Design and Construction
Tallest Wind Turbine Tower in the U.S.

SIEMENS
Wind Tower Technologies
Development / Commercial Partnership

WTT + Siemens

- Preliminary Design
- Patents / IP Licensing
- Final Design (EOR)
- Construction Technology
- On Site Technical Support
- Turbine Simulations
- Financing
- TuvSud Certification
- Prototype Construction
- Serial Production
Sub-Consultants / Contractors

Thornton Tomasetti

Engineering sub-consultant
- Internals design assistance
- Dynamic analysis / peer review
- Concrete mix requirements

BAKER RV

Off Site Construction testing
- Mock Up – Houston
- Full scale operating Prototype
 Siemens / MidAmerican Energy

INTERNATIONAL BRIDGE TECHNOLOGIES, INC.

Engineering sub-consultant
- Segmental peer review
- Transition segment peer review

EFCO

Formwork System
- Engineering
- Fabrication
U.S. Wind Market

Global wind industry market growing 40% annually
- 350,000 turbines installed worldwide to date
- 60,000 installed in United States to date

Wind energy cost reduction trends in United States
- 55% lower over last 5 years
- 90% lower over last 30 years
 Improved turbine equipment & technology (rotors, blades, maintenance,..)
 Taller towers produce more power

Wind Power Market projected in United States
- Today: 5,500 towers under construction, 14,000 MW
- 2016 to 2020: 18,000 towers or 3,600 towers/year, 45,700 MW
- 2.5 MW/tower: 3.6M households/year or 10M persons/year

Iowa generates 31% of total power production from wind
- 40% goal by 2020
Taller Towers reduce cost of Energy
Concrete Tower Benefits vs. Steel

Steel Tower Limitations
- Difficult to source locally
- Transportation costs of steel towers are expensive
- Transportation limits base diameters > limits tower height or increases tower weight
- Bolted tower section joints require routine inspection & maintenance
- Vortex induced vibration restricts tower construction process

Concrete Benefits
- Tower heights not limited by the base diameter or transportation (onsite production)
- Longer useful tower life - 50 years vs. 20 years
- Use of local materials and labor higher
- Heavier tower reduces the size of a gravity foundation
- Vortex induced vibration is not a restriction during construction
Precast Segmental Technology

Background

- Industrialized construction process
- Proven cost effective for bridges w/ many common segments (> 1000 segments)
- Technology transfer: Bridge Structures > Tall Wind Towers over 100 meters
Full Scale Operational Prototype

Mid American Energy, Iowa

https://www.youtube.com/watch?v=DNfadvU2Y8g
On Site Casting Operations

Match Casting Segments – Full Diameter
- Tight horizontal joints
 - Eliminates field grouting during segment erection
 - Faster segment installation time
 - Monolithic tower in service - lower maintenance
- No vertical joints
 - Fewer precast elements to install
 - Eliminates vertical field grouting at elevation

Geometry Control
- Occurs in the casting yard operations
- Segment control points track 3D geometry
- Geometry adjustments
 - Casting yard - segment geometry tracking
 - Erection – setting base segment on foundation
Segment Match Casting
Formwork Assembly and Reinforcing Pretie

FORM & Reinforcement
Segment Match Casting
Step 1 Placing the form

A2
FORM &
Reinforcement

MATCH CAST
POSITION A1
Segment Match Casting
Step 2 Filling the Form

A2
WET CAST
POSITION

A1
MATCH CAST
POSITION
Segment Match Casting
Step 3 Moving the Segment

A2
WET CAST POSITION

A1
MATCH CAST POSITION

A2
MATCH CAST POSITION
Segment Match Casting
Step 4 Stripping the Form and moving segment to storage
Segment Match Casting
Step 5 Setting next Form

A3
FORM & Reinforcement

A2
MATCH CAST POSITION
Segment Casting Methodology
Step 6 Filling the Form
Segment Casting Methodology

Step 7 REPEAT

A3
WET CAST
POSITION

A2
MATCH CAST
POSITION
Segment Erection

- Tower stacked at 5 towers per week in Serial Production
- Heaviest pick is around 70 tons
- Tower is stacked to 100 meters before stressing
- Post tensioning is installed off critical path
Unbonded External Post Tensioning

- Tendons can be installed off critical path of the large crawler cranes
- Concrete segments can be stacked out before tendon stressing
- Stressing can be done from the bottom or the top of the tower
- External tendons can be visually inspected throughout the life of the structure
- Designed to maintain full compression across joints under service loads.
Working Platforms

Working platform allows for contractors to receive the segment and jump to the next segment during the erection process.

