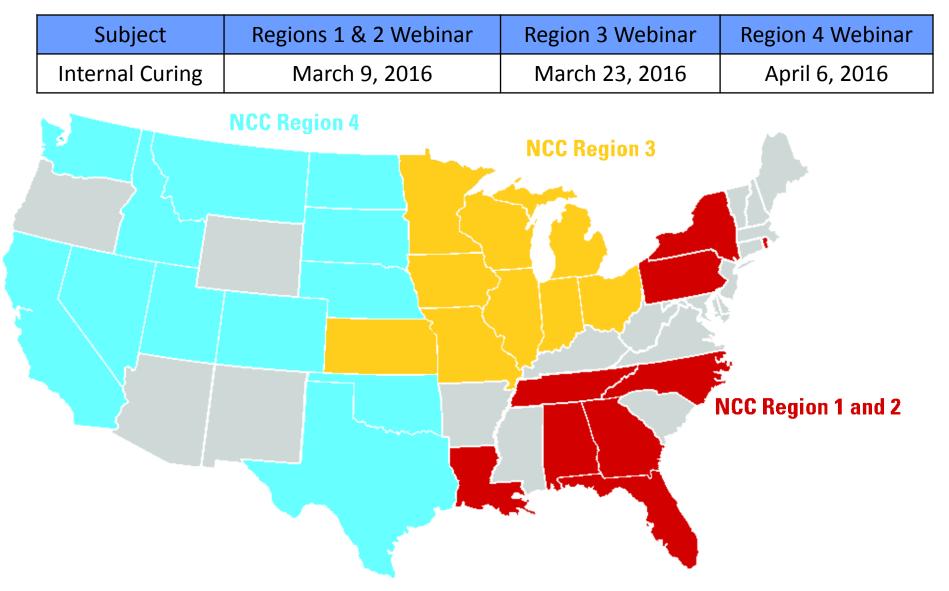

Welcome to Region 3 Webinar on Internal Curing- Speaker Dr. Jason Weiss

Subject	Region 3 Webinar	Region 4 Webinar
Internal Curing	March 23, 2016	April 6, 2016


Webinar Procedure

- If you have questions for Jason Weiss please type in the questions where indicated on your screen.
- At the end of the presentation the CP Tech Center will remove the mute for the participants to allow for open discussion.
- For questions regarding the webinar operations please contact Denise Wagner for assistance.
 dfwagner@iastate.edu; phone 515-294-5798.

Webinar Learning Objectives

- To understand what internal curing is
- To be able to identify the potential benefits of using internal curing
- To be able to understand the potential applications best suited for internal curing
- To understand mixture proportioning basics
- To understand the quality control aspects needed for implementing internal curing

Internal Curing Webinar Schedule

Internal Curing Prepared for the National Concrete Consortium Webinar Series

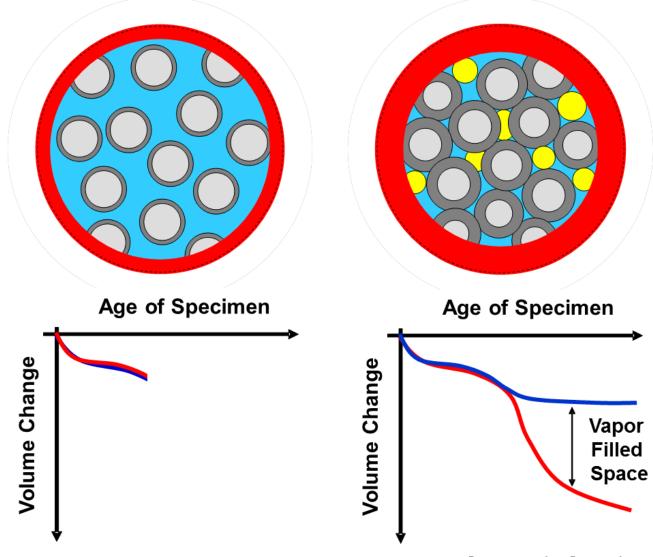
Presented By Jason Weiss March 23rd, 2016

Many of Us May Feel Like Homer

What Is Internal Curing

 Internal Curing (IC) has been defined in 2013 by the American Concrete Institute as: "a process by which the hydration of cement continues because of the availability of internal water that is not part of the mixing water."

