Midwest Transportation Consortium

Energy Issues in Transportation

Floyd E. Barwig

US Energy Use for Transportation

Figure 2: Primary Energy Consumption by Sector

US Oil Use for Transportation

- US uses roughly 25% of world's oil production
- Take a snapshot using Energy Information Administration data for week of 02/15/02
- All values are barrels (42 gallons) per day

Inputs

- Crude oil 14,388,000

Crude Oil Imports 8,034,000 (58%)

Domestic Crude Production 5,927,000 (42%)

 Totals do not add due to movements in and out of Strategic Petroleum Reserve and other inventories

Products Supplied

Gasoline

Jet Fuel

Distillate Fuel Oil

Residual Fuel Oil

Other Oils

Total

8,428,000

1,666,000

3,891,000

850,000

4,947,000

19,782,000

Visualizing 19,782,000 barrels

Environmental Impact

"The extraction and use of energy is the single largest impact on the environment." Peter Berle, former President of the Audubon Society

Environmental Impact

- Particulates
- VOCs (Volatile Organic Compounds)
- SOx (sulfur compounds including sulfuric acid)
- NOx (nitrogen compounds including nitric acid)
- Heavy metals

Environmental Impact

- Greenhouse gases: global warming
- Primarily carbon dioxide
- One third of US greenhouse gas emissions trace to transportation

Carbon Dioxide Emissions

Figure 4: Projected U.S. Carbon Dioxide Emissions by Sector Fuel. 1990-2020 (million metric tons carbon equivalent)

How Can We Respond?

- A technological revolution
- Hydrogen and fuel cells
- **■** Freedom Car

Technological Revolution

- A new technology outperforms an old one and takes over
- Is it that simple?
- An example in transportation

The Dinosaur

A Contender

The Winner

Steam to Diesel: A Sudden Switch?

- Steam from 1820s to 1940s-1950s
- Diesels took over in 1940s-1950s
- Electrification in early 1900s (tunnels, cities)
- Diesels even took market from electricity in 1940s and beyond

Some History

- Diesel engine developed in late 1800s
- Small diesel locomotives appeared in 1920s in cities, industrial plants
- Diesels quite well developed just before WW2
- War interrupted transition: US needed huge transportation increase; steam production capacity in place; infrastructure in place; technology known

Some History

- At end of WW2, many steam locomotives worn out
- Economy transitioned to civilian needs
- Time for change arrived
- Steam "suddenly" replaced by diesels
- "Suddenly" was preceded by over 50 years of research, demonstration

Fuel Efficiency

- Steam locomotive 7-8 percent efficient
- Electric locomotive connected to a coal-fired power plant 20-25 efficient
- Diesel locomotive 25-30 percent efficient
- Was this the issue that drove transition?

So What Killed the Dinosaurs?

- Pollution as a local nuisance and fire hazard, not a national clean air or global warming issue
- Labor intensity
- Infrastructure
- Lack of braking power
- All tied to maintenance costs

What Happened to Electrics?

- Expensive, maintenance intensive infrastructure: wires or third rails
- Only justifiable for high volume traffic in areas where pollution is a concern
- Not a total technological loser; a diesel locomotive is really an electric locomotive carrying its own diesel engine and generator: no wires

Fuel Cells: The Answer?

- Fuel cell powered by hydrogen
- Fuel cell makes electricity that can power a vehicle
- Highly scalable to different sizes
- Fuel cell exhaust is water plus heat
- Potential replacement for internal combustion engine

Fuel Cell Basics: PEM Technology

Fuel Cell Basics

Fuel cells utilize an electrochemical process to produce electrical power without combustion, with heat and water as the primary byproducts.

Ford Concept Car

Hypercars

- Concept stated by Amory Lovins of Rocky Mountain Institute
- Light weight, carbon fiber cars
- Powered by fuel cells running on hydrogen from renewable sources
- High efficiency systems

Hypercars

- Plug in a parked Hypercar, leave it running
- Hypercar can make electricity for the grid
- Owner gets paid by the parking meter
- Power plants follow people around
- Mobile distributed generation
- GM "skateboard" concept car

Efficiency – Gasoline Engine

- About 20 percent
- Much of energy converted to heat and wasted through radiator
- Significant parasitic loads (pumps, fans, etc.)

