Case Studies in Concrete Pavement Recycling

Mark Snyder, Ph.D., P.E.
Pavement Engineering and Research Consultants, LLC

U.S. Department of Transportation
Federal Highway Administration

National Concrete Pavement Technology Center
Iowa State University Institute for Transportation
What is Concrete Recycling?

• Breaking, removing and crushing hardened concrete from an acceptable source.
• Old concrete pavements often are excellent sources of material for producing RCA.
• Concrete pavements are 100% recyclable!
Uses of Recycled Concrete Aggregate

- PCC pavement
 - Single and Two-Lift
- HMA pavement
- Subbase
 - Unbound
 - Stabilized
- Fill material
- Filter material
- Drainage layer
Van Dam et al., 2016, after Wilburn and Goonan, 1998, and USGS.
Performance of Pavements Constructed using RCA

There have been a few notable (and well-publicized) failures when used in PCC....

• Deterioration of mid-panel cracks in JRCP
• Design issues (undoweled joints, panel length, foundation type, etc.)

.... but performance has generally been very good!

Very rarely have structural problems been reported with the use of RCA in foundation layers.
2012 CMRA Survey of RCA Use in Base Applications
Case Study: Eden’s Expressway – I-94 Northwest Chicago, IL (1978)
Many “firsts” ...

• First major urban freeway in U.S. to be completely reconstructed.
• Largest U.S. highway project (at the time) to use concrete recycling.
• Largest single highway contract ever awarded in U.S. (at that time): $113.5 million (1978 dollars).
• First major U.S. project to recycle mesh-reinforced concrete pavement.
Recycling Details

• Recycling chosen over 3-hour round-trip haul for virgin aggregate.
 – 200,000 gals of fuel saved in hauling virgin aggregate and demolished concrete

• Crushing plant set up in interchange cloverleaf.
 – No crushing from midnight – 6 a.m.
 – Driver’s not allowed to bang tailgates to discharge.
Construction and Performance

• 350,000 tons of old pavement recycled
 – 85% to fill areas
 – 15% to 3-in unbound subbase

• Capped with asphalt-treated base and 10-in CRCP

• Provided excellent service for nearly 40 years under very heavy traffic.
Cost Savings From Using Recycled Concrete Aggregate in Tollway Reconstruction

Steve Gillen, Deputy Program Manager of Materials
August 30, 2016
International Conference on Concrete Pavements
Tollway Objective is to Rebuild in the Greenest and Cleanest Way Possible

- The goal is to recycle 100% of the original pavements and structures back into the new pavements
 - RAP
 - RCA
 - Existing Subbases

- Improve sustainability further using as many waste products as possible
 - Fly Ash / Slag in PCC
 - Roof shingles in Asphalt
 - Ground tires in Asphalt
Rubblization

- Approximately 30 median miles of interstate highway concrete pavement has been rubblized on the Tollway and compacted as a base under new perpetual asphalt pavements

- 27.9 miles on one project alone (I-88)
On-Site Processing for Porous Granular Embankment (PGE) Subbase - Mobile

- Processing RCA as a PGE (6” max.) aggregate was initiated by IDOT to construct 12” min. thickness bases (3” dense graded cap over 9” PGE)

- On initial Tollway reconstruction projects mobile processors followed the excavation process down the road

- Too much subbase / subgrade contamination and segregation resulted

Presented by Steve Gillen on August 30, 2016
On-Site Processing for Porous Granular Embankment (PGE) Subbase - Stationary

- Today with stricter control on gradation, the processors are typically kept at stationary locations on-site to produce larger piles of PGE at multiple locations along the reconstructed corridor

- Tollway PGE max. particle size is reduced to 5” to allow for thinner bases

Presented by Steve Gillen on August 30, 2016
Off-Site Processing for Porous Granular Embankment (PGE) Subbase - Stationary

- When the base design requires a 9” or greater layer of PGE, then IDOT certified off-site RCA processing sites are sometimes used.

- These sites commonly blend up to 50% of the RCA with clumps of asphalt.
On-Site Processing for Washed Porous Granular Subbase - Stationary

- RCA has been processed on-site as a washed 1.5 inch aggregate to use as a drainable base as thin as 6 inches under new concrete pavements

- To protect the subgrade soils from rain water stability issues, chemical stabilization of subgrade is critical before placement
Other RCA Options

- RCA may be used as a pre-saturated coarse aggregate in concrete for new PCC pavements
 - Not yet used because of base stone demands
 - With pavement design controlling criteria revisions more applications to new pavement concrete may be coming

- Specifications are being developed to allow for dense graded 1.5” RCA to be used for compacted cement treated bases and for unbound subbase aggregates under cement treated bases where underdrains will not exist
Weighted Cost Savings Replacing Virgin Subbase Aggregate with Rubblization