• This may be OK, but it may help us to have a bit of background on internal curing


Internal Curing Background

- Relatively new concept
- Philleo Curing HPC needs to be different
- In the late 1990's work in the US is focusing on demonstrating increased cracking is occurring in HPC and using things like SRA to control this
- In the late 1990's work is underway in Denmark, Germany, Israel to develop the Internal Curing concepts tailed specifically for low w/c, high performance concrete

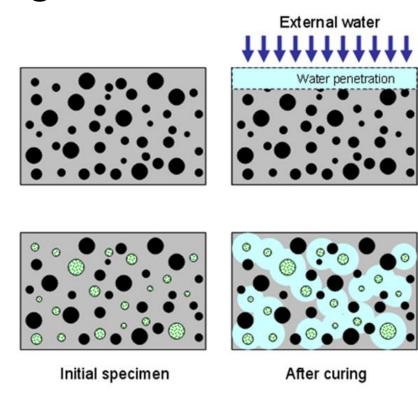
Original Internal Curing Approach

- Internal curing was originally very focused on low w/cm systems
- Low transport properties but this comes with self-desiccation and resulting autogenous shrinkage
- All concrete self-desiccates (develops vapor filled space) however this is not a problem in concrete with a higher w/c since this occurs in pores that are relatively large (as a result the curvature of the meniscus of the fluid in the pores is low and the capillary pressure and auto. shrinkage is low)

Origin of Self-Desiccation

Sant et al.; Crouch et al. 2006

US Approach to Internal Curing

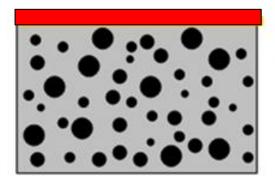

• In the US, we began looking for opportunities to use this in a wider range of concretes

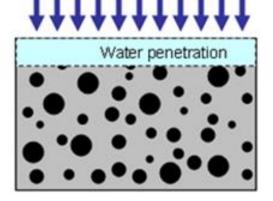
External curing

Internal curing

Normal aggregate

 This has been applied to a wider range of more moderate concrete mixture designs and many additional benefits were examined

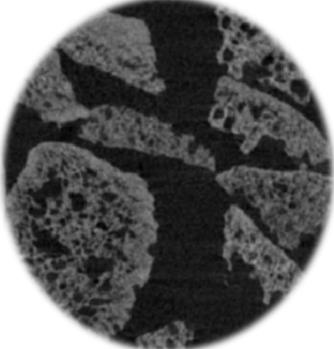

Water filled inclusion


Castro et al. 2010

Cured zone

Water Curing & Curing Compounds

- A fundamental difference exists in typ. curing
- Water Ponding, Sprinkling, Burlap: Supply Additional Water
- Curing Membranes: Reduce Loss of Water to the Environment


External water

The Why of IC Simplified

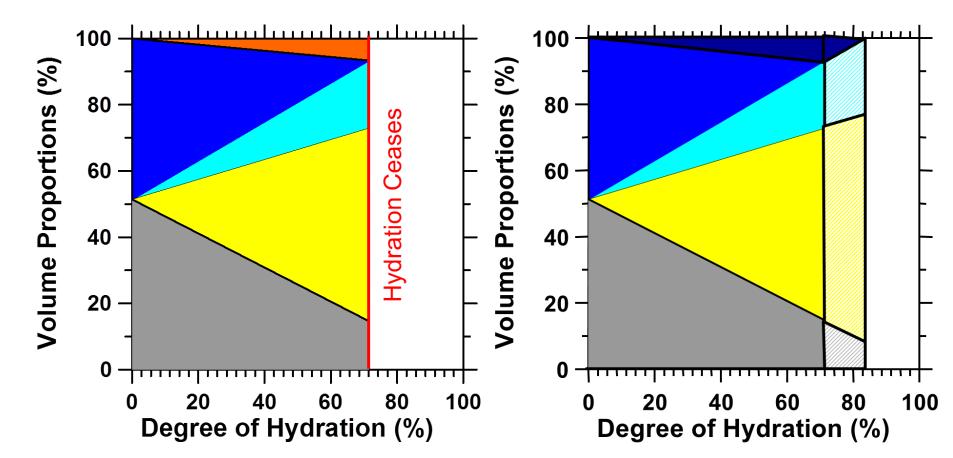
- We want to do water curing (concrete 101) but in a different way. Instead of adding curing water from the outside, we will add it from inside the concrete.
- First, this is concrete 101 not magical or mysterious
- Second, this is designing the mixture to 'automatically' do the curing removing site step

The First Question That Comes Up Does This Count Toward the W/C

- The water to cement ratio (w/c, by mass) is used as an indirect indicator of porosity
- Many concrete properties are related to 'aspects' of porosity, for example
 - Compressive Strength is Related to the Gel Space
 Ratio (volume of gel/volume of gel + pores)
 - Transport is inversely related to the product of pore volume and tortuosity (Formation Factor)
 - Shrinkage is related to emptying of small pores

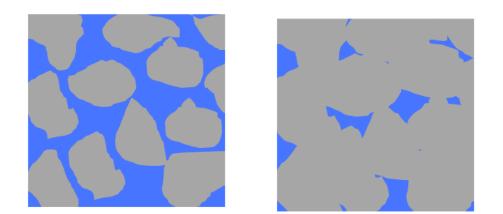
The First Question That Comes Up

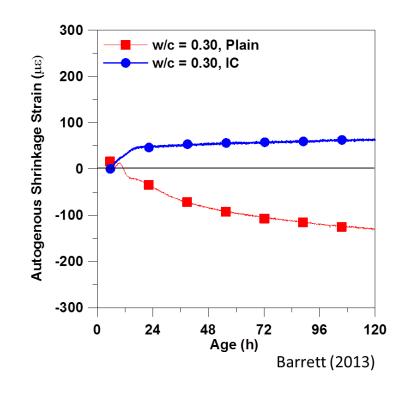
• Does the water in the LWA count as a part of the water to cement ratio


