Economic Development Effects of Highway Investment

Nadia Gkritza, Ph.D.

Assistant Professor Iowa State University

> TRANS 691 Seminar February 13, 2009

Outline

- Introduction
- Motivation
- Research Objectives
- Study Framework
- Data
- Methodology
- Analysis Results
- Conclusions
- Future Research

Introduction

Economic Analysis:
 Benefits and costs to society
 Impacts on:

 Transportation system users (travel time, safety, VOC)
 Environment (noise, emissions, energy)
 Economic development

Introduction (cont'd)

Economic Development: Impacts on the level of econ. activity: Jobs Disposable income **Business sales/output** Investment Econ. productivity

Econ. Dev. Effects

- Direct
- Indirect
- Induced
- Multiplier Effects: indirect & induced effects
- Static (no time dimension)
- Dynamic (long-term)

[Source: Weisbrod, 2000]

Why Assess Econ. Dev. Effects?

Project planning/program development:

- Understand total impact of project proposals
- Identify cost-effective projects
- Efficient allocation of funds
- Justify value of transportation investment
- Public information
- EIS (NEPA)
- Decision-making in project selection
- Fulfilling federal requirements (SAFETEA-LU)

How Do State Agencies Address Economic Development?

Naterio

-

Favette

Economic Development Practices in US

28 States—econ. dev. hwy funding programs

- 11 States—policies: econ. dev. as a factor in project decision-making
- 11 States—no formal funding programs/policies
 CA, CO and UT—policies in development

Objectives:

Job, wage, and local tax growth
Spur private sector investment
Provide public hwy network to rural areas
Retention of businesses

Econ. Scoring Process

DOT	Econ. Dev. Measures/Indicators	Weight
Wisconsin	 Cost per job created or retained Unemployment rate 	40%
lowa	 Job creation or retention Funded dollars per job created or retained Tourism attraction Private investment 	30%
Ohio	 Job creation Job retention Econ. distress Funded dollars per job created Private investment 	30%
Kansas		20%
Missouri	 Strategic econ. corridor Econ. distress Supports regional econ. dev. plans 	15%

Past Research

- Early 1960s—focus on econ. dev. impacts of Interstate construction
- Since 1980s—focus on the link between hwys & econ. dev.
- 1990s—studies claimed substantial econ. growth impacts
- * Aggregate historical data (cross-section/time-series)
 * Assuming same intensity of highway use (traffic flows)

Motivation

- Econ. dev. effects vary among projects of different type and purpose. Depend on:
 - Hwy location
 - Economic interests served
 - Travel markets served
 - Accessibility and system-wide connectivity
- Limited research in the US dealing with specific facility type improvements
- Complexity of existing analytical methods
 - Excessive data requirements
 - Special staff training

Research Objectives

Investigate relationship between hwy investment and statewide econ. dev.

Nature of long-term econ. dev. effects
Location and project-specific factors
Hwy investments as a tool for expansion of job and income opportunities in IN

Research Objectives (cont'd)

Project-level easy-to-use quantitative tool

- Provide a credible foundation for hwy investment decisions on the basis of econ. dev. criteria
- Improve judgment of planners and decisionmakers:
 - Will a hwy investment result in econ. dev.?If so, to what extent?
- General: New construction vs. added capacity?
- Specific: Which particular projects to build? Where?

kakee Highway Infrastructure

o Heights

CHAR Porte

alparaiso

Grawfordsville

Goshen

Economic Activity

Zenderson

Eishers

Greenwoo

-awrence

Muncie

Richmo

Elwood.

Phymouth

Indianápo Greencastle

Ongoing (I-69/SR37/SR101) & Past Corridor Projects (US31/SR26&US35)

Insights from Corridor Projects in IN

Econ. dev. is driven by :
 Project length/investment
 Project location
 Hwy functional class (*i.e.*, interstate)

Project type ?

