

Rehabilitation of a Two-Lane Covered Bridge

Presented to:

Second National Covered Bridge Conference June 6, 2013

Presented by:

Sean T. James, P.E. – Project Manager (sjames@hoyletanner.com) Josif Bicja, P.E. – Project Engineer (jbicja@hoyletanner.com)

> Hoyle, Tanner Associates, Inc. Manchester, NH USA

- Background
- Bridge Description
- Project Purpose and Need
- Structural Analysis
 - Geometric Limitations / Load Cases/ Live Load Selection
 - Computer Model
 - Arch Interaction
 - Observations & Results
 - Proposed Modifications
- Rehabilitation Project

Background

CANADA FRANKLIN ORLEANS ¿ ESSEX State of NEW YORK State of ORANGE NEW HAMPSHIRE STATE PLANE GRID RUTLAND Commonwealth of

MASSACHUSETTS

Project Location

Hoyle, Tanner Associates, Inc.

5 Remaining Double Barrel Covered Bridges

- Roberts Covered Bridge, Eaton OH, 1829, 79' Long Single Span,
 Multiple Kingpost w/Arches, Pedestrian Only.
- Ramp Creek Covered Bridge, Nashville IN, 1838, 96' Long Single Span, Multiple Kingpost w/Arches, Vehicular.
- Philippi Covered Bridge, Philippi WV, 1852, 286' Long Four Span, Long Truss, Vehicular.
- Shelburne Museum Covered Bridge, Shelburne VT, 1845, 168' Long Single Span, Multiple Kingpost w/Arches, Pedestrian Only.
- Pulp Mill Covered Bridge, Middlebury/Weybridge VT, 1853, 200'
 Long Three Span, Multiple Kingpost w/Arches, Vehicular.

- Pulp Mill Covered Bridge
- Frequently Cited Built From 1805 and 1820
- VTrans Record Built in 1853
- National Register of Historic Places in Sept. 10, 1974
- AADT Volume of 1,900 Vehicles
- Originally Built as 180' Single Clear Span, Extensive Sagging
- Nail Laminated Wood Arches Added in 1859-60
- Two Stone Masonry Piers with Timber Cribbing in Late 19th Century

- Major Rehabilitation in 1979-80
 - Stone Masonry Piers Encased in Concrete
 - New Concrete Facing of Abutments and New Backwalls
 - Portions of Arches and Truss Bottom Chords Replaced
 - New Steel Hanger Rods Added to Connect the Arches to the Bottom Chord at Each Panel Point
 - New 6" x 6" Pressure Treated Lower Lateral Braces Installed
- North Truss and Arch (West Span) Rehabilitated in 1991
- Interior Truss and Arch (East Span) Rehabilitated in 2002
- A Pedestrian Bridge Constructed in Mid-1990's

- 200', 3 Span Continuous, over Otter Creek
- M. Kingpost Trusses w/Arches
 - 3 Trusses, 4 Arches
- 2 Lanes, 8'-6" Wide Curb-Curb, 26' Out-Out
- 10'-6" Vertical Clearance
- 4 Tons Live Load Capacity Goal

Upstream Elevation

Downstream Elevation

East Approach

West Approach

Bridge Description

Roof Framing

Bridge Description

Upstream Barrel

Downstream Barrel

Bridge Description

Bridge East Pier & Floor Framing

- Bridge in Poor Condition
 - Broken, Rotted, Impact Damaged Members
 - Truss Vertical Member Issues
 - Previous Repairs
 - Sag in Truss Spans
 - Snap Through Buckling of Arches
- Preserve Historic Covered Bridge
- Critical Link Between Towns

Member Split

Member Impact Damage

Member Split

Rot

Break

Break

Broken Tenon - Truss Vertical

Broken Tenon - Truss Vertical

Undersized Verticals At Notch

Previous Repairs

Hoyle, Tanner Associates, Inc.

- Geometric Limitations
 - Lane Width of 8'-6"
 - Vertical Clearance 10'-6" @ Center, 8'-0" @ Edge
- Allowable Stress Rating and Design
- Load Cases
 - Dead + Live @ Inventory
 - Dead + Live + Snow @ Operating

- Live Load
 - Lane Load Evaluated
 - H4 (4 Tons)
 - Truck Train
 - 5 Load Cases, Both Lanes Loaded
 - 3D Computer Model

H4 Load Cases

Arch Interaction / Condition

- Observations & Results
 - Poor Connection Capacity of Vertical to Chord
 - 3 Span Configuration Results in Member Stress Reversals
 - Load Sharing of Trusses and Arches Critical
 - Relative Stiffness Determined to Share Load
 - Limited by Bolted Connection
 - Live Load Stresses Approx. 30-40% of Dead Load Stresses
 - Most Members Controlled by Multiple Truck Load Case

8½ *×10" TOP CHORD 8½ *x10" TRUSS VERTICAL MEMBER TAPERED AT EACH END (TYP.) 4"x10" TRUSS DIAGONAL CHECK BRACE 7"X8" CROSS BEAM 1/2 " Ø STEEL ROD MEMBER (TYP+) (TYP.) (TYP.) (10) (1) (I2) WEST END (WEYBRIDGE) GALV. STEEL SPLICE 3"x8" TIMBER PLATE (TYP.) % " Ø ARCH STEEL ROD (TYP.) 10-2'x6' LAMINATED ARCH ON EACH SIDE OF TRUSS (SEE SHEETS 12 AND 13 FOR INTERIOR ARCHES ELEVATIONS) PIER NO. I 53′ -51/2 " 60' -41/2 (C PIER NO. I TO C PIER NO. 2) STATIONING INTERIOR TRUSS ELEVATION (LOOKING NORTH) SCALE: 1/4" = 1'-0"

Proposed Modifications to the Interior Truss

- Three Ends of Arches Rebuilt
- Several Truss Member Replaced or Repaired due to Strength & Condition
- All Arch Hanger Rods Removed
- Connections of Arches to Verticals Strengthened
- Bottom Chord Replaced
- Reversible Modification to Interior Truss
- Several Roof Rafters Replaced In-Kind or Sistered

- New Upper Lateral Bracing Installed
- Several Knee Braces and Cross Beams Replaced In-Kind
- All Stringers Removed
- Several Floor Beams Replaced In-Kind
- Existing Decking Replaced
- Limited New Lateral Bracing Installed
- New Wood Curb Installed

- Trusses and Arches Realigned
- Protectowire and Lighting Installed
- Fire Retardant/Insecticide Coatings Applied
- Minor Approach Work
- Minor Repairs to Existing Substructure
- Total Construction Cost \$1.7 Million

Temporary Shoring System Below the Bridge

Temporary Shoring System Above the Deck

Rehabilitation Project

New Truss Verticals

New Bottom Chord

Rebuilt East End of North Arch

Sistered Roof Rafters

Typical Floor Framing at Arch Locations

Fire Detection Wires Underside of Bridge

Rehabilitation Project

1St Car to Cross the Bridge November 9, 2012

Ribbon Cutting Ceremony November 9, 2012

Question & Answer

Sean T. James, P.E. (sjames@hoyletanner.com)

Josif Bicja, P.E. (jbicja@hoyletanner.com)

150 Dow Street
Manchester, NH 03101

