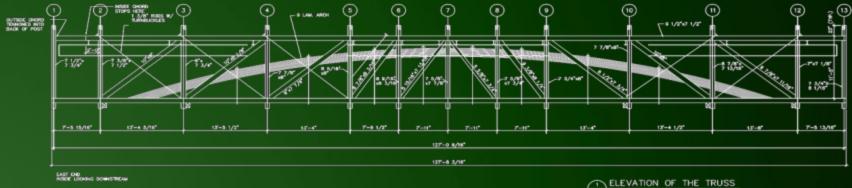
Kings Covered Bridge Rehabilitation

Location

Middlecreek Township, Somerset County, Pennsylvania


History

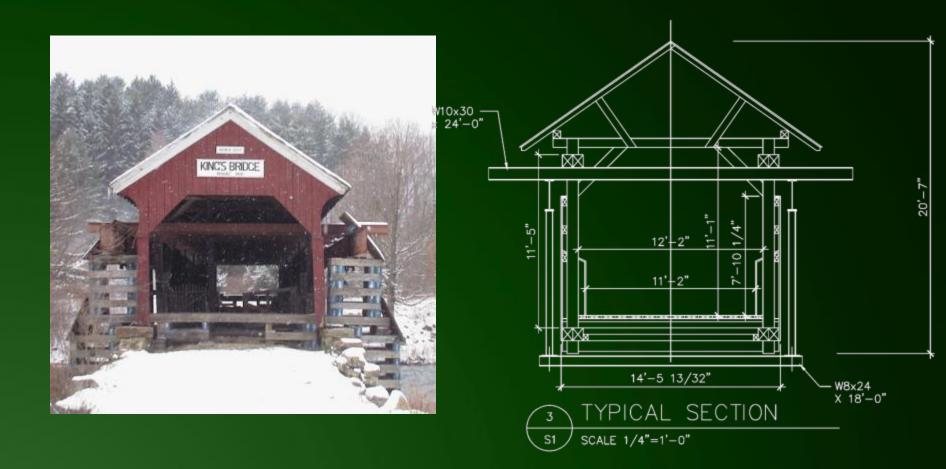
"Built" date on bridge (incorrect) 1803 mid-1800's Probable construction period 1906 "Rebuilt" date on bridge - likely 1930's Bypassed with steel highway bridge 1930's-2002 Used as a King Family farm building 1996 PA funding for stabilization **Fall 2000** Stabilized in place 2002 Acquired by S. Alleghenies Conservancy 2008 Acquired by Middlecreek Township 2009 Completed – bridge and site

Superstructure

<u>Note</u> bay spacing and repair rods

Multiple Kingpost Truss w/ Retrofitted Tied Arch

Multiple Kingpost Truss with arch added

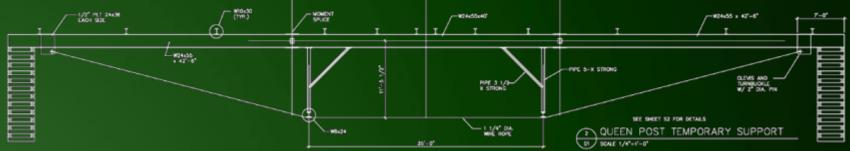

- Retrofitted 1906 with nail-laminated arches creating "Arch-Truss"
- Arches "tied" to bottom chord

Bridge data

Length: Width: Superstructure form: **Primary Species: Timbers members:** Substructure: Hardware:

114 feet clear span 14'-6" out to out Multiple Kingpost with retrofitted arches (1906) White Oak hewn, circular, up & down local limestone round nails

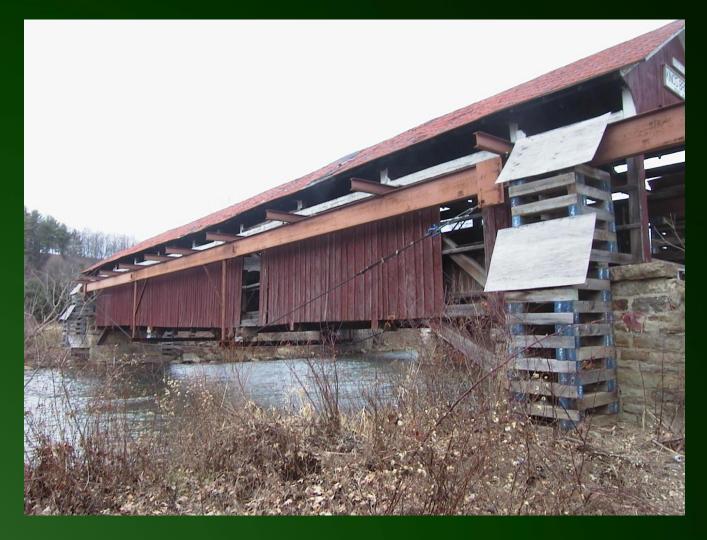
Stabilization



Engineering – DCF Engineering Inc, Cary, NC Construction – Arnold M. Graton Associates Inc

