Älvsbacka Bridge – A Bridge in Cold Climate

Niclas Björngrim

Älvsbacka Bridge

- Span 130 m, main beams 1100 x 645 mm.
- 23 m high pylon towers, 900 x 900 mm.
- Untreated spruce and protective cladding.
- The deck is built in five sections, and assembled on site.
- The bridge deck has a 1 m camber.

Health monitoring system

- GNSS for Displacement and vibration.
- 3-axis accelerometers for vibration.
- Load cells for cable tensions.
- Weather station for temperature and RH.
- MC-sensors for determining MC.
- Web camera to differentiate traffic and weather loads.

HNOLOG

Engineered woods

- Glulam
- CLT
- LSL
- PSL
- We know the properties of wood in elevated temperatures.

Engineered woods in cold climate

- Nordic countries, Russia, USA, Canada etc.
- 17 january 2013 -23° C, but it gets colder!

Specimens

- Specimens cut to 150mm x 20mm x 10 mm
- Six types of adhesive:
 - One-component polyurethane (PUR)
 - Polyvinyl acetate (PVAc)
 - Emulsion-polymer-isocyanate (EPI)
 - Melamine-formaldehyde resin (MF)
 - Melamine-urea- formaldehyde resin (MUF)
 - Phenol-resorcinol-formaldehyde resin (PRF)

Glue line stability in cold climate

- Universal testing machine in climate chamber
- Temperatures from 20° C to -60° C
- Tested according to EN 302-1

OF TECHNOLOGY

Shear strengths of wood and adhesives bonds at different temperatures

Temp./Glue	1-PUR	2-PVAc	3-EPI	4-MF	5-PRF	6-MUF	7-Wood
20°C	$10.9(1.0)^{1}$	9.6 (0.6)	10.0 (1.1)	9.8 (0.9)	9.8 (1.0)	8.7 (0.7)	10.1 (0.9)
	A^2	Α	Α	Α	Α	Α	Α
-20°C	10.8 (2.3)	8.1 (1.2)	8.3 (1.6)	9.4 (2.3)	9.7 (1.8)	7.9 (1.1)	9.5 (1.1)
	A,B	В	В	Α	Α	A,B	A,B
-30°C	10.2 (2.9)	8.2 (1.2)	8.3 (2.0)	8.1 (2.5)	9.2 (2.0)	7.2 (1.9)	9.0 (0.9)
	A,B	В	В	A,B	A,B	B,C	A,B,C
-40°C	9.9 (1.5)	7.9 (1.9)	7.3 (1.5)	7.7 (1.4)	9.3 (1.4)	7.2 (1.3)	8.7 (1.3)
	A,B	В	В	В	A,B	B,C	B,C
-50°C	9.2 (1.3)	7.9 (1.8)	7.8 (1.4)	7.5 (1.2)	8.4 (1.7)	6.6 (0.9)	8.8 (1.5)
	B,C	В	В	В	A,B	С	B,C
-60°C	7.9 (1.4)	7.7 (1.1)	7.2 (1.5)	7.3 (1.7)	8.0 (1.4)	6.6 (1.3)	8.0 (0.9)
	С	В	В	В	В	С	С
Total shear	27.1	19.3	27.5	25.0	18.7	24.5	27.1
strength							
change $(\%)^3$							

¹Values in parentheses are standard deviations based on 15 specimens.

²Values in the same capital letter in each column are not statistically different at the 0.05 significance level.

³Total shear strength change (%)=(Shear Strength $_{20^{\circ}C}$ - Shear Strength $_{-60^{\circ}C}$)/ Shear Strength $_{20^{\circ}C}$ *100.

Conclusions

- As temperature is lowered the shear strength is reduced.
- Except for PUR have a shear strength below 10 MPa already at -20° C, not meeting the EU requirement.
- MUF showed the lowest shear strength of the tested adhesives.

