

A timber bridge across Lake Mjøsa in Norway

ICTB 2013 Las Vegas

Authors:
Svein Erik Jakobsen
Trond Arne Stensby
Widar Mikkelsen
Yngve Årtun
Per Meaas

Content:

- History
- Conceptual design
- Technical chellenges
- Future development

Location

Location

Existing bridge:

- Opened 1985
- Total length 1421m
- Concrete box girder
- Span width 69m
- Pile foundations
- 2 lanes + walkway/pavement

History:

- Existing bridge opened 1985
- Feasibility study for 2nd crossing 2006
- Feasibility seminar for timber bridge crossing 2010
- Conceptual design 2nd crossing 2012-13
- Launching of R&D timber bridge project 2013

Feasibility study 2006:

- Building a 2nd bridge is feasible
- One possible placing of the bridge in vicinity of the exisisting bridge
- One possible placing of the bridge somewhat 1km south of the existion bridge involving deep sea foundations

Feasibility seminar for timber bridge crossing 2010:

- 2 day seminar with a large number of bridge experts, architects and officials.
- Conclusion is that to build a timber bridge across Mjøsa is feasible
- 3 alternative solutions outlined.

Conceptual design 2nd crossing 2012-13:

- Southern line preferrable
- Wide range of alternatives examined wrt. technical solution, construction, esthetics, environmental impact and costs
- Elimination method has revealed two alternatives:
 - Concrete bridge with extradozed main spans
 - Timber bridge

Timber bridge development for 2nd Mjøsa bridge:

- Visibility
- Durability
- Constructionability
- Esthetics
- Costs
- State of the art elements

Statens vegvesen

ELO MOELLY - BIRI TREBRU-ALT. - HOT L. GAR BST H-1:400 D: 84. 11.2012

Vital figures:

- Total bridge length: 1650m
- Span widths: 56.0m + 9 x 69.0m + 4 x 120.75m + 4 x
 69.0m + 3 x 56.0m + 46.0m
- Timber area: 8.05 m3/m

Why composite structure timber-concrete?

 Big number of expension joints is not recommended due to maintainence costs

At each supprt
At every other support
As existing bridge
At abutments
23 joints
12 joints
6 joints
2 joints

- A floating concrete deck with only 2 joints will require a lot of sliding bearings
 - Vertical supports every 10. m give 300 bearings
 - Horisontal supports at each columns give 42 additional bearings

Technical challenges

- Termal expension difference between timber and concrete
 - Timber termal ecpension coefficient is about hlaf of concrete
 - Maximum contraction about 50 degrees celcius
 - This give an unconstrained movement difference if 190mm at each end of the bridge
- Shrinkage of concrete
 - Free shrinkage of app. 0,36 ‰.
- Expension/contraction due to variation in humidity
 - 0,01 % per percent humidity content (fibre direction)
 - Variations up to 12-16% RH
 - Same direction as concrete shrinkage

Finite element analysis of composite action

- Model of 3 spans
- Loading
 - Dead weight
 - Traffic
 - Temperature
- Dowel requirement
 - 13ø19 pr m

Alternative shear connection between timber and concrete

- Continous
- Nodal

R&D Project:

- Not yet launched, but financial part fixed
- Duration 2 years
- Content not fixed, but could contain:
 - Large scale effects on timber bridges
 - Cable stay solutions on timber bridges
 - Large spans on timber bridges
 - Temperature effects on timber bridges
 - Material specifications on timber
 - Preservation of timber
 - Composite behaviour between timber and concrete

