Bienvenue

Combination of timber, CFRP and GFRP for the design and construction of a bowstring arch bridge

Robert Widmann
Urs Meier

Rolf Brönnimann, Empa
Philip Irniger, Dr. Deuring + Oehninger AG
Andreas Winistoerfer, Carbo-Link AG

Basic Parameters

Materials Science \& Technology

Material	E	ρ	Strength
	GPa	$\mathrm{kg} / \mathrm{m}^{3}$	MPa
Glulam GL24h (EN 1194)	11.5	455 at $u=12 \%$ (measured)	$f_{\mathrm{m}, \mathrm{g}, \mathrm{k}}=24$ $\mathrm{f}_{\mathrm{c}, 0, \mathrm{k}}=24$
CFRP	150	1500	$f_{\mathrm{t}}=2000$
GFRP	44.5	2000	$f_{\mathrm{c}}=900$

Pin-loaded CFRP Straps as tendons

Carbo $\begin{gathered}\text { ntinuous, thermoplastic } \\ \text { Link } \\ \text { ckne } \\ \text { ค. radius } \\ r\end{gathered}$

Lateral Prestressing

Tensioning of the bow

Materials Science \& Technology

Tensioning of the bow

Materials Science \& Technology

Load Tests

Fundamental Frequency of a vibrating string

$$
\begin{aligned}
& f=\frac{1}{2 \cdot \ell} \cdot \sqrt{\frac{F}{\rho \cdot A}} \\
& F=4 \cdot \ell^{2} \cdot f^{2} \cdot \rho \cdot A \\
& F=4 \cdot 3.00^{2} \cdot 65^{2} \cdot 1500 \cdot(0.03 \cdot 0.004)=27.4 \mathrm{kN}
\end{aligned}
$$

Step	Load	Mean deflection	Mean tension force F	Accumulated tension force	Tension from static calculation	Deflection from static calculation
0	kN	mm	kN	kN	kN	mm
1	8.5	6	21.0	126	149	0
2	17.2	14.1	23.8	143		
3	25.6	20.8	29.4	160		
Design load	$4 / \mathrm{m}^{2}$			176	208	18.7

Side-Topic: Monitoring while passing by....

Materials Science \& Technology

Monitoring with iphone or....

- iAnalyzer or similar App
- Indicates peaks in spectrum
- Has to be corrected for mic-response
- e.g. here for 65.1 Hz : $88.7 \mathrm{~dB}+25 \mathrm{~dB} \approx 114 \mathrm{~dB}$

Monitoring with iphone or....(continued)

- Context Log, AcceIPro or similar App
- Indicates and records x, y, z accelerations
- Data can be exported to a PC
- Analysis e.g. with MS-Excel
- e.g. here: $f_{0} \approx 4.5 \mathrm{~Hz}, \zeta \approx 1.2 \%$

More Monitoring

For detais: see e.g. Brönnimann et al: ICTB 2010 publication

Weak points / Potential for improvements

Anchorage of railing posts Not tight
Lokaly and temporarily increased MC of timber

Decking
Slippery when wet and/or frozen
Sanding not sufficient

Timber bridge deck Cup deformations due to MC gradient
$\mathrm{T}>80^{\circ} \mathrm{C}$ under decking in summer

Conclusions

- Pedestrian bridge made exclusively of glulam structural timber, CFRP and GFRP at the Empa site in Duebendorf, Switzerland.
- Lateral and longitudinal prestressing of the bridge with CFRP loop straps
- Load tests confirmed a superior stiffness of the system.
- Bridge in place since 2007 and since then continuously monitored
- From the advantages of the construction like lightweight structure, high stiffness, prevention of corrosion problems, easy installation, good value and an expected long service life, a good market potential for such structures can be expected.
- Urs Meier, Empa
- Rolf Brönnimann, Empa
- Philip Irniger, Dr. Deuring + Oehninger AG
- Andreas Winistoerfer, Carbo-Link AG
- Bafa
- and YOU for your attention