Type of Highway Improvement

alparaiso

o Heights

La Porte Q

Auburn

Goshen

ivmouth

Economic Activity

Muncie

Richn

Noblesville Noblesville Carcrels Eishers Idianapone Greencastle Greencastle Greenwood

Study Framework

Data–Hwy Improvements

	Urban	Rural
Added Travel Lanes	27	31
Median Construction	20	4
New Road Construction	8	18
Interchange Construction/ Modification	7	2
Total	62	55

Projects included in INDOT's Long Range Transportation Plan (2000–2025)

Data (cont'd)

Highway project-specific data	Location/ Accessibility/ Land use indices	Statewide long- term* econ. dev. benefits
 Project Type Added Travel Lanes New Construction/ Alignment Median Construction Interchange Construction/Modification Project Size Project Length Number of Lanes Hwy System Project Costs Construction Costs ROW Costs Engineering Costs Duration of Construction (yrs.)	 Geographical Region (North, Central, South IN) County District MPO Type of Area (Urban/Rural) Accessibility to Major Airports Accessibility to Universities Accessibility to Employment 	 Net Change in Employment Net Change in Real Disposable Income Net Change in Business Sales (Output) Net Change in GRP * Over a 20-year period

Projects included in INDOT's Long Range Transportation Plan (2000–2025)

Indiana County Classification

22

Data Sources

2025 Long Range Transportation Plan (INDOT)
 project ID, route, functional class
 project type, size, costs (2003\$)
 district, MPO, county

2005 HPMS:

highway geometrics, traffic operation data and design parameters

base year and 20-year forecast

2004 Statewide Reference Post Book (INDOT)

Data Sources (cont'd)

Safety studies in Indiana (Tarko and Kanodia, 2003; Tarko et al., 2000)
 Safety performance functions
 Crash costs in Indiana
 Crash reduction factors by improvement type and type of area (urban/rural)

Safety Management System Software (Lamptey et al., 2004)

 Crash reduction factors by improvement type and type of area (urban/rural)

Data Sources (cont'd)

Indiana's economic profile Employment by industry (BEA) Location quotients (BLS-calculator) Automobile travel in Indiana ■ BTS INDOT 1995 Travel Survey Indiana accessibility Indiana Statewide Travel Demand Model (ISTDM)

Long-term Economic Benefit Estimation

26

User Benefits	Business Cost Savings	
Time Savings—business travel ("on-the-clock" worker time)	Value of additional productive labor hours (for non-salaried portion of workers)	
Time Savings—other trips (includes commuting)	(May lead to additional spending or affects wages for recruiting workers)	
Operating Cost Savings—business travel (pickups and deliveries)	Direct cost savings	
Operating Cost Savings—other travel (includes commuting)	Increase in disposable personal income (May also affect wage rates)	
Safety Improvements—business travel ("on-the-clock" worker time)	Reduction in insurance costs and worker absenteeism	
Safety Improvements—other travel	Reduction in insurance cost, raising disposable income	

Weisbrod, G. and B. Weisbrod. "Transportation Research Circular 477", TRB, National Research Council, Washington, D.C., 1997.

Long-term Economic Benefit Estimation

Estimation of Potential Business Attraction

Business Attraction Impacts:

Changes in employment by industry

- Difficult to predict with accuracy
- Methods:
 - Business surveys or interviews
 - Non-survey methods
 - Location quotient analysis
 - ratio of an industry's share of regional economy to the industry's share of the state economy, in terms of employment

Estimation of Potential Business Attraction (cont'd)

Scenarios:

- No business attraction (Scenario 1)
- Location quotient (LQ) analysis (CSI, 1998a; 1998b)
 - Proportional to business expansion by LQ (Scenario 2)
 - Proportional to business expansion by 1/LQ (Scenario 3)

Long-term Economic Benefit Estimation

Economic Simulation Model

- REMI: links an econometric model to an I-O model
 - Dynamic/long-term effects
 - Suitable for estimating impacts resulting from transportation investments
 - Provide wide range of outputs
 - Calibrated for IN

Understanding the Model

Treyz F. and G. Treyz. "REMI Policy Insight Model Documentation Version 6.0." Regional Economic Models, Inc., Amherst, Massachusetts, 2002.

