Condition Assessment of Iowa Timber Bridges Using Advanced Inspection Tools

ICTB 2013
Las Vegas

Travis Hosteng, P.E.
Bridge Engineering Center
Iowa State University
Outline

- Introduction – Iowa Timber Bridges
- Bridge Cluster Overview
- Case Study 1: Blackhawk 5
- Case Study 2: Clarke 1
- Wrap-up
Introduction

Iowa

- ~2,454 Timber Bridges
 - 189 timber slab
 - Majority built after 1990
 - 2265 timber girder
 - Majority built between 1940-1990
Bridge Clusters

- Public road
- Access (safety, ‘arms length’ inspection, etc)
- Similar design type, age
- Location
Iowa Clusters

- Bremer County
- Blackhawk County
- Clarke County
Iowa Clusters Cont.

- **Bremer County**
 - Bremer 1
 - 1996
 - 21ft
 - Bremer 2
 - 1997
 - 21ft
 - Bremer 3
 - 1994
 - 22ft
 - Bremer 4
 - 1994
 - 22ft
 - Bremer 5
 - 1997
 - 27ft

All Girder Bridges
Iowa Clusters Cont.

- Blackhawk County
 - Blackhawk 1
 - 1983
 - 19ft
 - Blackhawk 2
 - 1985
 - 18ft
 - Blackhawk 3
 - 1985
 - 17ft
 - Blackhawk 4
 - 1985
 - 18ft
 - Blackhawk 5
 - 1985
 - 18ft

All Girder Bridges
Iowa Clusters Cont.

- Clarke County
 - Clarke 1
 - 1985
 - 30ft
 - Clarke 2
 - 1983
 - 30ft
 - Clarke 3
 - 1983
 - 30ft
 - Clarke 4
 - 1983
 - 30ft
 - Clarke 5
 - 1982
 - 30ft

All Deck Bridges
Decay Hazard Zones

US
Case Study 1: Blackhawk 5

- FHWA 74731
- Timber girder; transverse plank deck
- Single span, 18ft
- 1985
- Steel guardrail
- Timber abutments
- Gravel wearing surface
Blackhawk 5
Blackhawk 5
Blackhawk 5
Blackhawk 5
Blackhawk 5
Blackhawk 5

Girders
• No noticeable rotation at bearings
• Small (1/8-1/4in.) settlement of several girder ends under load
• Numerous bottom ‘flanges’ splintered

Deck
• Moisture staining
• 1/8-1/2in. gaps btw planks
Blackhawk 5

Girder G19

- Plywood shim on top
- Large splinter
 - Bottom flange
 - \(~6\text{ft long, from near EOB to midspan}\)
 - Located ~\(\frac{1}{3}d\) from bottom
Blackhawk 5

- Girder G25
 - Deterioration
 - Start: 2ft from BOB
 - End: ~2ft E. of midspan
 - High moisture content, low 20’s, very soft
 - Stress Wave
 - Resistograph
Blackhawk 5

Stress Wave Readings

<table>
<thead>
<tr>
<th>J</th>
<th>I</th>
<th>H</th>
<th>G</th>
<th>F</th>
<th>E</th>
<th>D</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>70</td>
<td>75</td>
<td>132</td>
<td>440</td>
<td>160</td>
<td>111</td>
<td>155</td>
<td>145</td>
<td>140</td>
<td>69</td>
</tr>
</tbody>
</table>
Blackhawk 5

Resistograph Readings

Resistograph

Readings

29
Blackhawk 5

Resistograph Readings

Amplitude [%]

Drilling depth [cm]
Blackhawk 5

Resistograph Readings
Blackhawk 5

Resistograph Readings

Resistograph ID

BOB

EOB

29 31 30 32 33 34 35 36 37

G25

Abut. Cap

C-channel

29

34

37
Blackhawk 5

➢ Other ‘Findings’...
Case Study 2: Clarke 1

- FHWA 12821
- Longitudinal Deck
- Single span, 30ft
- 1985
- Timber guardrail
- Timber abutments
- Asphalt Wearing Surface
Clarke 1
Clarke 1

Midspan Transverse Stiffener Beam
Clarke 1

Moisture Content Readings

Mid to Upper Teens
Timber Slab Bridges

- Three main issues found:
 1) Condition, maintenance, of wearing surface
 2) Adjacent deck panel connection detail
 3) Abutment backwall movement
Timber Slab Bridges

1) Wearing Surface
Timber Slab Bridges

- Panel "A"
- Panel "B"

4" nominal laminations

Lapped joint is formed by spiking laminations that are 1/2 the deck thickness to each panel and connecting them vertically with spikes.
Timber Slab Bridges
Timber Slab Bridges
Timber Slab Bridges
Timber Slab Bridges
Thanks for your Attention