

Influence of concrete cracking on wood concrete composite bridges

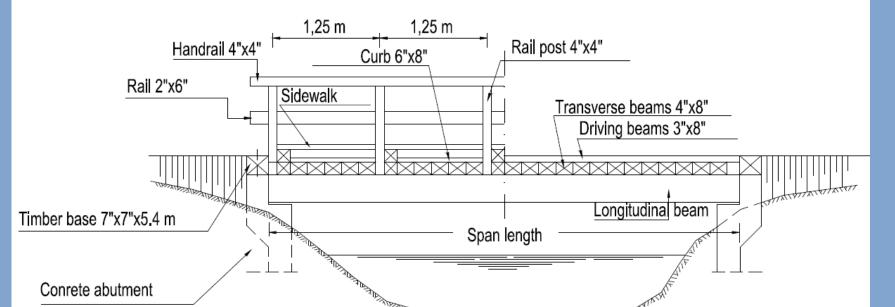
Dr. Ing. Frank Schanack Institute of Civil Engineering Universidad Austral de Chile

Contents

Introduction Timber Bridges en Chile Methodology Results Conclusions

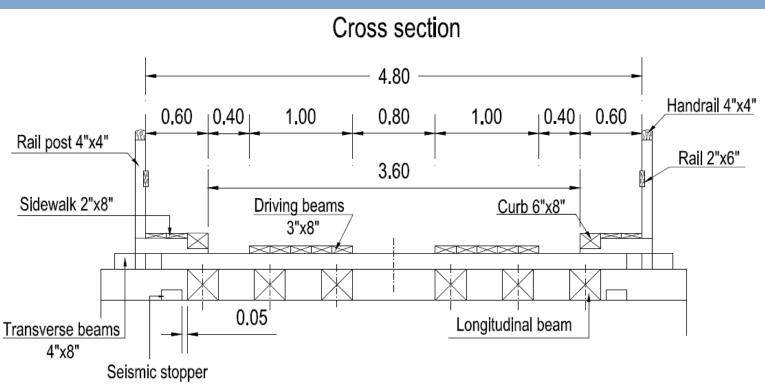
Introduction

- Concrete cracking reduces concrete stiffness
- Reduced concrete stiffness increases deformations and timber stresses
- Concrete cracking must be considered in the design
- Design recomendations vary from neglecting the effect to a stiffness reduction of 60%



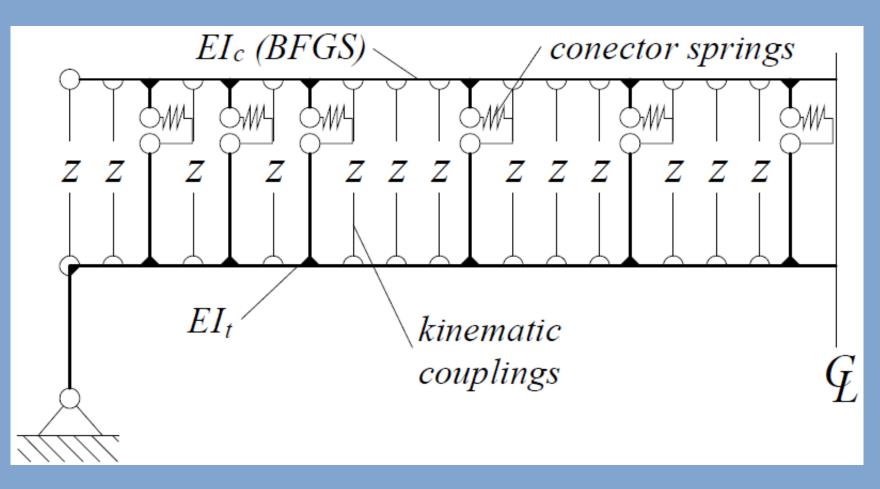
Timber bridges en Chile

- About 2/3 of all Chilean bridges have a wooden deck (≈4000 timber bridges)
- Simply supported beam bridges <10 m
- Chilean oak or Chilean beech covered with hot creosot


Elevation

Longitudinal section

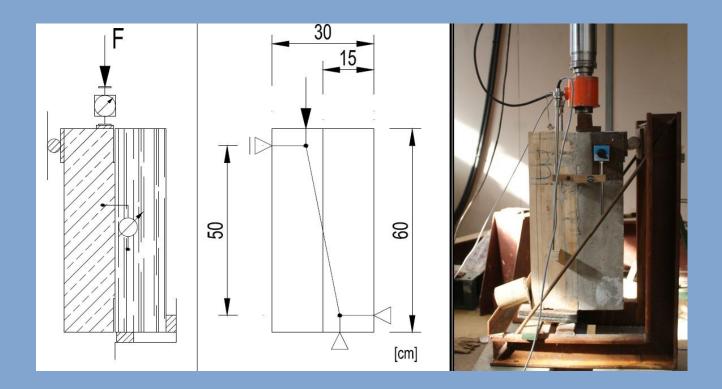
- 4 or 6 longitudinal beams
- Exposed to very high humdity (>2500 mm per year)
- Service life of about 6 years



