LANGLEY COVERED BRIDGE REHABILITATION: Practical Solutions for Rehabilitation of a Historic Covered Bridge

National Covered Bridge Conference
Dayton, Ohio, June 7, 2013
by Thomas E. Nehil PE, Principal, Nehil • Sivak PC
414 S. Burdick, Suite 300, Kalamazoo MI 49007
tnehil@nehilsivak.com

Langley Covered Bridge Centreville, Michigan

OUTLINE

- Project background, history of bridge
- Assessment of rehabilitation needs, findings of structural analysis
- Rehabilitation construction process, lessons learned

- Project began 2005, completed 2009
- Project participants:
 - St Joseph County Road Commission
 - Preservation architect
 - Structural/preservation engineer
 - MDOT historian
 - Contractor

Significance of Langley Bridge

- Onstructed 1887, timber Howe trusses
- One of four remaining historic covered bridges in Michigan
- One of the longest historic covered bridges in US
- Forms part of local identity
- Still in active use as county road

Project Location

The Langley bridge 1887

Raising the bridge for dam 1910

New causeway to connect bridge across floodplain

Later changes: deck, piers and abutments replaced 1950s

Roof raised and replaced

Sway bracing modifications

The fishing window

The Structure

Tleavy timber Howe through trusses

The Howe trusses here are the historically significant feature

The Langley Bridge trusses

- ♠ Each truss 94 ft long, 16 ft tall, h/L=6
 ♦ 10 panels per span, 9'-2 ¾" each

 - Diagonals slope 60

Trusses built up from sawed timber, three laminations at chords

Iron castings at nodes, tension rod bearing directly on chords

ASSESSING REHABILITATION NEEDS; FINDINGS OF STRUCTURAL ANALYSIS

ssues

- Bridge was posted for 3T load limit
- Load and speed limits regularly ignored
- Last major repairs and maintenance 1970's
- Previous modifications and repairs addressed functional requirements only, little regard for historic preservation

Recent Vehicle Impact

Issues with roof: framing and covering

Issues with siding: rot, lead paint peeling into the river

1950s steel deck framing, corroded, lead paint peeling

Truss bottom chord reinforcing corroded, south span sagging

Low clearance an advantage during condition audit

Hands on, piece by piece

Rotting of bottom chord

Rotting and crushing of compression diagonals

Crushing of tension rod bearings, at top chord...

And bottom

Purpose and Need: Defining the Loads

- We recommended public meetings held to discuss conversion to pedestrian and bicycle use only
- That idea not endorsed by community
- Community wanted to maintain crossing over river as a county road

Loads

♦ Modern loads per AASHTO vs horsedrawn carriages and wagons: 30,000# vs 7,000#

HIGHWAY BRIDGES

H 20-44 8,000 LBS. H 15-44 6,000 LBS. 32,000 LBS.**≉** 24,000 LBS.

Structural analysis to assess repair and strengthening needs

- We examined roof framing, deck framing, trusses, girders and substructure, no work below the waterline
- Want to discuss here three issues:
 - Tension capacity of bottom chords
 - Load transfer at castings
 - Role of counterbraces in Howe trusses

- Timbers stresses within reasonable limits for No. 1 white pine, though at high end
- Tension rods also well within allowable stresses, ok for fatigue

Findings (cont)

- Max bottom chord tension on gross area of timbers appeared acceptable
- But tension chord members were spliced in original construction

Bottom chord splice locations

Fishplate detail

Bottom chord splices

- ◆ Evaluate tension on net area and shear parallel to grain in the timbers and fishplates, and compression on the bearing surfaces
- To support wagon loads, need 13,000# of load transfer through each fishplate if we rely on them alone to do the job

Assessing bottom chord tension capacity

- Per current code limits on bearing stress, bottom chord fishplate capacity is 5,200#, not adequate even to carry self weight of bridge
- ♦ Might then assume all tension carried by remaining two laminations (ref S. Patrick Sparks, APT Journal 2005), but they too are spliced
- Need to consider development of tension capacity of bottom chord as a whole, all three laminations

The weak links

Tension capacity using keys and fishplates

- Four bearing surfaces and one or two bolts in single shear at critical path
- Total capacity = 26,000 # per current NDS, including C_d and 0.75 F'_c limit
- (or 33,000# per pre-2001 NDS)
- Acceptable for wagon loads, not 115 on trusses with deteriorated and cobbled chords

Bottom chord strengthening

- Steel channels each side of each chord, hidden by siding
- Provided good
 bearing for deck
 beams and
 tension rods

Bolting pattern to develop tension in steel channels, not to splice wood lams

Load paths at castings

- Max vertical = 31k, fc = 200 psi (wagons)
 - Max horizontal component = 18k
 - ♦ fc// on lug bearing surface = 1950 psi! but
 F'c// for EWPSSP&T = 834 psi

Force transfer at castings

- ♦ In recent times, max horizontal load carried may have been = 28k, so fc// = 3000 psi
- Tension rods don't bear on wood, no dowel bearing to help out
- ♦ Friction?
- ♦|s Cp of 1.15 too conservative?
- ◆ Confined F'c/ = 3000 psi, » 800 psi?

No action taken

- Tad supported higher loads in the past without damage
- Ductile failure mode

REPAIR PROCES

After lead abatement

Braced internally

Accessing the exterior

Replaced all tension rods and bearing plates

Repaired bottom chord bearing

Replaced and supplemented tension chord reinforcing

Spacers between wood and steel to promote durability

Compression diagonals at fishing window

Compression diagonal repairs

Reused timber washers

Maintenance painting of steel

Completed 2009

Sag didn't get removed

How to camber a Howe

Effect of tightening rods alone

- Was prestressing the original concept? Can it practically be maintained?
- We found almost all to be loose; they don't brace the compression diagonals out of plane
- Assembly requirement only?

Overall Satisfaction

