

Tretten Bridge - Timber and Steel in Harmony

John Are Hårstad-Evjen

Authors

John Are Hårstad-Evjen Norconsult AS

Trond Arne Stensby NPRA

Yngve Aartun Plan Arkitekter

Per Kristian Ekeberg Norconsult AS

Hilde Rannem Isaksen Norconsult AS

Bjørn Vik Norconsult AS

Previous projects

- Evenstad Bridge, 1996
- Tynset Bridge, 2001
- Flisa Bridge, 2003

Key numbers

- Owner: Norwegian Public Road Administration, NPRA
- Architect: PLAN Arkitekter, Yngve Aartun, Norway
- Designer: Norconsult AS, Norway
- Contractor: Contexo AS, Norway
- Contractor timber: Moelven Limtre AS, Norway
- Length: 148 m (41 m + 70,2 m + 36,8 m)
- Width: 10 m (3,75 m x 2 + 2,5 m)
- Cost: ca. 6,7 million USD. (4 500 USD/m²)
- Timber: Truss: 310 m³, Deck: 560 m³
- Steel: 250 ton
- Year of construction: October 2011 June 2012, 9 months

Old bridge

- built in 1894
- 120 m long, main span 80 m
- width: 3 m, 1 driving lane
- built on rock foundations
- steel trusses
- timber deck
- several modifications done in the 1980's

Pedestrian pathway

Recomendations

- pre-design phase started 2003
- timber was the desired material
- weathering steel unusual in Norway
- reuse of rock foundations
- restrictions regarding new foundations in the river
- high flood levels
- only minor adjustments to road geometry
- intersection east

Early alternatives

Final shape of superstructure

- continuous truss
- existing foundations west, new foundations east
- prepared for potential expansion of E6
- low height in east favorable for road geometry

Architectural viewpoint

- asymmetric shape due to asymmetric foundations
- crossbeams "inside" the truss reducing the height

Truss, crossbeams and windtruss

Part 1

Traffic loads

Driving lanes:

• V1:

V2:

Sidewalk: 4 kN/m³

Structural challenges

stability in up

 large momen vertical

 u-frames indi the upper che

beam and

stabilization of ents

Structural challenges

large axial forces at pointy ends (east)

Structural challenges

large axial forces in wind truss transferred to main truss

Detailing

cross-beam in axis 1

Detailing

Detailing

 steel plates transferring lateral forces between bridge deck and cross-beams

Assembly

Cost

- no significant difference between Flisa and Tretten
- Rena designed for military vehicles
- timber truss bridges competitive in comparison to steel truss bridges

	Year	Length [m]	Width [m]	Area [m²]	[NOK/m ²]
Evenstad	1996	180	6.5	1170	23 238
Flisa	2003	182	10,5	1911	26 297
Rena	2005	158	6,3	995	28 924
Tretten	2012	148	10.5	1554	26 810

 reduction in connections between steel and timber might be an explanation

Tretten Bridge

Concluding remarks

- Several recomandations decided the shape of the truss
- crossbeams inside the truss lead to verticals in steel
- low truss height improved conditions for intersection
- amount of steel did not influence the cost

Thank you for your attention

Questions?