IC Water Doesn't 'Count' in W/C

- Water 'hidden' in an inclusion (SAP, LWA, Cellulose) before set does not contribute to the porosity of the paste
- It is important to realize that once set occurs the addition of water can only fill pores (reduce shrinkage), and increase hydration (reducing transport and increasing strength)

What Does Water Curing Do


Sealed


Water Curing

What are the Benefits of IC

- Reduced Autogenous Shrinkage
- Increased Cement Hydration

Improved Curing when Short Cure Times are Permitted

What Not To Expect

- Internal Curing will not have a big impact on compressive strength – especially when cylinders are water cured (See Golias et al.)
- Internal Curing will not have a big impact on shrinkage measured using ASTM C-157. The reason is external drying empties pores until a certain size meniscus is reached (Radlinska et al. 2007), IC does change shrinkage rate and cracking potential

Applications for IC – Bridge Decks

• Has received use in NYDOT, INDOT, IN LTAP, IL Tollway

• Many other states are considering the use of IC

- Simple Overview (IN)
- IC decks crack less
- ICHPC 3x Life of Class C concrete in Indiana

DiBella et al. 2010

Applications for IC – Repairs, Early Opening

- Here we see an image from the city of west lafayette
- Internally cured patches were 'equivalent to install'
- However they cracked less and had 'water' curing even after opening to traffic

Applications for IC - Paving

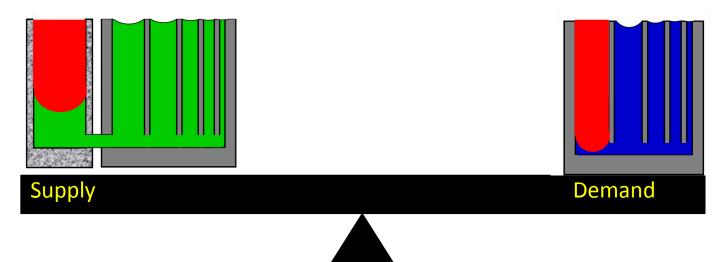
- People are beginning to examine the use of internal curing for mainline paving and for concrete overlays
- Substantial CRCP pavement has been placed in TX and it has smaller crack widths
- IC may reduce curl (Rao and Darter 2013) which would impact design

• Ongoing area of research for CRCP and overlays

Role of Unit Weight

- In general the density of IC concrete is (5-10%) lower than conventional concrete
- Many agencies may benefit from two aspects when re-decking existing structures
- IC may enable higher performance concrete to be used
- Others may select to use light weight concrete which also has benefits in IC

Shifting Gears

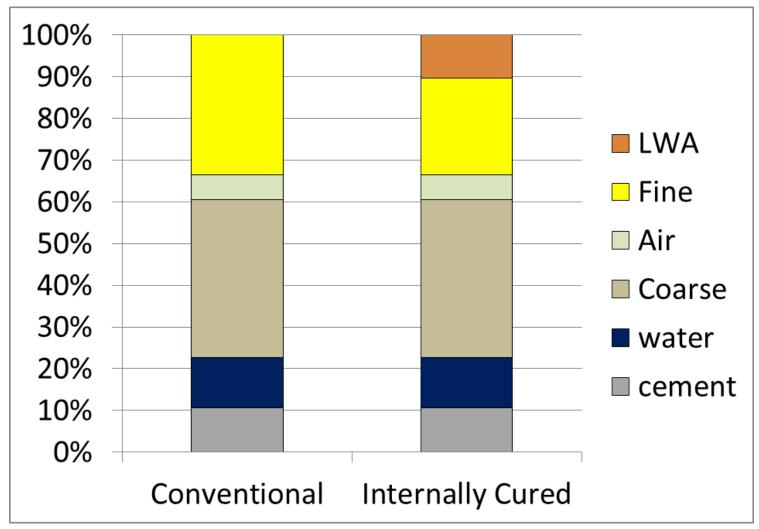

http://i.imgur.com/I5SUjAi.webm

Mixture Proportioning

- General Concept
- Chemical shrinkage and the secret of 7
- How much LWA is used
- Volume of LWA as compared to sand
- A simple proportioning approach
- Aggregate Properties
- Moisture Corrections
- Plant Corrections

Proportioning Concept

• Concept of proportioning mixtures for internal curing is simple, other approaches exist



- Demand Space created by chemical shrinkage (or other loss) – 0.064
- Supply Water stored in the LWA

Approach #1 - The Secret of 7

- 7 lbs water per 100 lbs cementious
- 6 bag mixture 564 lb/yd³
- IC Water = 7*564/100 = 39.5 lb/yd³
- Assume Aggregate with 15% Absorption
- Mass_{LWA-OD} = 39.5/15% = 263 lb/yd³
- Very Good First Approximation