- Extra quantities without rubblization (27.9 miles of four lane I-88 rebuilt with full depth asphalt in 2005)
 - Excavation (14” PCC removal + undercuts) – 584,841 cu. yds.
 - 12” Subgrade Aggregate + undercut backfill – 818,400 cu. yds.
 - 2” of HMA added w/ weaker nonrubblized base – 45,830 tons

- Cost to reconstruct with virgin aggregate base
 - Excavation / disposal – 584,841 cy x $12.00/cy = $7,018,092
 - Virgin agg. & backfill - 551,056 cy x $20.00/cy = $11,021,120
 - Extra asphalt – 45,830 tons x $50.00 / ton = $2,291,500

Total cost = $20,330,712
Weighted Cost Savings Replacing Virgin Subbase Aggregate with Rubblization

- **Quantities to reconstruct 27.9 miles of I-88 with PCC rubblized bases**
 - PCC Mainline area = 808,850 sq. yds.
 - PCC Shoulder area = 517,664 sq. yds.
 - Mainline rubblization bid price = $1.816/sq yd (weighted ave)
 - Shoulder rubblization bid price = $0.682/sq yd (weighted ave)

- ** Costs to reconstruct with rubblized bases**
 - Mainline rubblization = $1.816 x 808,850 = $1,468,872
 - Shoulder rubblization = $0.682 x 517,664 = $353,047
 - Total $1,821,919

Presented by Steve Gillen on August 30, 2016
Weighted Cost Savings Replacing Virgin Subbase Aggregate with Rubblization

- Total savings based on 2005 dollar value
 - $20,330,712 for total reconstruction
 - $-1,821,918 for rubblization
 - $18,508,794 for total savings

- Total savings normalized to 2015 dollar value using ENR construction cost indices between 2005 and 2015 that indicate a ratio of 1.32
 - $18,508,794 x 1.32 = $24,431,608 total savings based on 2015 dollar value
Cost Savings to Recycle PCC Pavement as Base Aggregates vs Using Virgin Stone Since 2008

- Material cost savings of on-site RCA processing rather than virgin stone purchase = $6 per ton (2016 dollar)
 - Total 3,712,300 tons of PCC pavement material has been recycled as base stone
 - 3,712,300 tons x $6 / ton (2016 dollar) = $22,273,800 savings

- Elimination of disposal costs of excavated PCC = $6 per ton savings
 - 3,712,300 tons of PCC x $3 / ton (2016 dollar) = $11,136,900 savings

- Elimination of haul costs of virgin aggregate from pit to site = $7.50 per ton
 - 3,712,300 tons x $7.50 / ton (2016 dollar) = $27,842,250 savings
Total Capital Program Cost Savings by Using RCA based on the 2016 Dollar Value

- Rubblization Savings = $24,431,608

- Total RCA Savings
 - Material savings = $22,273,800
 - Disposal savings = $11,136,900
 - Haul cost savings = $27,842,250
 - Total $61,252,950

- Total savings from recycling PCC pavements with reconstructed roadways since 2005 = $85,684,558
Case Studies of RCA in Minnesota Pavement Foundations
Overview

• MnDOT has used RCA in pavement base since the 1980s

• Concerns:
 – Precipitate and other fines - do they impair drainage systems?
 – Recementing of RCA to form CTB
 – Reduced stability of open-graded RCA
 – Environmental impact of runoff

• Performed field evaluations at several sites in 1980s and 1990s
I-90 Near Austin, MN

- 1985 - Reconstructed using RCA base.
- 1987 - Some drain pipes 1/4 filled.
- 1989, 1993 - Permittivity testing.
 - 50% loss after 4 years
 - 60-75% loss after 8 years
 - Greater losses on top, side of pipe.
- Mainly carbonate-based material present.
Test Beds near Lakeville, MN

• Constructed in 1989.
 • #1 - RCA fines, unwrapped pipe, fine backfill
 • #2 - RCA fines, wrapped pipe, fine backfill
 • #7 - RCA fines, unwrapped pipe, permeable backfill

• Testing terminated in 1992.
 – Some losses of permittivity, little precipitate
 • Greater on top (~40%) than bottom (5-27%)
 • Mainly carbonate materials, but 30-40% other.
Test Beds near Lakeville, MN
-Conclusions-

• Drainage did not deteriorate
• Better flow using unwrapped pipe
• pH rarely exceeded that of “hard” tap water, generally decreased over time
• Some deposits in pipes, no apparent loss of drainage function
• Some cementing of fine backfill aggregate
TH 15 near Hutchinson, MN

