

In-Place Preservative Treatments for Covered Bridges

Second National Covered Bridges Conference, Dayton, Ohio

Stan Lebow, USDA, Forest Products
Laboratory
slebow@fs.fed.us

Prof. Jeff Morrell,
Oregon State University

Funding provided by FHWA, National Historic Covered Bridge Preservation Program

Presentation Overview

- Deterioration problem areas
- Characteristics of in-place treatments

Recent research on in-place treatments

for covered bridges

Problem Areas: Its all about moisture

- Decay fungi need wood moisture content above about 25%
 - Would prefer closer to 40%
 - Can go dormant during dry periods
- Termites prefer moist wood
 - Can potentially build tubes to drier wood
- Some beetles can attack dry wood

Problem Area Example

Contact with abutments

Problem Area Examples

- Ends of bridges
- Window openings

Problem Area Example

Leaks, vandalism

Problem Area "Fixes"

- Most effective approach is to minimize moisture exposure!
- Replace problem components with pressure-treated or naturally durable wood
- Use in-place preservative treatment to protect vulnerable areas

In-place Treatment Concepts

- Do not restore... can only prevent damage
- Need to get preservative to the problem area
 - External or internal?
 - May need to drill holes
- Other considerations
 - Ease of use
 - Color
 - Permanence

General Types of Treatments

- Diffusibles (various forms)
- Non-diffusibles (usually liquids or pastes)
- Fumigants

Diffusible Treatments

- Borates most common, but also fluoride
- Water soluble, diffuse through moisture in wood
- Do not move far as fumigants
- Can leach-out if exposed to enough water
- Low toxicity, colorless
- Available as liquids, rods, gels and in pastes (sometimes with non-diffusibles)

Liquid Borates

- Available as glycol-based liquids or powders to mix with water.
- Can be diluted with water and sprayed on surfaces
 - Substantial penetration in moist wood, but less useful in larger timbers
 - Useful for flooding end-grain at connections
 - Readily leached from surfaces by rain
- Can be poured into drilled holes for internal treatments (but only into downward holes)
- Can be applied as foams for hard to access areas

Diffusibles as Rods

- Boron, Boron + copper, or fluoride
- Easy to handle and install
- Require a minimum hole size, but come in a range of sizes
- Can be placed into holes drilled from below
- Slower to disperse than liquids, but last longer
 - Holes can be oversized and liquid borate added with the rod

Examples of Diffusible Rods

Gels and Pastes

- Borate gel
 - Applied like caulk to joints or drilled holes
 - Combine advantages of solids and liquids
 - o Cost?
- Pastes (combine copper with boron or fluoride)
 - Can be applied to joints or into holes with caulking gun
 - Noticable color (if contain copper)
 - Offer diffusion with boron and longer-term protection from copper

Non-diffusibles

- Copper-based liquids
 - Copper naphthenate
 - Copper-8-quinolinolate
 - Zinc naphthenate
- Limited movement across the grain
- Typically surface treatment but can
 - be poured into holes
- Noticable color change
- Leach resistant

Fumigants

- Applied to treatment holes
- Release gas that moves through wood
- Solids or liquids
- Can spread several feet along the grain
- Do not need moisture to move
- More care in handling, applying

Examples of Solid Fumigants

Granular Dazomet

MITC Tube

Research Overview

- Covered bridges have unique challenges
- Evaluated internal treatments on species used for covered bridges under controlled conditions
- Conducted field trials of a subset of treatments

Laboratory Trial

- Dosages of 100,250 or 500 mg
- Moistures

 Contents of
 30%, 60% or
 100%
- Colonized by two types of decay fungi

Treatments	Active Ingredient(s)
Diffusibles	
Borate/Glycol liquid	Boron
Borate powder in water	boron
Borate/CuNaph paste	Boron/Copper
Boron rod	Boron
Sodium Fluoride rod	Fluoride
Boron/copper rod	Boron/Copper
Fumigants	
MITC solid	MITC
Dazomet granules	MITC
Chloropicrin liquid	Trichloronitromethane

Laboratory Trial

- Species: Douglas-fir, southern pine, eastern white pine, eastern hemlock, red oak, white oak
- Process:
 - 1. Condition to moisture content
 - 2. Inoculate with fungus/incubate until colonized
 - 3. Add treatment to hole drilled in block
 - 4. Cut thin sections and evaluate for chemical & fungus

Laboratory Results: Diffusibles

- Concentrations increased over time, but:
 - Limited movement at 30% moisture content
- Higher concentrations made a difference
 - Glycol borate yielded most boron
 - Fluoride concentrations lower
- Boron levels usually highest in pine species
 - Often above fungal threshold
 - Little movement in white oak
- Copper movement limited

Laboratory Results: Fumigants

- Concentrations highest at one week for MITC-tube and chloropicrin
- Concentrations much lower for dazomet but also persisted longer
- Higher concentrations in less permeable wood species... apparently moved out of southern pine quickly

Field Methods

- Placed treatments into timbers of 5 bridges
- Wood species: Eastern spruce, Douglas-fir, sugar pine, ponderosa pine, red pine
- Evaluated solid internal treatments:
 - Fluoride rod (diffusible)
 - Boron rod (diffusible)
 - MITC tube (fumigant)
 - Dazomet granules (fumigant)
- Wood samples removed after 1 and 2 years

Field Treatment Results

- Solid MITC tubes consistently yielded chemical in bridge timbers
 - Detected up to 3 feet from treatment site
 - Wood species had no obvious effect
 - Highest levels after 2 years

More Field Results

- No fumigant movement detected from dazomet granules... moisture?
- Low moisture content limited diffusion of boron and fluoride

Research Conclusions

- Moisture content limits use of solid diffusibles to known wet areas
- Diffusibles may be less mobile in refractory species such as white oak, even with sufficient moisture
- Fumigants move readily from MITC tubes and chloropicrin... dazomet decomposition slow and probably affected by moisture levels

Summary

- First try to solve moisture problems
- Diffusibles easy to use but require careful placement in moist pockets
- Non-diffusibles only protect surfaces but last longer than diffusibles
- Fumigants can treat large members but have more handling concerns.

Thank you! Questions?

(More details in conference paper)
or

www.fpl.fs.fed.us