If One Replaces Sand with An Equal Volume of LWA

Simple Mixture Proportioning

- The majority of the time I believe that you will be asked to convert an existing mixture to an internally cured mixture
- This for example can be a paving mixture or a bridge deck mixture
- There is no reason to reinvent the wheel

Input Current Mixture Proportions

Plain Mixture Design			Legend
Target Air, %	6.0%		Ready Mix Input
w/c	0.400		LWA Input
Materials	Weight	SG (SSD)	Volume, ft3
Cement	480	3.15	2.442
GGBFS	0	2.99	0.000
Fly Ash	120	2.64	0.728
Silica Fume	0	2.2	0.000
Sand	1458	2.75	8.497
Coarse Aggregate 1	1650	2.68	9.867
Coarse Aggregate 2	0	2.763	0.000
Water	240	1	3.846
Air	0	0	1.620
Σ	3948	-	27.000

Input Aggregate Properties

- Input three LWA properties
- Use basic equations to estimate mass of LWA

$$M_{LWA-OD} = \frac{C_f \ CS \ \alpha_{Max}}{\phi \ \Psi \ S}$$

Internal Curing Properties				
LWA Absorption:	15.0%			
LWA Desorption:	85.0%			
LWA Specific Gravity	1.750			
Cement Factor	704			
Chemical Shrinkage:	0.065			
Degree of Hydration	1			
SSD LWA Replacement	413			
SSD Sand Replaced	619			

- C_f Cement Factor, CS Chemical Shrinkage, α_{max} is the maximum degree of hydration, ϕ is the porosity, ψ is desorption, S is deg. of saturation
- Replace an equivalent volume of sand with prewetted lightweight aggregate

Calculation is Automatic

IC Mixture Design			
Materials	Weight	SG (SSD)	Volume, ft3
Cement	564	3.15	2.869
GGBFS	115	2.99	0.616
Fly Ash	0	2.64	0.000
Silica Fume	25	2.2	0.182
Sand	591	2.623	3.613
Lightweight Aggregate	413	1.750	3.780
Coarse Aggregate 1	1700	2.763	9.860
Coarse Aggregate 2	0	2.763	0.000
Water	258	1	4.135
Air	0	0	1.755
Σ	3666	_	26.810


Where to Find Aggregate Properties

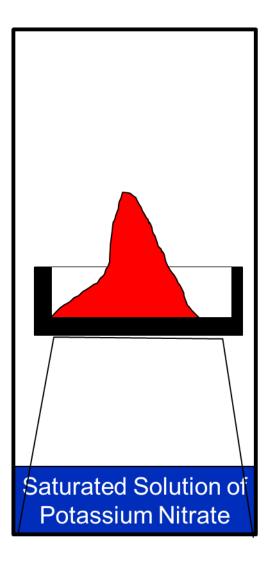
• They can be measured or assumed to start

Material	Draduction Location	Vacuum Water	Specific Gravity,	24 Hour Water	24 Hour	Specific Gravity,
Туре	Production Location	Absorption*	Oven Dry*	Absorption^	Desorption^	24 Hour Calc.
Clay	Erwinville, LA	26.8%	1.29	16.4%	92.4%	1.50
Clay	Germany	27.0%	1.49	15.0%*	93.6%*	1.71
Clay	Livingston, AL	35.5%	1.10	30.0%	97.5%	1.43
Clay	Frazier Park, CA	19.1%	1.39	17.5%	95.2%	1.63
Shale	Marquette, KS	22.5%	1.45	18.8%	96.2%	1.72
Shale	New Market, MO	24.9%	1.50	14.9%	98.3%	1.72
Shale	Brooklyn, IN	20.0%	1.56	12.4%	97.5%	1.75
Shale	Cleveland, OH	18.6%	1.40	17.1%	97.3%	1.64
Shale	Brooks, KY	22.0%	1.51	17.3%	96.4%	1.77
Shale	Albany, NY	25.2%	1.38	17.4%	95.7%	1.62
Shale	Boulder, CO	24.9%	1.46	19.0%	89.8%	1.74
Shale	Streetman, TX	24.6%	1.48	20.1%	88.0%	1.78
Shale	Coalville, UT	23.0%	1.49	19.7%	90.6%	1.78
Slate	Buckingham, VA	18.6%	1.62	16.4%	97.1%	1.89
Slate	Gold Hill, NC	11.4%	1.51	9.1%	97.5%	1.65
Slag	Chicago, IL	~	2.00&	10.5%	92.6%	2.21

Measuring Aggregate Properties

- Aggregate Moisture
- Surface Moisture
- Aggregate Absorp.
- Specific Gravity (Relative Density)
- Desorption
- Spreadsheet and Step by Step Process (Miller et al 2014)

Example Absorption


- Mass of Empty Bowl
- Mass of Prewetted LWA before centrifuge
- Mass of Prewetted LWA after centrifuge
- Mass of Pan Used for oven drying
- Mass of pan and oven Dry Aggregate

