr>
</thead>
<tbody>
<tr>
<td>Designed for HS20 or HL93</td>
<td>88%</td>
<td>65%</td>
</tr>
<tr>
<td>Lighter Design Loads</td>
<td>12%</td>
<td>35%</td>
</tr>
</tbody>
</table>

Chapter Trans 214

TOWN ROAD BRIDGE STANDARDS

Trans 214.04 Minimum design standards. The following minimum standards for bridge design load and bridge width are established for improvements on town road bridges:

<table>
<thead>
<tr>
<th>TRAFFIC VOLUME</th>
<th>BRIDGE DESIGN LOAD</th>
<th>BRIDGE WIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Under 250 ADT</td>
<td>H–15</td>
<td>24 feet</td>
</tr>
<tr>
<td>(2) 251 to 400 ADT</td>
<td>H–20</td>
<td>26 feet</td>
</tr>
<tr>
<td>(3) 401 to 1,000 ADT</td>
<td>H–20</td>
<td>28 feet</td>
</tr>
<tr>
<td>(4) 1,001 to 2,400 ADT</td>
<td>H–20</td>
<td>30 feet</td>
</tr>
<tr>
<td>(5) Over 2,400 ADT</td>
<td>State Trunk Highway Standards</td>
<td></td>
</tr>
</tbody>
</table>

Note: Information on state trunk highway design standards may be obtained from the DOT Division of Highways and Transportation Facilities, P.O. Box 7916, Madison, Wisconsin 53707.

History: Cr. Register, March, 1982, No. 315, eff. 4–1–82.
Posting Trucks
Weight Limit Signs
SHV Load Posting Evaluation: Results

• What was the outcome?
 ▪ Some new postings
 ▪ Some lower load postings

• Concurrent Review
 ▪ Overly conservative postings
 ▪ Update evaluation methods

• Ongoing Efforts
 ▪ Replacements
 ▪ Strengthening
 ▪ Refined Analysis
FAST Act – Emergency Vehicles

• May exceed Standard Weight Limits everywhere in Wisconsin

• Signs required on Interstate bridges or within reasonable access (1 mile)
 • Completed Sept. 2020
 • Outreach thru Firefighter Associations

• All other bridges: online list
 • Targeting early 2023
Strengthening Program Overview
The Problem

Weak Bridges + Good Condition = Ineligible for LBP Funding
Strengthening Program: Overall Concepts

• Remove postings for bridges with significant service life remaining
 ▪ Not on track for Local Bridge Improvement Assistance Program
• Work with local owners to implement cost-effective, stream-lined process to strengthen bridges and remove postings
• BOS to provide engineering and oversight for retrofits
• Primarily use local crews to perform retrofits
• Limited scope (pursue projects with minimal environmental impact)
• Identify common solutions for multiple bridges
Project Selection

- Want to target “high value” bridges – important for freight & commerce
- Consider life remaining (condition)
- Not every strengthening option is feasible for every bridge

Best Candidates screening group:
- Not in program for replacement
- Posting < 40 TON
- All NBI Conditions 5+
- ADT 100+ or ADT<100 w/ 10+ mi Detour
Refined Analysis Screening

• Refined analysis goes above and beyond the routine or traditional methods of analysis
 ▪ 3D FE modeling (CSI Bridge)
• Taking advantage of
 ▪ Better live load distribution
 ▪ Additional stiffness (e.g. monolithic parapet)
Pilot Projects

• Timber Slab – Spreader Decks
 ▪ 7 Projects Avg Cost: $45,000 ($56/sf)
• Steel Girders – Adding Plates/Angles
 ▪ 1 Project Avg Cost: $18,000 ($17/sf)
• Superstructure Replacement (Steel Girders → Timber Slabs)
 ▪ 2 Projects Avg Cost: $72,000 ($96/sf)
• Concrete Slab – Negative Moment (Top) Reinforcement
 ▪ 2 Projects Avg Cost: $33,000 ($15/sf)
• Concrete Slab – Positive Moment (Bottom) FRP
 ▪ 4 Projects Avg Cost: $26,000 ($25/sf)
Timber Slab Retrofit