Temporary Superstructure

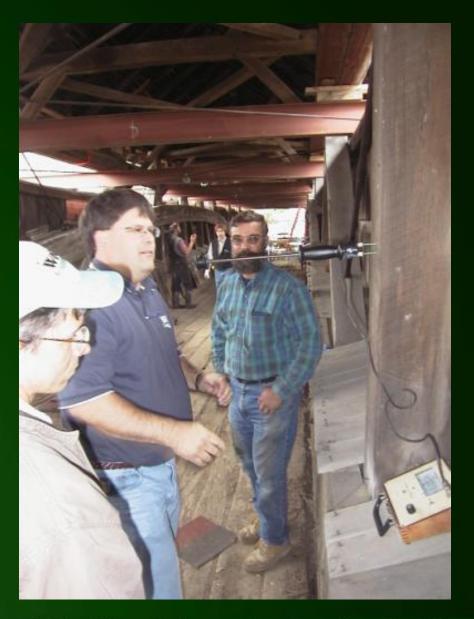
EAST END INSDE LODIONG DOWNSTREAM


Queenpost-tensioned trusses w/ needle beams

Interior

Used as a barn after bypass

Failures


Both lower chords, several posts and tie beams

Non-destructive Field Testing

Moisture testing

Technical Assistance

USDA Forest Service *Morgantown, WV* Forest Products Laboratory *Madison, WI*

Non-destructive Field Testing

Resistance Drilling

Stress Wave Timer

Both chords had relative drilling resistance below 15%

Destructive Testing

4-foot lower chord segment removed for species analysis by Forest Products Laboratory

Mapping

Lower chord segments

Lower tie beam / tail of truss post Failure from compression force of truss brace

Lower Chord Failure in both trusses

Substructure

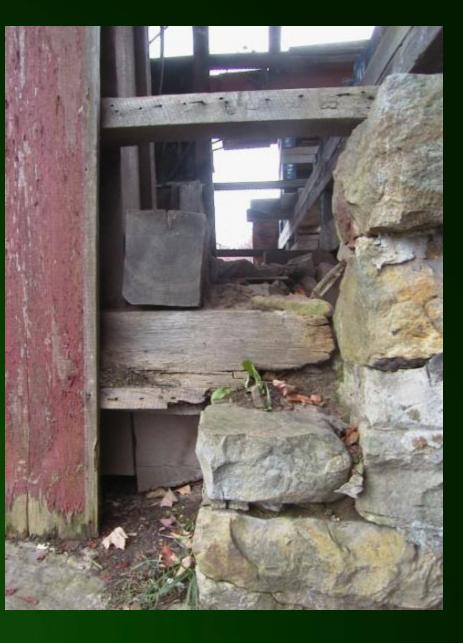
Horizontal thrust from broken chords, struts ceased to work

Bed timbers Note deformation

Retrofitted Struts Typical failure at seats

Arches

Nail-laminated retrofits


Arches

Deformation and previous interventions

Thrust Block at Portal Post

Bearing

Chord seat at abutment

Roof assembly

Mortised, pinned, and wedged horizontal X-bracing

Post - upper tie beam, rafter sill Cantilevered tie beams failed where leaks occurred

Truss Bracing water damage at truss post

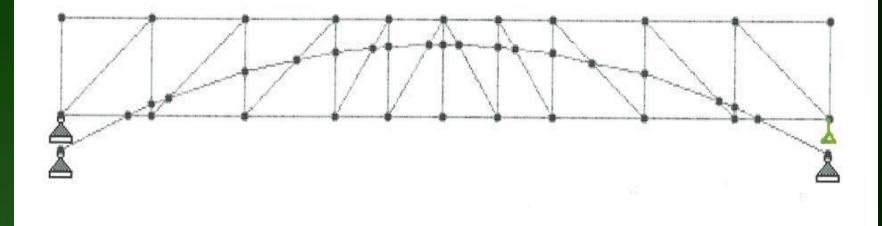
Preservation Philosophy

- Resource eligible for National Historic Register
- Rehabilitate for pedestrian use
- Retain historic fabric as much as possible
- Replace with in-kind materials
 - Meet the Secretary's Standards

KINGS COVERED BRIDGE REHABILITATION

International Timber Bridge Conference - Las Vegas, Nevada - 2013

Structural Analysis

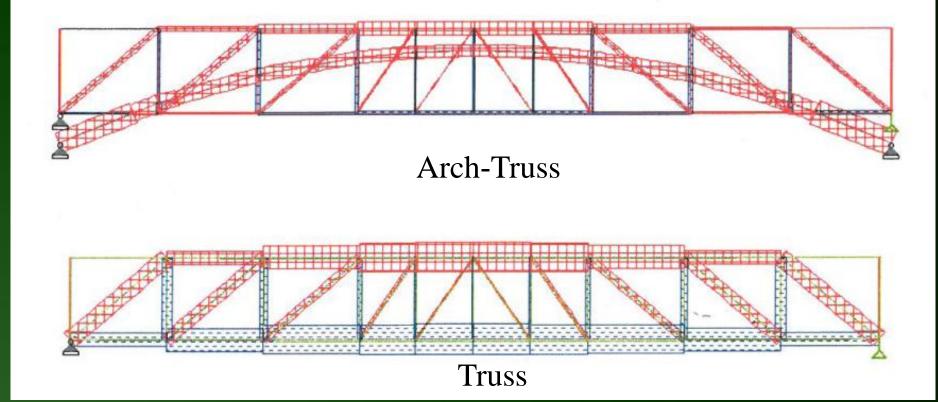

3-D rendering (STAAD Model) – Samer Petro, P.E.