Procedure	Measurement	Value	
Measure mass of empty centrifuge bowl	M1		
Measure mass of pre-wetted lightweight aggregate added to tared centrifuge bowl (600 ± 5 g)	M _{wet}		
Measure mass of centrifuge bowl and pre-wetted surface-dry aggregate after centrifugation	M ₂		
Calculate mass of pre-wetted surface dry aggregate, $$\rm M_{PSD}$$	$M_{PSD} = M_2 - M_1$		
Measure mass of empty pan used for oven-drying aggregate	M ₃		
Measure mass of pan and oven dry aggregate	M4		
Calculate mass of oven-dry aggregate, $\rm M_{0D}$	M _{OD} = M ₄ - M ₃		
Results			
Calculate desired properties	Result	Value	
Absorption (%) = $\frac{M_{PSD} - M_{OD}}{M_{OD}} \times 100$	Absorption		
Surface Moisture (%) = $\frac{M_{WET} - M_{PSD}}{M_{PSD}} \times 100$	Surface Moisture		
Total Moisture (%) = $\frac{M_{WET} - M_{OD}}{M_{OD}} \times 100$	Total Moisture		
Sample Information:	Sample Date:		

Example Relative Density

Relative Density					
Procedure	Measurement	Value			
Measure mass of pycnometer filled to calibration mark	M_{PW}				
Measure mass of pre-wetted surface-dry lightweight aggregate added to tared empty pycnometer (~300 g)	M _{PSD}				
Measure mass of pycnometer with pre-wetted surface-dry lightweight aggregate and water to calibration mark	M _{PS}				
Measure mass of empty pan used for oven-drying aggregate	M ₅				
Measure mass of pan and oven dry aggregate	M ₆				
Calculate mass of oven-dry aggregate, M _{OD}	M _{OD} = M ₆ - M ₅				
Results					
Calculate desired properties	Result	Value			
$\text{Relative Density} (\text{PSD}) = \frac{\text{M}_{\text{PSD}}}{\text{M}_{\text{PW}} + \text{M}_{\text{PSD}} - \text{M}_{\text{PS}}}$	Pre-Wetted Surface-Dry Relative Density				
$\label{eq:Relative Density} \text{(OD)} = \frac{\text{M}_{\text{OD}}}{\text{M}_{\text{PW}} + \text{M}_{\text{PSD}} - \text{M}_{\text{PS}}}$	Oven-Dry Relative Density				

Example Desorption

Desorption				
Procedure	Measurement	Value		
Measure mass of empty pan for desorption sample	M ₇			
Measure mass of pre-wetted surface-dry lightweight aggregate added to tared empty pan (~5 g)	M _{PS D}			
Measure mass of pan and sample every 24 hours to	Day 1			
	Day 2			
	Day 3			
	Day 4			
	Day 5			
determine equilibrium mass	Day 6			
$(M_{EQ}, \pm 0.01 \text{ g from previous day's mass})$	Day 7			
	Day 8			
	Day 9			
	Day 10			
	M _{EQ}			
Calculate mass of aggregate in at equilibrium	$M_{94} = M_{EQ} - M_7$			
Measure mass of pan and oven dry aggregate	M _s			
Calculate mass of oven-dry aggregate, $M_{\mbox{\scriptsize op}}$	$M_{ob} = M_{s} - M_{7}$			
Calculate mass of water in M94 sample	$M_{W94} = M_{94} - M_{OD}$			
Calculate total mass of water in pre-wetted surface-dry sample	$M_{wpsd} = M_{psd} - M_{od}$			
Results				
Calculate desired properties	Result	Value		
$W_{LWA} = \frac{M_{PSD} - M_{94}}{M_{OD}} \times 100$	Mass of water released at 94% RH			
$\begin{array}{l} \text{Percent Desorption} = & \frac{M_{WPSD} - M_{W94}}{M_{WPSD}} \times 100 \end{array}$	% Desorption			

An Advantage of the Spreadsheet

Aggregate summary is provided

LWA Absorption:	
LWA Desorption:	
LWA Specific Gravity:	
Surface Moisure:	

