Applicability of Cross Laminated Timber in Bridges

Lauri SALOKANGAS
Robin GARNIER

Las Vegas, October 1st 2013
CLT as a construction material

• Buildings
 ▪ Floors
 ▪ Roofs
 ▪ Walls

• Bridge
 ▪ Decks
Applicability of CLT in bridges

• Small span bridges
 - In theory all parts in CLT
 - Differently oriented

• Long span bridges
 - Deck
 - CLT long beams too weak against bending
Experiments: Small scale test

• Deck representation
 - Rolling shear failure (50kN)
Experiments: Full scale CLT-beam test

- Main girder representation
 - Bending failure (72kN)
Numerical Analysis

• LUSAS finite element model
 - 3D Solid composite model
 - 16 noded solid elements (HX16L)
 - 2D Thick shell composite model
 - 8 noded thick shell elements (QTS8)
Numerical Analysis: Small scale test

3D Solid composite model
2D Thick shell composite model

<table>
<thead>
<tr>
<th>Load [kN]</th>
<th>Solid model</th>
<th>Thick shell</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>3mm</td>
<td>5mm</td>
<td>3mm</td>
</tr>
<tr>
<td>35</td>
<td>5mm</td>
<td>9mm</td>
<td>5mm</td>
</tr>
<tr>
<td>50</td>
<td>7mm</td>
<td>13mm</td>
<td>7mm</td>
</tr>
</tbody>
</table>

Identical deflection

3D model needed even for preliminary studies on CLT decks
Numerical Analysis : Full scale beam test

3D Solid composite model

2D Thick shell composite model

<table>
<thead>
<tr>
<th>Load [kN]</th>
<th>Solid model</th>
<th>Thick shell</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>17mm</td>
<td>17mm</td>
<td>19mm</td>
</tr>
<tr>
<td>35</td>
<td>42mm</td>
<td>42mm</td>
<td>46mm</td>
</tr>
<tr>
<td>50</td>
<td>59mm</td>
<td>59mm</td>
<td>65mm</td>
</tr>
</tbody>
</table>

Identical deflection

Accuracy of 90%

Simple 2D composite model seems accurate enough for preliminary studies on CLT beams
From CLT beams to DLT beams

• Cross Laminated Timber beam
 ▪ 90° angle orientation difference
 ▪ Low bending stiffness if too long

• Diagonal Laminated Timber beam
 ▪ α angle orientation difference
 ▪ Optimizable angle
 ➢ Depending on the configuration of the bridge

¹ designation used in Bejtka I., *Cross (CLT) and diagonal (DLT) laminated timber as innovative material for beam elements*. KIT Scientific Publishing, Karlsruhe, Germany. 2011. 134 p.
Conclusion

• Cross Laminated Timber is being used for decks

• Small span all-CLT bridges possible
 Preliminary studies of CLT beams easily obtainable

• Longer span CLT bridges possible with Diagonal Laminated Timber beams

• DLT beams analysis and improvement needed
 Preliminary studies easily obtainable
Thanks for your attention!