Ladder sections are installed before erection:

• Provides egress for workers at the erection platform
• Adjustability built in the design provides proper installation
• Takes installation of ladders off critical path
Testing

• Concrete Mix Design / Properties
• Full Scale (pre-prototype) Mock-Up
• Post-Tensioning
• Structural Behavior Monitoring
• Tower Natural Frequency in Service
Concrete Tower Mix Design

Concrete Mix Design requirements

• High early break strength, 2500psi in 6 hours
• High slump mix, small aggregate size
• 5% air entrainment
• Turbine manufacturer 0.4 Hz (stiff) natural frequency restriction.
• 28 day design strength of 7000psi
Tower Performance

Testing Based MOE Equation

<table>
<thead>
<tr>
<th>Testing Age</th>
<th>Average Compressive Strength, psi</th>
<th>Average MOE, psi</th>
<th>Ratio of MOE to Square Root of Compressive Strength</th>
</tr>
</thead>
<tbody>
<tr>
<td>7 Day</td>
<td>7780</td>
<td>5.55E+06</td>
<td>62.892</td>
</tr>
<tr>
<td>28 Day</td>
<td>9415</td>
<td>6.22E+06</td>
<td>64.070</td>
</tr>
<tr>
<td>Average</td>
<td>8598</td>
<td>5.88E+06</td>
<td>63.437</td>
</tr>
</tbody>
</table>

Modeling Calibration

Frequency Results Comparison
- Calculated = .3575 Hz
- Measured = .351 Hz
Within 1.8% of FEA calculated Natural Frequency
Off Site Initial Testing & Mock Up

Location – Houston, TX, Baker Concrete Facilities
Date – April 2015 to July 2015

Baker Concrete Provided a small casting yard in Houston
Testing Activities Included
• Erection Platform Testing
• PT Equipment Testing
• Casting 4 segments (Match Casting)
• Picking the heaviest segment
• Proving technology
Load Cell Measurements During Stressing

Table 3: Load cell 1 measurements and calculations

<table>
<thead>
<tr>
<th>Gage #</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Anticipated Load (kips)</th>
<th>AVG</th>
<th>Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial (No Jack)</td>
<td>7462.5</td>
<td>7150.6</td>
<td>7379.9</td>
<td>3.5</td>
<td>7331.0</td>
<td>4.4</td>
</tr>
<tr>
<td>Initial</td>
<td>7464.8</td>
<td>7148.7</td>
<td>7385.7</td>
<td>3.5</td>
<td>7333.1</td>
<td>3.8</td>
</tr>
<tr>
<td>20% (1000 PSI)</td>
<td>7250.7</td>
<td>6769.6</td>
<td>7150.3</td>
<td>80.5</td>
<td>7060.2</td>
<td>84.6</td>
</tr>
<tr>
<td>65% (3300 PSI)</td>
<td>6745.4</td>
<td>6246.7</td>
<td>6605.2</td>
<td>261.6</td>
<td>6532.4</td>
<td>240.7</td>
</tr>
<tr>
<td>100% (5024 PSI)</td>
<td>6191.0</td>
<td>5728.9</td>
<td>6026.0</td>
<td>402.5</td>
<td>5980.2</td>
<td>404.2</td>
</tr>
<tr>
<td>Delta Strain</td>
<td>1271.5</td>
<td>1421.7</td>
<td>1359.3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Load cell 2 measurements and calculations

<table>
<thead>
<tr>
<th>Gage #</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>Anticipated Load (kips)</th>
<th>AVG</th>
<th>Load (kips)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial (No Jack)</td>
<td>7357.6</td>
<td>7197.1</td>
<td>7322.1</td>
<td>3.5</td>
<td>7292.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Initial</td>
<td>7352.5</td>
<td>7192.2</td>
<td>7318.8</td>
<td>3.5</td>
<td>7287.8</td>
<td>4.5</td>
</tr>
<tr>
<td>20% (1000 PSI)</td>
<td>7053.9</td>
<td>7049.9</td>
<td>7056.8</td>
<td>80.5</td>
<td>7053.5</td>
<td>74.2</td>
</tr>
<tr>
<td>65% (3300 PSI)</td>
<td>6505.8</td>
<td>6557.9</td>
<td>6574.9</td>
<td>261.6</td>
<td>6546.2</td>
<td>225.1</td>
</tr>
<tr>
<td>100% (5024 PSI)</td>
<td>5953.9</td>
<td>6044.5</td>
<td>6029.3</td>
<td>402.5</td>
<td>6009.2</td>
<td>384.8</td>
</tr>
<tr>
<td>Delta Strain</td>
<td>1403.7</td>
<td>1152.6</td>
<td>1292.8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Structural Behavior Monitoring

- 12 Accelerometers Installed
- 14 Strain Transducers Installed
- 2 Tilt Meters Installed
- 8 Vibrating Wire Strain Gages Installed
- 6 PT Load CellsInstalled

Total=42 Sensors Installed
Controlled Remote Monitoring
Natural Frequency Verifications

- Frequency requirements in the 1p fore-aft and 3p side to side for resonance prevention, soft-stiff tower design is desired.