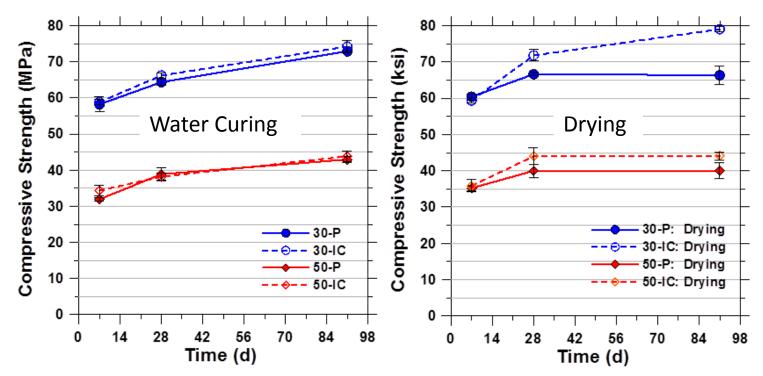
Quality Control and Batching

• You MUST correct for surface moisture

• Learning the batching software is a key issue

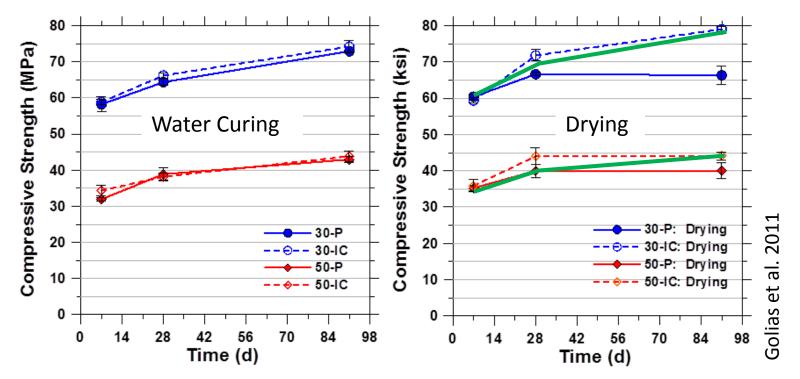
 Batching software can be tricking with high absorption materials

• Adjusting 'jog' may be needed

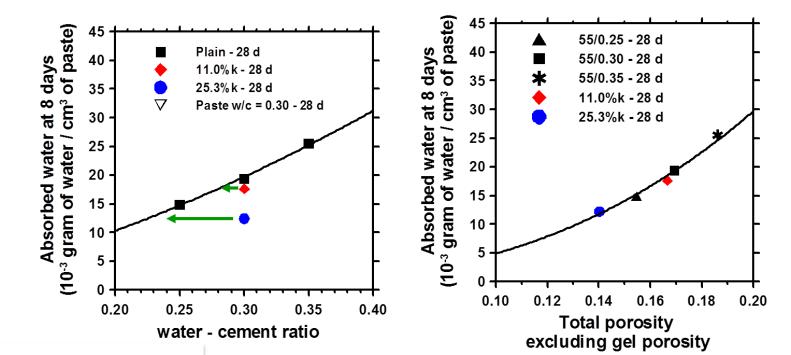

Measuring Air Content

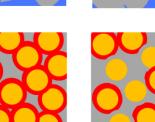
• Volume Meter or Pressure Meter

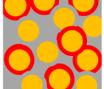
Mixture:	AE	Air _{Pres.}	Air _{vol.}
	(fl oz/cwt)	(%)	(%)
Mixture 1: Standard Class H	0.2	5.80%	5.25%
Mixture 2: TXI fine LWA (CS)	0.2	5.90%	4.75%
Mixture 3: TXI fine LWA double dose	0.3	5.00%	5.00%
Mixture 4: TXI coarse LWA (CS)	0.4	6.20%	5.75%
Mixture 5: TXI coarse LWA (100% repl)	0.4	7.00%	5.75%
Mixture 6: Buildex fine LWA (CS)	0.3	7.9%	6.5%
Mixture 7: IC Utelite fine LWA (CS)	0.3	6.8%	6.8%
Mixture: Class D	0.3	6.0%	5.8%
Mixture 9: TXI fine LWA (CS) – Class D	0.2	6.1%	5.8%


Properties of IC Concrete

- There is an entire video of properties on the website mentioned at the end of this webinar
- Here I will hit some of the highlights

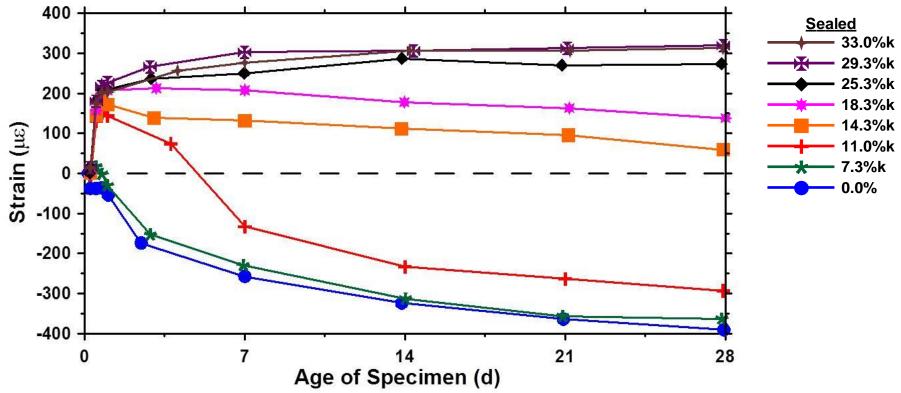

Properties of IC Concrete


- Here we see no benefit when water cured
- However when cured in air the internally cured concrete behaves like water curing was used

