Applicability of Cross Laminated Timber in Bridges

Lauri SALOKANGAS Robin GARNIER

CLT as a construction material

- Buildings
 - Floors
 - Roofs
 - Walls

- Bridge
 - Decks

Applicability of CLT in bridges

- Small span bridges
 - In theory all parts in CLT
 - Differently oriented
- Long span bridges
 - Deck
 - CLT long beams too weak against bending

Experiments: Small scale test

- Deck representation
 - Rolling shear failure (50kN)

Experiments: Full scale CLT-beam test

- Main girder representation
 - Bending failure (72kN)

Numerical Analysis

- LUSAS finite element model
 - 3D Solid composite model
 - ➤ 16 noded solid elements (HX16L)

- 2D Thick shell composite model
 - ➤ 8 noded thick shell elements (QTS8)

HX16L

QTS8

Numerical Analysis: Small scale test

3D Solid composite model

2D Thick shell composite model

Load [kN]	Solid model	Thick shell	Experiment
20	3mm	5mm	3mm
35	5mm	9mm	5mm
50	7mm	13mm	7mm

3D model needed even for preliminary studies on CLT decks

Identical deflection

Numerical Analysis: Full scale beam test

3D Solid composite model

2D Thick shell composite model

			
Load [kN]	Solid model	Thick shell	Experiment
20	17mm	17mm	19mm
35	42mm	42mm	46mm
50	59mm	59mm	65mm
	↑ ↑ Accuracy of 90%		

Identical deflection

Simple 2D composite model seems accurate enough for preliminary studies on CLT beams

From CLT beams to DLT¹ beams

- Cross Laminated Timber beam
 - 90° angle orientation difference
 - Low bending stiffness if too long
- Diagonal Laminated Timber¹ beam
 - \blacksquare α angle orientation difference
 - Optimizable angle
 - > Depending on the configuration of the bridge

¹ designation used in Bejtka I., *Cross (CLT) and diagonal (DLT) laminated timber as innovative material for beam elements*. KIT Scientific Publishing, Karlsruhe, Germany. 2011. 134 p.

Conclusion

Cross Laminated Timber is being used for decks

• Small span all-CLT bridges possible

Preliminary studies of CLT beams easily obtainable

Longer span CLT bridges possible with Diagonal Laminated Timber beams

DLT beams analysis and improvement needed
 Preliminary studies easily obtainable

Thanks for your attention!