I-57 Precast Post-Tensioned Pavement

2006 Missouri Concrete Conference

January 25, 2008

John P. Donahue, P.E.
Missouri DOT
Initiated by FHWA Concrete Pavement Technology Program (CPTP) in 2000.

CPTP Task 58 purpose – to examine the feasibility and cost-effectiveness of using precast prestressed concrete panels for rapidly rehabilitating or reconstructing existing pavements.
Background History

- Precast post-tensioned pavement advantages
 - Reduced tensile stresses in concrete
 - Reduction in required slab thickness
 - Bridging of small voids on uneven base
 - Rapid construction technique during off-peak traffic hours
 - Long-life performance
Two FHWA Demo Projects previously constructed
- Texas (2002) – multiple 250’ single ‘slabs’

Missouri was selected to construct third project

Panel design by The Transtec Group
Site Selection Criteria

- Rehab/Reconstruction needed
- High profile
- Moderate traffic
- Homogeneous soils
- Simple typical section
- Proximity to precast plant
NB I-57 in SE Missouri

- ‘Bootheel’ location
 - Flat
 - Sandy-silt soil
- Two 12’-lanes w/ 4’ I.S. and 10’ O.S.
- ~18,000 AADT
- 30 % trucks
- Tangent / no vertical curve
Existing Pavement

- 8-inch JRCP w/ 61.5’ joint spacing
- 4-inch dense-graded granular base
- Built in 1959
- Roughly 35 years of good service before full depth repairs started
Project Length

- Whatever we could buy for $400,000
- Multiple of ~250’ sections
- Initially estimated 5 sections
- Ended up with 4 sections
End Transitions

- Pavement replacement on both ends
- Dowel load transfer
- Diamond grinding
Typical Section Design

- Existing pavement – 1.56% cross slope
- 2% cross-slope required
- Retain crown template
Typical Section Design

- Uniform thickness desirable, but not practical w/ crown design
 - Eccentrically-loaded prestress
 - Grading control
- Elected to flatten base
- Each panel ~ 20 tons
Grade Preparation

- Compacted subgrade
- 4-inch unbound granular subbase
- 4-inch permeable treated base
- Poly sheeting
Cross-section Design

- 4' I.S.
- 2%
- 4" PTB
- 4" Granular
- 2%
- 10' O.S.
- 8"
- Panel
- 8"

Poly sheet
Panel Design

- 38’ width x 10’ length
- 10⅞” at crown
- 8” at shoulder point
- 7” at inside shoulder edge
- 5⅜” at outside shoulder edge
Bid Proposal Development

- Stand-alone project - uncertain contractor interest
- District increased scope of project ($$) to include adjacent pavement replacement
- Tied to much larger rehab project on I-57 as combination bid
Bidding Summary

- 3 bidders
- E.E. unit price - $200 / (yd²)
- Low bid (Gaines Construction) - $248 / (yd²)
- Contract awarded in May 2005
- CPI (in Memphis) - precast subcontractor
- December 31 completion date
Instrumentation Study

- Seven panels – 5 base / 2 joint
- First major instrumentation of precast post-tensioned pavement
- Research study w/ U. of Missouri-Columbia
- One-year study after installation
- Dr. Gopalaratnam – P.I.
Study Objectives

- Early panel shrinkage
- Anchorage behavior
- Prestress losses during various stages (friction, relaxation, creep)
- Curling at joints
- Performance under traffic loads
- Daily and seasonal thermal effects
Post-Tensioning

- 18 - 0.6” strands @ 2’ spacing
- Alternating stressing pattern from center
- Jacking force = 75% of ultimate strength
- Total target elongation after lock-off ~ 16 ¾”
Future Recommendations

- Limit weight of lift equipment on base
- Mark panel above centerline duct for alignment
- Ensure dowels well aligned and bond broken between joint panel halves
- Post-tension ‘slab’ before placing adjacent panels
Thank You!

Questions?

john.donahue@modot.mo.gov
(573) 526-4334