Case Study of the Longest Single Span Timber Bridge for Highway Loads in Sweden

Kristoffer EKHOLM, M.Sc.
WSP Bridge and hydraulic design

Peter NILSSON, M.Sc.
WSP Bridge and hydraulic design

Erik JOHANSSON, B.Sc.
Moelven Töreboda
Background

- Proposal drawing, Aug 2010
- Trafikverket (owner) → Svevia (contractor) → Moelven Töreboda (manufacturer) → WSP Bridge & Hydraulic Design
- WSP worked with design and analysis, mid 2012 – mid 2013
Loads and design standards

Loads
- Dead loads (Wood, Steel and Asphalt)
- Vehicle loads
 - Load Models (EN 1991-2)
 - Classification vehicles in Sweden
- Wind loads
 - Dynamic wind analysis →
 - Quasi-static load
- Temperature load
- Accidental load

Design standards
- Swedish standards
 - TK Bro
 - Glulam specifications for CE L40c
- Eurocode
 - EN 1990
 - EN 1991-1-1
 - EN 1991-1-4
 - EN 1991-1-5
 - EN 1991-2
 - EN 1995-1-1
 - EN 1995-2
Structural system of bridge

- Three hinged arch
 - Glulam arches
 - Steel tension strut
- Continuous SLT deck
- Stabilizing frames
 - Vertical hangers
 - Transverse girders

Low stiffness

High stiffness
Numerical model and Design model

Brigade/Plus model

Tekla Structures model
Steel-wood connections

- Slotted-in plates with dowels
 - Glulam arch – bearing
 - Glulam arch – glulam arch
 - Glulam arch – vertical hanger
- Slotted-in plates without dowels
 - SLT deck – transverse girder
- Bolted connection
 - SLT deck – transverse girder
Pre-assembly of arches
Transportation from factory to construction site
Manufacturing of transverse girders and vertical hangers
Assembly of arches using cranes
Assembly of stabilizing frames (hangers + girders)
Almost done, mid August
Durability details
Thank you for your attention

Questions?