- Parameterized FEM analysis model
- First calibration with test data from literature
- Own laboratory tests
- Final calibration of the FEM model
- Parametric study of different geometries
- General design recomendations

Parameterized FEM analysis model

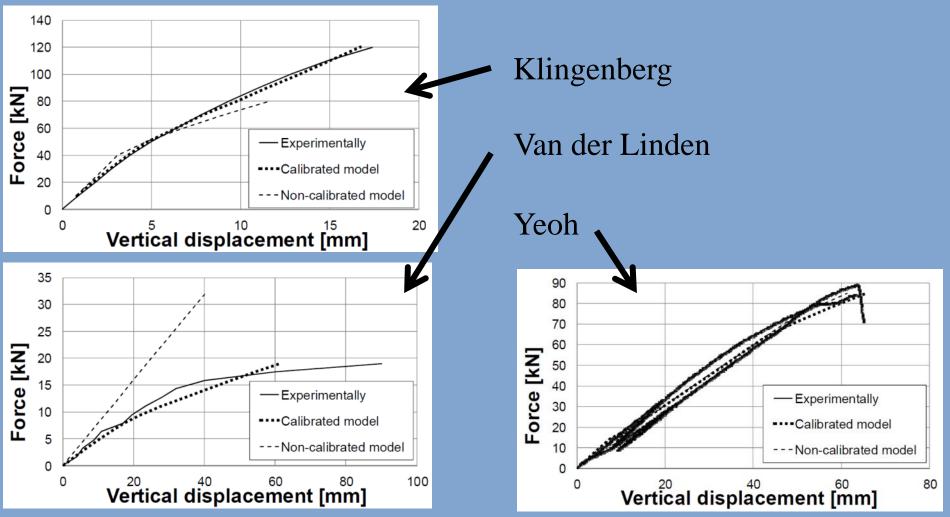
Parameterized FEM analysis model


Concrete slab	Timber beam	General		
		No lineal load-		
Donth	Donth	displacement		
Depth	Depth	behaviour of the		
		connection		
Madulus of alasticity	Madulus of alasticity	Distribution of		
Modulus of elasticity	Modulus of elasticity	reinforcement		
Tensile resistance	Croop	Type of loading and		
	Creep	load history		
Tension stiffening	Shrinkage	Length and width		
	Swelling			

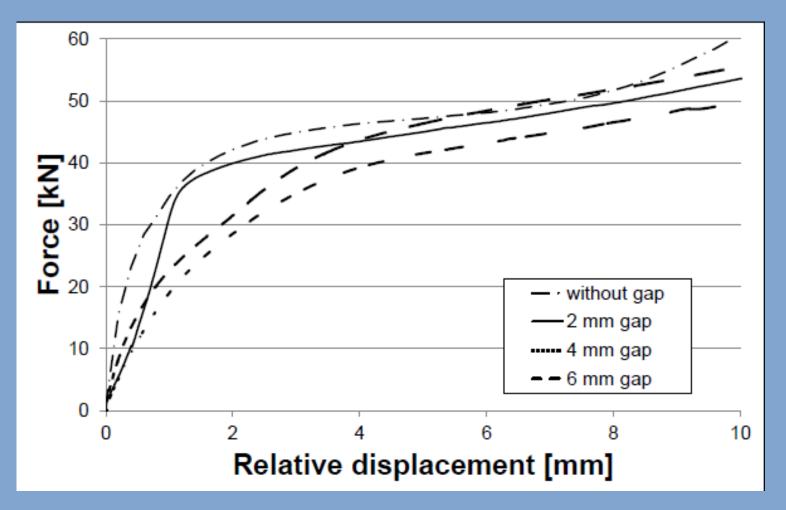
• First calibration with test data from literature

- van der Linden M. L. R., *Timber-Concrete Composite Floor System*, Technische Universiteit Delft, 1999.
- Yeoh D., *Behaviour and Design of Timber-Concrete Composite Floor System*, University of Canterbury, 2010.
- Ávila L., Cálculo de un puente de vigas mixtas maderahormigón basado en parámetros de diseño experimentales, Universidad Austral de Chile, 2012.
- Klingenberg T., *Determinación experimental de Parámetros de Diseño para Puentes de Vigas Mixtas Madera-Hormigón*, Universidad Austral de Chile, 2012.