• Wheel Load Distribution

- Timber: 60, 43%
- Concrete Slab: 23, 17%
- Steel Girder: 38, 27%
- PS Concrete Girder: 4, 3%
- Concrete Deck Girder: 4, 3%
- Steel Truss: 4, 3%
- Other: 5, 4%
Timber Slab Retrofit

- 7 completed through Local Bridge Strengthening Pilot Program
- 4 more funded/completed by other programs
- Typically $50-$60/sf
Timber Slab Spreader Deck
Timber Slabs – Follow Up Research

- Analytical and Testing Methods for Rating Longitudinal Laminated Timber Slab Bridges (December 2021)
 - WHRP / Iowa State University (Justin Dahlberg, Brent Phares, Zhengyu Liu)

<table>
<thead>
<tr>
<th>Wheel Load Distribution Width (inches)</th>
<th>Single Lane</th>
<th>Multi Lane</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO Std Specs (2002) -- ASR</td>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>Assumed w/ 4" Spreader Deck</td>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>WHRP - No Spreader Deck</td>
<td>61.8</td>
<td>55.6</td>
</tr>
<tr>
<td>WHRP - 4" Spreader Deck</td>
<td>71.7</td>
<td>64.5</td>
</tr>
<tr>
<td>AASHTO LRFD -- LRFR</td>
<td>74.8</td>
<td>62.1</td>
</tr>
</tbody>
</table>

![Diagram of wheel load distribution](image)
Steel Girder Retrofit

- Bolt additional steel section to existing members
 - Can often be done by state or local crews
 - Relatively inexpensive

![Steel Girder Retrofit Images](https://example.com/steelpic.png)
Steel Girder Retrofit
Steel Girder Retrofit
Steel Girder Retrofit
Superstructure Replacement w/ Timber Slab
Superstructure Replacement w/ Timber Slab
Concrete Slab Retrofit

- Concrete bridges
 - Add Steel Plates
 - Add FRP

![Image of workers in protective gear installing concrete slabs]

![Pie chart showing percentage distribution of different types of bridge structures, with Concrete Slab at 23%, Steel Girder at 38%, Timber Girder & Slab at 60%, PS Concrete Girder at 4%, Concrete Deck Girder at 4%, Steel Truss at 4%, and Other at 5%].
Changes in Demand
Changes in Demand
Changes in Demand

Increased Moment Demand
Changes in Demand

HS20

Shifting of Moment Diagram
Concrete Slab – Top Surface Strengthening

Steel plates to extend negative moment reinforcement
Chippewa County Slab Retrofit
Concrete Slab – Top Surface Strengthening
Concrete Slab – Top Surface Strengthening

1. Remove existing asphalt overlay.
2. Saw cut channel into concrete.
3. Use compressed air to blow out debris.
4. Fill channel half deep w/ epoxy and set FRP rod into epoxy.
5. Cover FRP rod w/ epoxy, filling channel up remaining depth.
6. After epoxy has fully cured, place new concrete overlay over top.
Concrete Slab – Top Surface Strengthening

Near Surface Mounted (NSM) Carbon FRP Rods
Concrete Slab – Bottom Surface Strengthening
Pilot Program Evaluation

• Cost-Benefit Success
 - Streamlined process to coordinate environmental impact
 - Resourcefulness of County Highway departments
 - DTSD BOS in-house engineering support and review of construction details
 - DTIM Local Programs & Finance execution of contracts and reimbursements
Pilot Program Evaluation

• Future Opportunities

 ▪ Legislative changes required to extend program
 ▪ Counties can implement similar projects on their own
 ▪ Development of standard details or repairs
 ▪ Implementation of new technology
For More Information:

Alex Pence
alex.pence@dot.wi.gov | 608-267-6880