ANALYSIS OF RURAL CURVE NEGOTIATION USING NATURALISTIC DRIVING DATA

Nicole Oneyear and Shauna Hallmark

OUTLINE

- Background
- Objective
- Data Sources
- Site Selection
- Data Reduction
- Future work
- Benefits

BACKGROUND

- Horizontal curves have a crash rate 3x that of tangent sections (Glennon et al., 1985)
- 27% of all fatalities in 2007 occurred on horizontal curves (Cheung, 2010)
- 76% of curve related fatal crashes are single vehicles leaving the roadway and striking a fixed object or overturning.
- 11 % of curve related crashes are head-on collisions (AASHTO, 2008)
- Many studies on roadway factors which are relevant
 - Radius and Degree of curve
 - Presence of spirals
 - Shoulder width
- Little research has been done to identify which driver behaviors contribute to curve crashes

OBJECTIVE

 Assess the relationship between driver behavior and characteristics, roadway factors, environmental factors, and likelihood of lane departures using SHRP 2 Naturalistic Driving Study data and roadway data from the SHRP 2 Roadway Information Database

Develop models to quantify the relationship between driver behavior and the roadway environment

Focus on curves on rural 2-lane paved roadways

SHRP 2 NATURALISTIC DRIVING STUDY (NDS)

- Drivers have their car instrumented with equipment to capture data as they drive
 - Approximately 3,100 drivers of all genders and ages
 - Approximately 4,000 data years including 5 million trip files and 30 million data miles
 - 6 states (FL, IN, NY, NC, PA and WA)

image source: SHRP 2

SHRP 2 NATURALISTIC DRIVING STUDY (NDS)

- Captures a variety of data
 - Vehicle network data (i.e. speed, acceleration, pedal position)
 - Accelerometer data (3 axis)
 - GPS coordinates
 - Forward and rear radar
 - Cameras

SHRP 2 ROADWAY INFORMATION DATABASE (RID)

image source: CTRE

- Data from mobile data collection and other existing roadway data along with supplemental data.
- Data collected includes
 - Mobile data collection (~25,000 collection miles)
 - Roadway alignment, shoulder width and type, signing, lighting, intersection locations, rumble strips, etc.
 - Existing roadway data
 - Asset management data, ADT, type of pavement, rest areas, etc.
 - Supplemental data
 - Crash data, changes to laws, etc.

SAMPLING PLAN

- Balanced:
 - Need for statistically representative sample based on potential number of covariates
 - Cost to procure data
 - Time to reduce and analyze data
 - Time constraints for Phase II
- 200 initial traces
- 800 final traces

CURVE IDENTIFICATION

- NDS and RID not yet merged
- Queried RID for rural 2-lane curves of interest
 - radius, presence of RS, etc.
- Reviewed other RID data, Google Earth
- Number of trips and drivers

BUFFERS

image source: ESRI

- Created buffer shapefiles in ArcGIS
- Created a line over section of interest
 - Single curve if more than 1.0 mile separate subsequent curves of interest
 - Multiple curves if less than 1.0 miles separated

EVALUATION CRITERIA

- No turning or passing lanes in curve
- At least 0.5 miles of tangent on both sides of curve if it was not within a series of curves within a buffer
- No stop controlled intersection on the major approach in curves and tangents
- No signal controlled intersections in curves or tangents
- No railroad crossings within curve or tangents
- No sites within 0.5 miles of town
- No construction

DATA REQUEST

- Identified 203 segments with 707 curves (NC, NY, IN, PA)
- 32 existing from FL had from proof of concept phase,
 did not request additional data for current work
- Already had from FL tended towards urban
- WA large urban component

image source: ESRI

SELECTED CURVE CHARACTERISTICS

Location	of Buffer	Segments
----------	-----------	-----------------

State	Buffers	Curves
Indiana (IN)	80	375
New York (NY)	71	173
North Carolina (NC)	20	58
Pennsylvania (PA)	32	101
Total	203	707

Curve Radius			
Radius (feet)	Number of Curves	Radius (feet)	Number of Curves
<=750	110	> 1500 to <=2250	138
> 750 to <=1500	149	≥2250	310

REDUCTION OF ROADWAY FACTORS

 Gather roadway alignment and countermeasure data (used RID when available)

- Estimate of road furniture
 - rating system of 1 3 (ranges from little to no road furniture to significant roadway furniture)

Feature	ArcGIS	SHRP2 RID	Google Earth
curve radii		✓	
distance between curves	✓		
s curve	✓		
compound curve	✓		
super elevation		✓	
presence of rumble strips		✓	
presence of chevrons		✓	✓
presence of w1-6 signs			✓
presence of paved shoulders		✓	
presence of RPM			✓
presence of guardrail			✓
speed limit		✓	
advisory sign speed limit		✓	✓
curve advisory sign		✓	✓

REDUCTION OF VEHICLE FACTORS

- Spatially correlated vehicle trace to curve
 - Location of vehicle upstream, within, downstream of curve
- Calculate lane position from lane tracking variables

image source: ESRI

REDUCTION OF VIDEO

- Forward video
 - When vehicle is not following, following, following closely
 - Whenever another vehicle is passed
 - Sight distance
 - Environmental conditions
 - Day, dawn, dusk, night
 - Clear, raining, snow
 - Visibility
 - Pavement marking condition
 - Pavement condition
 - Locations and presence of curve warning signs

image source: VTTI

REDUCTION OF KINEMATIC DRIVER FACTORS

- Driver distraction forward and over shoulder video at secure data enclave
 - type
 - duration -- coded by video time
- Driver forward attention forward video at secure data enclave
 - Head position
 - Scan (glance) location

RESEARCH QUESTIONS

- Use data to try to answer 3 research questions
- 1. Define normal curve driving based on curve geometry
 - Change in lateral position or speed from tangent to within curve
 - Schurr et al (2002); Krammes and Tyer (1991); Stodart and Donnell (2008)
 - Determine where driver begins to react to curve
 - Combination of a filter and potentially time series

```
\Delta V = V_{MPT} - V_{MC}
\Delta L = L_{MPT} - L_{MC}
where
V = \text{speed}
L = \text{lateral position}
MPT = \text{midpoint of tangent}
MC = \text{midpoint of curve}
```

- 2. What is the relationship between driver distraction, other driver, roadway, and environmental characteristics and risk of lane departure
 - Multivariate logistic regression with probability of a left or right side lane departure as response variable
 - Will give odds of a lane departure of a certain magnitude given driver, roadway and environmental variables
- 3. What roadway cues and countermeasures are the most effective in getting a driver's attention and how do they affect driver response to horizontal curves
 - Time series model

BENEFITS

- Better understanding of relationship between roadway features, driver behavior, and curve negotiation
- · Ability to understand how and why countermeasures work/don't work
- Implications:
 - Road design
 - Signing
 - Selection and application of countermeasures
 - Policy
 - Advanced vehicle technologies

Questions?

Nicole Oneyear Iowa State University noneyear@iastate.edu