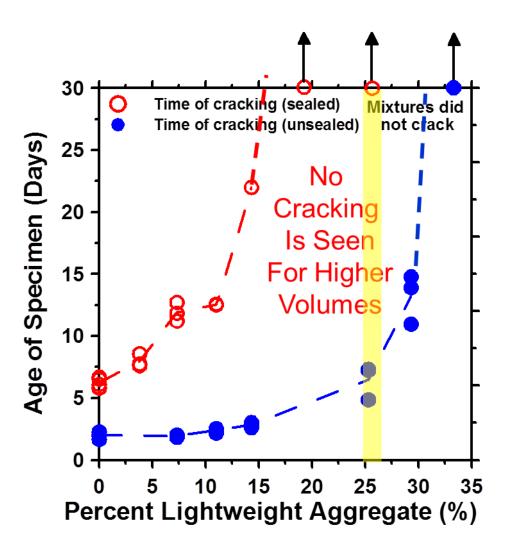


Properties - Transport

- Additional internal curing water reacts more binder to densify the system
- LWA reduces ITZ and reduces percolation
- At low w/c the capillary pores depercolate



Properties – Sealed Shrinkage

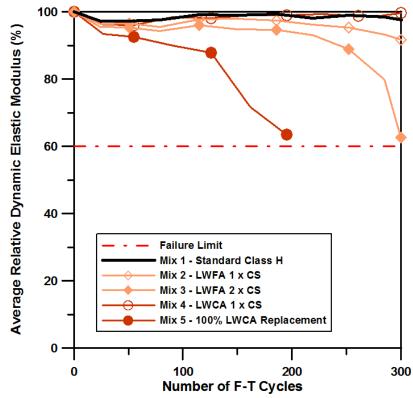

 As LWA replacement volume increases, autogenous shrinkage decreases

Henkensiefken et al. (2008)

Properties – Shrinkage Cracking

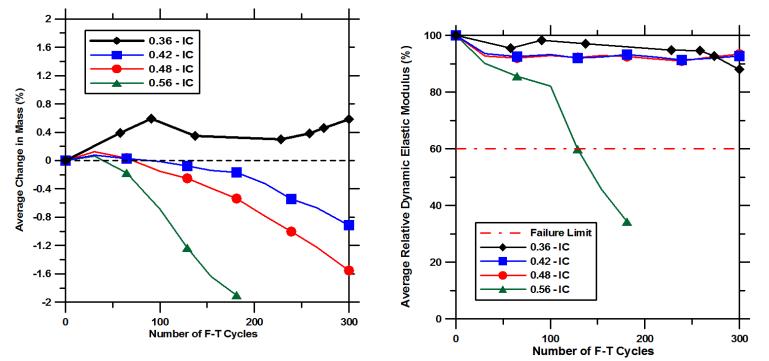
- Increasing the LWA volume decreases the potential for cracking
- For sealed samples as the volume approaches the CS replacement (25%) no cracking is observed
- Unsealed samples require a higher volume

Freeze-Thaw Behavior


- Performance of lightweight bridge concrete bridge decks is atleast as good as normal density concrete (Brown et al. 1985)
- Experiments have shown that plain and internally cured concrete behave similarly if they are properly air entrained

 Want to be careful at early ages, and use a sufficiently low w/c where self-desiccation will pull water out of the LWA

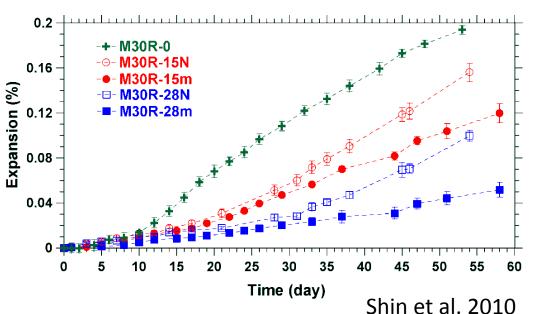
Freeze-Thaw Behavior


- Here we can see the ASTM C 666 data
- The conventional concrete is fine as is the LWA with the water in the LWA = CS (Mix 2, 4)
- The 2x CS will leave water in the LWA
- The LWCA has excess water that has not been drawn out of the LWA (too much IC water)

Jones et al. 2013

Influence of w/c and IC

- High w/c will not draw water from the LWA as fast as low w/c since the suction is higher low w/c
- May be susceptible to damage at early ages


Jones et al. 2013

Alkali Silica Reaction

- Shin et al. 2010 reported results for 5 systems
- Internal Curing Pros
 - decreases porosity through hydration
 - accommodation space allows gel to form without developing pressure
 - dilution (replaces reactive aggregates)
- Internal Curing Cons
 - Higher RH/moisture in paste would enable more ASR reaction to occur

Alkali Silica Reaction

- Reactive (R) Most reactive and expansive
- Non Reactive Aggregate Replacement at 15 & 28% (m) Reduces expansion due to dilution
- Internal Curing LWA Replacement at 15 & 28% (N) more effective even than non-reactive aggregate
- Hypothesis LWA provides space for expansive gel
- Recent work by Chang et al. examining role of pore solution