- 3-D Model STAAD
- Provides member forces, moments, and deflections

Goal of Analyses:

- 1. Compare stresses to allowable stresses based on (NDS)
- 2. Understand arch-truss system

Modeling



- Ends of diagonals and ends of posts pinned (free to rotate)
- Chord members and arches <u>continuous</u>
- Multiple kingpost modeled as pinned

Loads

- **Dead loads:** approximated by field measurements and using white oak density of 43 pcf (MOE 1.4M psi)
- Live load: Pedestrian load of 85 psf (AASHTO)
- Snow Load: 35 psf
- Wind Load: 12.5 psf based on wind velocity on 100 mph (ASCE 7)
- Load Combination: [dead load + wind+live+snow)*0.75] (ASCE 7)

Stress Distribution

Repair / Solutions

Dapped lower chords to permit laminated arches to extend forces directly into the abutments

Abutment Repairs

Excavated abutments, buttressed with flowable backfill

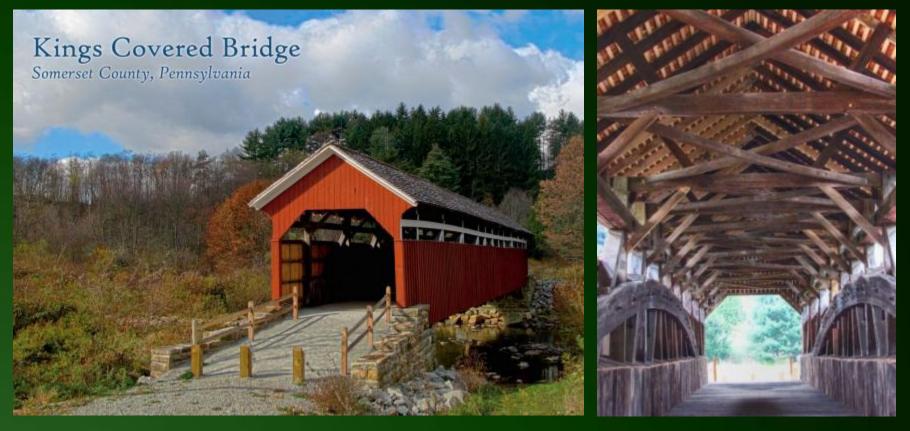
Truss Repairs

Post splices and replacement

Truss Repairs

Post splice Innovative GFRP rods embedded in epoxy

KINGS COVERED BRIDGE REHABILITATION


oak "joggle"

Traditional white

Chord

- International Timber Bridge Conference - Las Vegas, Nevada - 2013

Engineering Results

- Arches: are structurally dominant
- Trusses: lower chord in tension and max @ mid-span (expected)
- Arch-truss system: maximum compressive forces in arches at ends
- All member stresses well below allowable values
- Deflections due to dead and live loads below AASHTO limits

Completion

Before – *stabilized*

After – restored

Modjeski Award for Historic Preservation, 2008 Preservation Pennsylvania

Completion

Before

Budget

\$ 90,000 **Stabilization - 1996** (Source – PA DCED) Engineering, construction, funding strategy \$945,000 Rehabilitation Engineering, construction, environmental (Sources) \$595,000 **FHWA Enhancements** \$340,000 FHWA National Covered Bridge \$ 10,000 **Rockwood Area Historic Society**

\$1.035 M TOTAL

Technical Team

Prime Consultant – Simone Collins Inc. **Structural Engineer** – Samer Petro (formerly of Gannett Fleming Inc. now at Herbert Rowland Grubic) Historic Consultant – Dr. Emory Kemp **Stabilization Engineer – DCF Engineering Inc. Scientific Investigation** – Forest Products Laboratory **Stabilization Contractor** – Arnold M. Graton Assoc. **Rehabilitation Contractor** – Allegheny Restoration Surveyor – Paul C. Rizzo Inc. **Permit Assistance - Somerset Conservation District.**

Project Partners

Client – Southern Alleghenies Conservancy **Funding Partner** – Federal Highway Administration **Funding Partner** – Pennsylvania Commonwealth (PennDOT and DCNR) **Funding Partner** – Rockwood Area Historic Society **Funding Partner** – Somerset County **Project Administration – PennDOT Ultimate Owner** – Middlecreek Township **Steward / Donor** – King Family


Contacts

William Collins, RLA Simone Collins Landscape Architecture 119 East Lafayette Street Norristown, PA 19401 610 239 7601 wcollins@simonecollins.com

Samer H. Petro, P.E. Herbert, Rowland & Grubic, Inc. 829 Fairmont Road, Suite 201 Morgantown, WV 26501 304 284 9222 spetro@hrg-inc.com