Efficiency – Fuel Cell Car

- Fuel cell 70-80 percent efficient
- Inverter and motors 80 percent efficient
- Total system 56-64 percent efficient

Efficiency – Fuel Cell Car

- But if hydrogen is made by a reformer that is 30-40 percent efficient, total system efficiency drops to 17-26 percent efficient
- If hydrogen made by renewables or from fossil fuels at centralized reformers, hydrogen storage is an issue

Efficiency – Electric Battery Car

- Inverter and motors 80 percent efficient
- Batteries 90 percent efficient
- System 72 percent efficient

Efficiency – Electric Battery Car

- But if batteries recharged by coal fired power plant at 33 percent efficiency, system drops to 24 percent efficient
- Unless battery performance improves, vehicle range is an issue

Side by Side Comparison

Interna	I combustion engine	20%

□ Fuel cell	17-64%
-------------	--------

Batteries	24-72%

The Dilemma

- Fuel Cell produces water and heat for exhaust
- Battery powered car has no exhaust
- But...

The Dilemma

- Will the fuel cell car run on hydrogen produced by renewable resources like wind or solar or...
- ...will it run on gasoline processed through a relatively low efficiency reformer?
- Will the electric battery car be recharged by renewable technologies like wind and solar or...
- ...will it really be powered by coal?

The Dilemma Restated

If fuel cell powered automobiles use no less fossil fuel per mile than internal combustion engine powered cars do today, where are the energy and pollution savings?

What is the Best Solution

- A fuel cell powered car getting 17 miles per gallon (Ford's projection for their fuel cell SUV)?
- A hybrid electric (like the Honda Insight) that gets 60+ miles per gallon?

Policies and Subsidies

- Virtually all energy production is subsidized
- A maze of tax incentives
- Nuclear research and waste disposal
- Military protection of oil
- **CAFÉ (Corporate Average Fuel Efficiency)**
- Pollution

Policies and Subsidies

- Have shaped the energy system we have
- Can shape the energy system of the future
- What do we as a nation want?

Midwest Transportation Niches

- Alternative fuels
- Alternative lubricants
- Transporting biomass-based fuels and chemicals
- Idle reduction

Alternative Fuels

- Ethanol
- Biodiesel

Ethanol

- Now made from corn kernels
- Animal feed is byproduct
- Used as an oxygenate in gasoline
- Flexible Fuel Vehicles can run as high as 85% ethanol
- Less energy per gallon than gasoline
- Subsidized

Ethanol

- Research on making ethanol from alternative crops (e.g. sweet sorghum, sugar beets)
- More alcohol per acre
- Research on making ethanol from cellulose such as corn stalks
- Lower cost feedstock

Ethanol

- Commercial plants operating throughout Midwest
- Problems with MBTE oxygenate (groundwater contamination) may open market for more ethanol

Biodiesel

- Made by reacting plant or animal oil with alcohol
- Soy oil commonly used in Midwest
- Canola oil commonly used in Europe
- Glycerin is byproduct

Biodiesel

- Less energy per gallon than petroleum diesel
- Poor cold weather performance
- Expensive
- Research on using waste animal fats as cheaper feedstock
- Research on improving quality/value of glycerin

Biodiesel

- First commercial plants operating
- National Biodiesel Training Facility established in Nevada, Iowa
- EPA requirement to remove 97% of sulfur from petroleum diesel in 2006 will open market for biodiesel additive as lubricant

Lubricants

- Soy based oils and greases
- Hydraulic oil
- Fifth wheel grease
- Rail grease
- Other applications
- Agriculture-Based Industrial Lubricants (ABIL) program at University of Northern Iowa

Transporting Biomass

- Great potential to make chemicals and fuels from biomass waste materials
- Biomass wastes difficult to transport (low energy density)
- Optimizing production/transport a problem that is not resolved
- Has implications for economic development pattern

Idle Reduction

- Trucks typically idle their engines at truck stops to provide heat, power equipment, keep engine warm
- "Long-haul trucks idling overnight consume 838 million gallons of fuel annually" Argonne National Laboratory
- Idling produces large amounts of pollution
- Idling increases wear on engine

Idle Reduction Approaches

- On board auxiliaries
- Shore power
- IdleAir Technologies

On Board Auxiliaries

Shore Power

IdleAir Technologies

Idle Reduction

- Diesel locomotives even worse
- Seldom shut down except for repair
- Far fewer locomotives than trucks, but each locomotive bigger energy consumer

Questions and Discussion