• Constructed in 1991 after Lakeville.
 · #1 - RCA fines, unwrapped pipe NB, wrapped pipe SB, fine backfill
 · #2 - RCA coarse and fines, unwrapped pipe NB, wrapped pipe SB, fine backfill
 · #8 - open-graded RCA base, unwrapped pipe, permeable backfill

• Tipping bucket data collected for several years after construction.
Conclusions

- Less outflow from wrapped pipes.
- Less outflow from 100% RCA section.
- RCA blend outflow comparable to control.
- Open-graded outflow greater than blend.
- Use open-graded RCA, unwrapped pipes, permeable backfill???
Test Piles near Shakopee, MN

- Constructed summer 1993
 - Open-graded, coarse RCA
 - RCA fines
 - Dense-graded, recycled asphalt concrete
- RCA runoff pH decreased over time
 - Coarse: 10.5 to 9.7 over three months
 - Fine: ~11+ to 9.5 over three months
- RCA fines strongly recemented
Key Conclusions

• Unwrapped pipes in permeable backfill exhibit better flow characteristics than other drainage systems.

• High-permittivity filter fabrics appear to provide acceptable long-term performance in presence of precipitate and ISR.

• Accumulations of precipitate and ISR do not appear to significantly reduce flow capacity of most pipe drains.

• Recementing of fines probably does occur.

• Effluent from RCA foundation layers is probably highly alkaline at first, but decrease with time.
Structural Considerations for RCA in Unbound Foundation Layers

• RCA has been widely and successfully used in unbound subbase and fill applications.

• Literature: contains no reports of pavement performance related to structural deficiencies when properly designed and constructed.

• Some agencies believe RCA outperforms natural aggregate in these applications.
 – Angular, rough-textured particles
 – Secondary cementing

 BUT
Structural Considerations for RCA in Unbound Foundation Layers

• Anecdotal reports of possible frost and/or moisture heave in some dense-graded RCA base materials in MN and MI.
 – Problem disappears with less dense gradations (k>300 ft/day)

• Sulfate attack of RCA in high-sulfate soil at Holloman AFB, NM
Use of RCA in Stabilized Base: Michigan DOT

• Special Provision for Cement-treated Perm Base Using Crushed Concrete

• Done, in part, to reduce precipitate from open-graded RCA drainage courses

• Mix Design:
 – 250 lbs cement, 100 – 120 lbs water
 – 1.5-in top size aggregate, 0 – 8% passing #8, <5% passing #200
 – $F’c$ (7-day) = 200 – 700 psi

• Good performance reported for all sections

Source: Van Dam et al, 2011
Use of RCA in Stabilized Base: ATL Int’l Airport

- RCA s allowed at contractor’s option for fill and base material
- Map shows locations using cement-treated RCA subbase

Source: Saeed and Hammons, 2006
FHWA-Sponsored Research

Physical and Mechanical Properties of Recycled PCC Aggregate Concrete 1993 - 1999

PERFORMANCE OF CONCRETE PAVEMENTS CONTAINING RECYCLED CONCRETE AGGREGATE

Task B Draft Interim Report

Prepared For:
Federal Highway Administration

Prepared Under:
FHWA Contract DTFH61-93-C-00133,
Physical and Mechanical Properties of Recycled PCC Aggregate Concrete

Prepared By:
University of Minnesota
ERES Consultants, Inc.

December 1995
1994 Field Study Sections

| Category | Location | Climatic Region | 1994 Age, Yrs | Control Section | 2 Way ADT, veh/day | Pavement Type (% long. reinf.) | Joint Spacing, ft | Dowel Diam., in |
|-------------------|---------------------------------|-----------------|---------------|-----------------|-------------------|--------------------------------|------------------|----------------|-----------------|
| **1 (Good)** | CT 1, I-84 near Hartford | W-F | 14 | yes | 56,000 | 9-in JRCP (0.10 %) | 40 | 1.5 (I-beam) |
| | MN 1, I-94 near Brandon | W-F Transition | 6 | yes | 8,170 | 11-in JRCP (0.06 %) | 27 | 1.25 |
| | KS 1, K-7 Johnson County | W-F | 9 | yes | 7,310 | 9-in JPCP (n/a) | 15 | None |
| **2 (Structural Problems)** | MN 4, US52 near Zumbrota | W-F | 10 | yes | 7,820 | 9-in JRCP (0.06 %) | 27 | 1.0 |
| | MN 2, I-90 Beaver Creek | W-F Transition | 10 | no | 1,670 | 9-in JRCP (0.06 %) | 27 | 1.0 |
| | WI 1, I-94 near Menomonie | W-F | 10 | no | 8,170 | 11-in JPCP (n/a) | 12-13-19-18 | None / 1.375 |
| **3 (Other Distresses)** | MN 3, US59 near Worthington | W-F Transition | 14 | no | 2,150 | 8-in JPCP (n/a) | 13-16-14-19 | None |
| | WI 2, I-90 near Beloit | W-F | 8 | no | 22,622 | 10-in CRCP (0.67 %) | n/a | n/a |
| | WY 1, I-80 near Pine Bluffs | D-F | 9 / 10 | yes | 4,410 (RCA) | 10-in JPCP (n/a) | 14-16-13-12 | None |
1994 Field Evaluation