- Own laboratory tests
- Shear tests with a gap: 0 mm, 2 mm, 4 mm, 6 mm

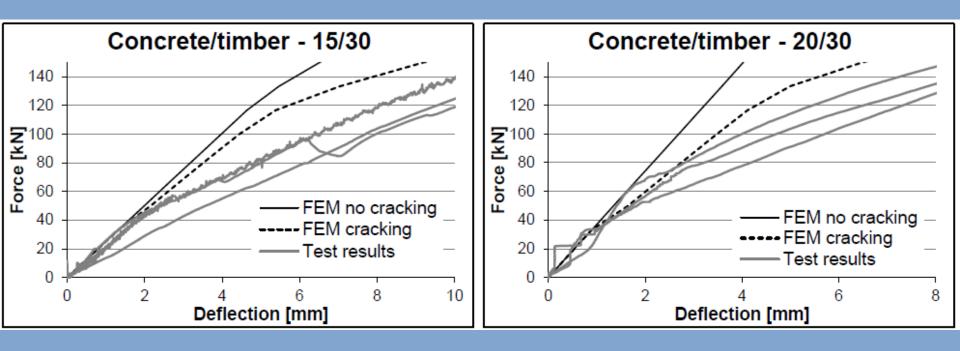


- Own laboratory tests
- Bending tests, 3 m long, concrete 15 cm and 20 cm, timber 30 and 50 cm


• First calibration with test data from literature

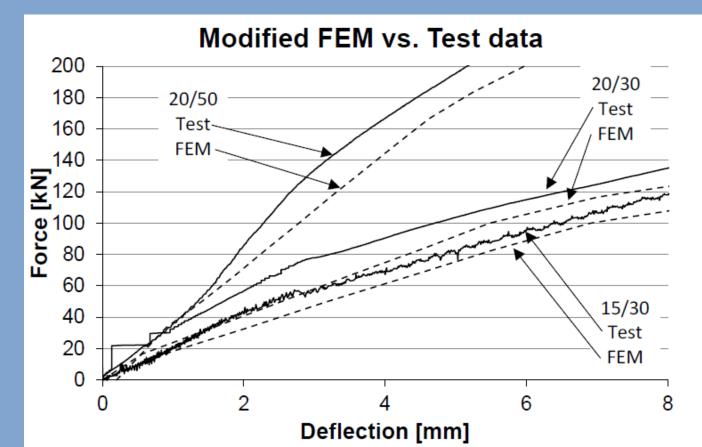
Results

• Shear tests



• Shear tests

Test specimen	F_u [kN]	F ₄₀ [kN]	<i>F</i> ₁₀ [kN]	<i>u</i> 40 [mm]	<i>u</i> ₁₀ [mm]	k _{ser} [kN/mm]	<i>mean k_{ser}</i> [kN/mm]	
0 mm-1	68	27.2	5.5	0.42	0.04	14.34		
0 mm-2	59	23.6	4.7	0.41	0.04	12.73	12.57	100%
0 mm-3	57	22.9	4.6	0.48	0.05	10.64		
2 mm-1	54	21.6	5.4	0.861	0.103	5.34	•	
2 mm-2	50	19.9	5.0	0.705	0.173	7.01	5.98	48%
2 mm-3	48	19.2	4.8	0.708	0.065	5.60		
4 mm-1	53	26.5	5.3	1.396	0.201	4.44		
4 mm-2	42	21	4.2	0.864	0.08	5.36	5.16	41%
4 mm-3	44	22	4.4	0.924	0.152	5.70		
6 mm-1	40	20	4	1.609	0.178	2.80		
6 mm-2	43	21.5	4.3	1.206	0.163	4.12	3.58	28%
6 mm-3	45	22.5	4.5	1.367	0.186	3.81		



• Bending tests

- Final calibration of the FEM model
- Reduction of the connector stiffness by about 60%

Conclusions

- Chile has a big need for durable timber bridges
- Wood concrete-composite bridges can be the solution
- There is no satisfying design recomendation for concrete cracking in TCC beams
- FEM analysis show that concrete cracking alone does not explain the documented stiffness reduction
- Shear test show that concrete cracking reduces substantially the stiffness of bar-type shear connectors

Conclusions

- The analysis model predicts correctly the initial elastic behavior and the crack initiation load
- When concrete cracking occurs, the slip modulus must be reduced
- Preliminary, a stiffness reduction by about 60% leads to a safe design

Thanks for your attention!

Acknowledgements

This research project was financed by CONICYT, grant n° 11110310 and sponsored by the Direction of Research and Development of the Universidad Austral de Chile.