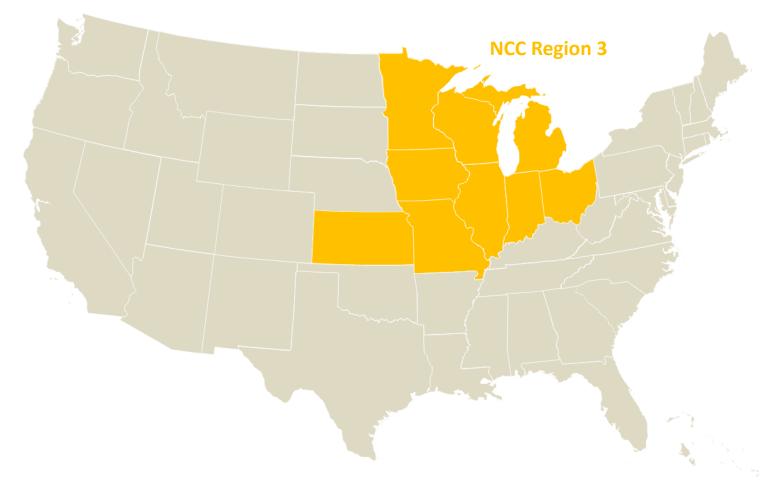
Conclusions – Part I

- IC Is curing done from inside concrete
- IC uses LWA, SAP, cellulose
- IC improves hydration, reduces autogenous shrinkage, and improves short term curing
- IC demonstrated benefits in bridge decks and repairs ... ongoing work look at pavements

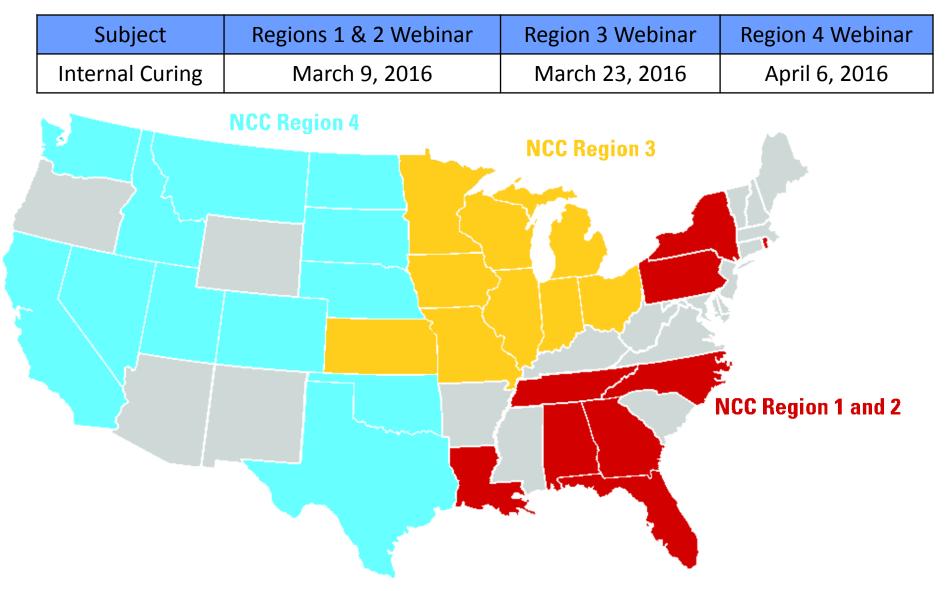
Conclusions – Part II

- Basics of IC 7 lb of water per 100 lb cement
- Mixture Design spreadsheet
- Importance of aggregate properties and aggregate moisture Centrifuge test
- Plant corrections can be made Moisture corrections and 'plant weight corrections'
- IC improves properties
- IC is particularly well suited for HPC

Additional Resources http://cce.oregonstate.edu/internalcuring


🛱 Calendar 🖉 Library 🕈 Maps 📽 Online Services 🛱 Make a Gift				
College of Engineering Civil and Construction Engineering				
About 💌 Academics 💌 Research and Innovation 💌 Facilities 💌 Our Impact My CCE 💌				
Home » Facilities » Infrastructure Materials Laboratories » Kiewit Materials Performance Lab (KMPL)				
Internal Curing				
› Learning Modules				
Papers by OSU Authors				
Presentations				
Resources				
National Institute of Standards and Technology (NIST) Internal Curing Bibliography				
NIST Internal Curing Website				
Expanded Shale, Clay, and Slate Institute (ESCSI) Internal Curing Website				
> Worksheets				
 Mixture Proportioning Worksheet (Excel); (presentation) 				
Aggregate Properties Workshoot (Excel): (proceptation)				

Acknowledgements and Disclaimer


- These slides were developed as a part of a series for the Snyder Associates by Jason Weiss.
- These materials are provided as general information and do not constitute legal or other professional advice.
- Any use of this information in the design or selection of materials for practice should be approved by the project owner and engineerof-record.

Welcome to Region 3 Webinar on Internal Curing- Speaker Dr. Jason Weiss

Subject	Region 3 Webinar	Region 4 Webinar
Internal Curing	March 23, 2016	April 6, 2016

Internal Curing Webinar Schedule