Variables

Dependent variables (REMI outputs):

 \rightarrow Net statewide cumulative change over 20 years in:

- employment (jobs)
- real disposable income
- output
- GRP

Under 3 different scenarios of business attraction

- Scenario 1 (lower estimates)
- Scenario 2
- Scenario 3 (higher estimates)

Variables (cont'd)

- Econ. dev. benefit/cost ratios
- → Jobs/million \$ of hwy spending
- Income/million \$ of hwy spending
- → Output/million \$ of hwy spending
- → GRP/million \$ of hwy spending
- Independent variables (data collection):
- Project and location-specific attributes

Methodology

Econometric Analysis of Regional Systems

Single regression equation

- Unrelated behavior of dependent variables
- OLS estimation
- Parameter estimates consistent but not efficient

System of regression equations

- Joint behavior of dependent variables
- GLS estimation
- Parameter estimates consistent and efficient
- Lower variance estimates than single-equation methods

Methodology (cont'd)

SURE model

M seemingly uncorrelated equations:

$$y_i = X_i \cdot \beta_i + \varepsilon_i, i = 1, ..., M$$

- y_i T × 1 vector of observed values on the *i*-th dependent variable
- X_i $T \times p_i$ matrix with rank p_i of observations on p_i independent variables
- $\beta_i p_i \times 1$ vector of unknown regression coefficients
- ε_i $T \times 1$ vector of error terms, $E(\varepsilon) = 0$, $E(\varepsilon \varepsilon') = \Sigma \otimes I_T$

Simultaneous correlation of the error terms

Using GLS,
$$\hat{\boldsymbol{\beta}} = \left\{ X' (\Sigma \otimes I_T)^{-1} \cdot X \right\}^{-1} \cdot X' (\Sigma \otimes I_T)^{-1} \cdot Y$$

Methodology (cont'd)

Chow test (1960)

 RSS_r residual sum of squares for the restricted model RSS_{ur} residual sum of squares for the unrestricted model N_1, N_2 number of observations in each sub-sampleknumber of restrictions to be tested

Data cannot be pooled when $F_{stat} > \overline{F_{k,N_1 + N_2 - 2k}}$

Chow Test Results

Separate models for:

- Added travel lanes projects (58 obs.)
- New construction-related projects (59 obs.):
 - New road construction
 - Median construction
 - Interchange construction

Methodology (cont'd)

Student's t-test (1908)

- Scenarios 2 & 3 not significantly different
- Separate models for:
 - estimates under 2 scenarios

Methodology (cont'd)

Durbin–Watson statistic (1950)

- Separate indicator variables for projects in:
 Marion County

 12.8%—total
 - 22.4%—ATL
 - Other urban areas

SUR Equation System I

Equation 1: Net change in employment (jobs) Equation 2: Net change in real disposable income Equation 3: Net change in output Equation 4: Net change in GRP

2 GROUPS OF PROJECTS2 SCENARIOS (low/high)

SUR Equation System II

Equation 1: Jobs/million \$ of spending Equation 2: Real disposable income/million \$ Equation 3: Output/million \$ of spending Equation 4: GRP/million \$ of spending

2 GROUPS OF PROJECTS2 SCENARIOS (low/high)

Adding Travel Lanes

o Heights

all Caparte Q

alparaiso.

Adburn

Goshen

rymouth

Economic Activity

Muncie

Richm

Noblesvil 2Anderson Carmela Eishers ianapol awrence Greencastle Greenwood

Equation 1–Jobs

 $REMIEMP = -156.0 + 10.56 \cdot NEWLNMI$ -168.4 \cdot URBAN + 347.2 \cdot I + 43.75 \cdot ACCAIRP - 90.86 \cdot CENTRAL (Adjusted R² = 0.55)

REMIEMP NEWLNMI URBAN I ACCAIRP CENTRAL net change in employment (jobs) new (added) lane-miles 1, if project in urban areas; 0, for rural 1, for interstate hwy; 0, otherwise accessibility to major airports (1 to 5) 1, if project in central IN; 0, otherwise

Analysis Results

Potential greater econ. dev. benefits from investments in:

- Interstate hwys in rural North or South IN with a high degree of accessibility to airports
- Hwys located in Marion County compared to the other urban areas

Potential lower econ. dev. benefits from investments in:

- State hwys in rural areas in Central IN
- Urban areas with low connectivity to airports, universities or employment

Median Construction New Road Construction

alparaiso

o Heigh

Greencastle

dianabc

Auburn

Goshen

Economic Activity

awrence

Greenwood

Muncle

Equation 2–Income

 $REMINCMI = 2.14 + 0.28 \cdot PRLENNRC + 19.37 \cdot I + 19.34 \cdot ACCEMPI45 + 0.65 \cdot URBU - 0.60 \cdot MC - 0.67 \cdot STNRC$ $(Adjusted R^2 = 0.66)$

