Development of Deck Replacement Systems for Historic Covered Bridges

Brian Brashaw
University of Minnesota Duluth

Jim Wacker
USDA Forest Products Laboratory, Madison, WI

Kristoffer Ekholm
Chalmers University of Technology, Gothenburg, Sweden

Joseph Klett
University of Wisconsin Madison

Natural Resources Research Institute
University of Minnesota Duluth

NRRI Mission
"To enhance near-term economic development of Minnesota's natural resources in an environmentally responsible manner.

Forestry/Forest Products works with 150+ companies and cooperators/year in Minnesota, the Great Lakes region and throughout the world.

IBM SAGE
Objective

• The objective of this research is to develop a technical testing information that can provide engineering guidance for replacement of decks and flooring systems in existing historic covered bridges in manual form.

Rationale

• Floor systems of covered bridges are replaced due to deterioration, structural damage, or excessive wear after approximately 30 to 40 years of service.
• Often, the floor system controls a bridge’s capacity and replacement presents a unique opportunity to upgrade the entire structural system.
• There are a wide variety of general replacement systems currently in use. These systems have seen very little change years of implementation, creating an opportunity to develop new replacement flooring systems that improve both the deck system and the overall structural performance. It is envisioned that this is most effectively completed through the use of lightweight systems.
Project Activities

- Reviewed existing flooring systems
- Selected 3-4 promising designs (weight, historic implications, cost, constructability)
- Analyze designs for structural performance
- Acquire and construct promising designs
- Testing of designs (April - August 2013)
- Economic assessments and guidelines for designs (September - October 2013)
- Final Report (December 2013)

Floor Systems

- Floor systems are comprised of combinations of transverse beams, longitudinal beams, distribution beams, deck systems and running planks (All parts are not always included)
- Historically solid sawn lumber, but over time have transitioned to also include glulam beams and glulam decking
Floor Systems in Howe truss

Deck Designs for Assessment
1 is sawn lumber
3, 4, & 5 are glulam
General Design

• Douglas fir solid sawn timbers (Hull Oakes and Buse Lumber) and glulam panels/beams (Alamco)

Construction and Testing at FPL

• 3-4 alternatives will be constructed at full scale (about 15 ft. wide and 30 ft. long)
• Strains and deflections will be measured at increasing load levels
• Repeated loading can be investigated for critical parts
Dynamic MOE Estimation

Static MOE Testing
Construction

Threaded timber fasteners – donated by:
FPL Testing Deck 1A

May 6-7, 2013

Solid Sawn Control – 1A
Control Design Specifications

<table>
<thead>
<tr>
<th></th>
<th>2.5 Ton Load</th>
<th>5.0 Ton Load</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas fir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floor Beams</td>
<td>Dense #1 5.5 in. x 13.25 in. x 17 ft</td>
<td>Dense #1 5.5 in. x 13.25 in. x 17 ft</td>
</tr>
<tr>
<td>Longitudinal Stringers</td>
<td>No. 1 & Btr 3.5 in. x 5.5 in. x 14 ft</td>
<td>No. 1 & Btr 3.5 in. x 7.25 in. x 14 ft</td>
</tr>
<tr>
<td>Deck Planking</td>
<td>No. 1 & Btr 1.5 in. x 11.25 in x 16 ft</td>
<td>No. 1 & Btr 1.5 in. x 11.25 in x 16 ft</td>
</tr>
<tr>
<td>Fasteners</td>
<td>Self-tapping threaded timber fasteners</td>
<td>Self-tapping threaded timber fasteners</td>
</tr>
<tr>
<td>Weight</td>
<td>10.2 lbs/ft³</td>
<td>11.8 lbs/ft³</td>
</tr>
</tbody>
</table>

Loading positions

Eccentric
Concentric Displacement and Strain Sensors

Displacement and Strain Sensors
Deflection and Strain Instrumentation Layout

- Deflection sensor
- Strain gauge

P 11
P 27
Testing Summary – 1A

<table>
<thead>
<tr>
<th>Design Load</th>
<th>2.5 Ton (4,200 lb/actuator)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expected Deflection at DL</td>
<td>0.576 inches</td>
</tr>
<tr>
<td>Deflection at DL</td>
<td>0.584 inches</td>
</tr>
<tr>
<td>Maximum Load</td>
<td>41,000+ lb</td>
</tr>
<tr>
<td>Comments</td>
<td>Testing halted prior to complete failure on 1A, some failures noted in longitudinal stringers</td>
</tr>
</tbody>
</table>
1A – Eccentric Loading

Total Actuator Load = 8518 lbf.
1A – Concentric @ 2.5 Ton DL

Total Actuator Load = 8531 lbf.

1A – Centric Max Load

Total Actuator Load = 41,364 lbf.
3 – Glulam Beam, Glulam Stringer, Glulam Deck (10 tons)
4-Glulam Floor and Spreader Beams, Glulam Deck

5-Glulam Floor Beam, Modified Glulam CLT
Acknowledgements

This study is part of the Research, Technology and Education portion of the National Historic Covered Bridge Preservation (NHCBP) Program administered by the Federal Highway Administration. The NHCBP program includes preservation, rehabilitation and restoration of covered bridges that are listed or are eligible for listing on the National Register of Historic Places; research for better means of restoring, and protecting these bridges; development of educational aids; and technology transfer to disseminate information on covered bridges in order to preserve the Nation’s cultural heritage.

This study is conducted under a joint agreement between the Federal Highway Administration – Turner Fairbank Highway Research Center, and the Forest Service – Forest Products Laboratory, Federal Highway Administration Program Manager – Sheila Rimal Duwadi, P.E., Forest Products Laboratory Program Manager – Michael A. Ritter, P.E.

Thank you!