REMINCMI net change in real disposable income (million 1996\$) *PRLENNRC* project length in miles for NRC projects *I*, for interstate hwy; 0, otherwise *ACCEMPI45* accessibility to employment of IC projects (4 to 5) *URBU* 1, if project located on urban US hwy; 0, otherwise *MC* 1, for median construction projects; 0, otherwise *STNRC* 1, if NRC project located on State hwy; 0, otherwise

Equation 2–Income

INCPER96 = 0.41 + 0.84·/ + 1.72·ACCEMPI45 - 0.26·URBAN (Adjusted R² = 0.60)

INCPER96\$ net change in real disposable income / million 1996\$
 I for interstate hwy; 0, otherwise
 ACCEMPI45 accessibility to employment of IC projects (4 to 5)
 URBAN 1, if project in urban areas; 0, for rural

Analysis Results

Potential greater econ. dev. benefits from :

- Construction of Interstate hwy interchanges with a high degree of accessibility to employment
- New road construction projects programmed for US highways in South IN
- Potential lower econ. dev. benefits from :
 - Median construction projects
 - New road construction projects on state roads in North or Central IN
 - Investments in urban areas compared to rural areas

"Validation" of Analysis Results

Long-term Statewide Cumulative Net Change in:	INDOTa	Research Study
Employment (jobs)	15,050	9,850–20,950
Income (billions of 2000 dollars)	1.1	1.8–3.4
Output (billions of 2000 dollars)	4.0	3.8–6.3

^a CSI and BLA, "Economic Impacts of Indiana's Statewide Long-Range Transportation Plan." Prepared for INDOT, 2004.

Conclusions

Hwy investment can have a positive impact on IN economy Project-specific factors Economic conditions of the region Significant determinants: ■ Size of hwy investment (↑) Hwy functional class [Interstate (+)] Type of area [rural (+), Marion County (+)] Degree of accessibility to airports/employment ([↑])

Conclusions (cont'd)

Greater potential for long-term statewide econ.
 development effects from:

Capacity improvements (especially on interstates)
Interchange construction
New road construction projects of greater size
In rural areas in North or South IN
In urban areas in Central IN (especially in Marion County)

Conclusions (cont'd)

 Transportation necessary but not sufficient factor
 Hwy access only one factor in the complexity of business location decisions

 Ideally, empirical data analysis of actual effects of different hwy improvements (ex-post evaluation)

Consideration of:

Transportation performance (intensity of use)

- Different scenarios of business attraction
- Dynamic & ripple effects

Conclusions (cont'd)

Econometric analysis framework

- System of regression equations:
 - (Indirect) interaction of 4 econ. dev. measures
 - GLS estimation vs. OLS estimates
 - Parameter estimates consistent and efficient
 - Lower variance estimates than single-equation methods
 - Valid inferences

Implementation

Easy-to-use quantitative tool at the project development phase

Assist planners and decision-makers to:

- Make order-of-magnitude comparisons of benefits and costs
- Identify possible cost-effective investments
- Identify possible important benefit areas

Implementation (cont'd)

Implementation (cont'd)

Project Ranking/Prioritization

- B/C method
 - Measure econ. dev. benefits as changes in real disposable income
 - Separately estimate user benefits for nonbusiness/personal travel
 - Add benefits and compute B/C ratio
- Scoring method
 Use EDB/C ratios to assign scores to projects
 - according to their econ. dev. potential

Future Research

- Development of improved data on regional accessibility & changes in accessibility resulting from hwy improvements
- Estimation of spatial econometric models
- Validation of the scoring method using expert opinions/panels

Acknowledgements

Olson Distinguished Professor Kumares C. Sinha
 Professor Fred L. Mannering

Joint Transportation Research Program (JTRP)
 Indiana Department of Transportation (INDOT)
 Purdue University, School of Civil Engineering

Awards/Publications

C.V. Wootan Memorial Award for outstanding Ph.D. dissertation in Policy and Planning, Council of University Transportation Centers, 2007.

Gkritza, K., S. Labi, F.L. Mannering and K.C. Sinha (2008). Influence of highway construction projects on economic development: An empirical assessment. *The Annals of Regional Science*, Vol. 42(3): 545–563.

Gkritza, K., K.C. Sinha, S. Labi, and F.L. Mannering (2008). Economic development and highway project decision-making. Presented at the 10th International Conference on Application of Advanced Technologies in Transportation, May 27–31, Athens, Greece.

THANK YOU!

Indiana Accessibility to Airports