- Condition Survey
- Drainage Survey
- FWD
- Coring
 - Midpanel
 - Joints
 - Cracks
- Crack, Joint Width
- Faulting
- PSR
- Photolog

1994 Lab Testing

- Compression
- Split Tension
- Static E
- Dynamic E
- α
- Surface Texture
 - Sand Patch
 - Profilometer
- Freeze-Thaw
- Linear Traverse
- Petrography
FHWA-Sponsored Research

Performance of Concrete Pavements Containing Recycled Concrete Aggregate (2006)
2006 Added Field Study Sections

<table>
<thead>
<tr>
<th>Category</th>
<th>Location</th>
<th>Climatic Region</th>
<th>2006 Age, Yrs</th>
<th>Control Section</th>
<th>2 Way ADT, veh/day</th>
<th>Pavement Type (% long. reinf.)</th>
<th>Joint Spacing, ft</th>
<th>Dowel Diam., in</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 (Other Distresses)</td>
<td>IA 1, US 75 near Rock Rapids</td>
<td>W-F</td>
<td>30</td>
<td>no</td>
<td>2,150</td>
<td>9-in JPCP (n/a)</td>
<td>13-16-14-19</td>
<td>None</td>
</tr>
<tr>
<td></td>
<td>IL 1, I-57 near Effingham</td>
<td>W-F</td>
<td>20</td>
<td>no</td>
<td>4,410 (RCA) 4,280 (Con.)</td>
<td>10-in CRCP (n/a)</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
2006 Field Evaluation

- Condition Survey
- Drainage Survey
- Coring
 - Midpanel
 - Joints
 - Cracks
- Crack, Joint Width
- Faulting
- PSR
- Photolog
- [No FWD]

2006 Lab Testing

- Compression
- Split Tension
- Static E
- Modified ASTM C 1293 (ASR)
- ASTM C 856 (Uranyl Acetate)
- Volumetric Surface Texture
- Petrography
Performance Case Study: U.S. 52 – Zumbrota, MN (27-ft JRCP) after 22 years of service

<table>
<thead>
<tr>
<th>Test and Value</th>
<th>MN 4-1 (Recycled)</th>
<th>MN 4-2 (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transverse Joint Spalling, % Joints</td>
<td>81</td>
<td>100</td>
</tr>
<tr>
<td>Avg. Faulting between Panels, in</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>Avg. Joint Width, in</td>
<td>0.47</td>
<td>0.43</td>
</tr>
<tr>
<td>Longitudinal Cracking, ft/mile</td>
<td>90</td>
<td>0</td>
</tr>
<tr>
<td>Transverse Cracking, % Slabs</td>
<td>92</td>
<td>24</td>
</tr>
<tr>
<td>Deteriorated Transverse, cracks/mile</td>
<td>201</td>
<td>42</td>
</tr>
<tr>
<td>Total Transverse Cracks/mile</td>
<td>211</td>
<td>47</td>
</tr>
<tr>
<td>PSR</td>
<td>3.0</td>
<td>3.8</td>
</tr>
<tr>
<td>IRI, in/mile</td>
<td>102</td>
<td>60</td>
</tr>
<tr>
<td>Tensile Strength, psi</td>
<td>350</td>
<td>360</td>
</tr>
<tr>
<td>Compressive Strength, psi</td>
<td>6500</td>
<td>7400</td>
</tr>
<tr>
<td>Young’s Modulus, psi</td>
<td>4.4E6</td>
<td>6.3E6</td>
</tr>
<tr>
<td>Aggregate Top Size, inches</td>
<td>1.0</td>
<td>1.5</td>
</tr>
<tr>
<td>Average VSTR, cm³/cm²</td>
<td>0.2902</td>
<td>0.3264</td>
</tr>
<tr>
<td>Total Mortar Content (New + Recycled), %</td>
<td>74</td>
<td>52</td>
</tr>
<tr>
<td>Coefficient of Thermal Expansion, F degrees⁻¹</td>
<td>6.9</td>
<td>6.6</td>
</tr>
</tbody>
</table>
Effects of RCA, Panel Length on Cracking
(Section, L/l, % Cracked Panels)
(from FHWA, 1997)

• Granular Base Sections
 – CT1-1, 16.6, 66%
 – CT1-2, 15.2, 93%
 – MN1-1, 7.3, 1%
 – MN1-2, 7.3, 0%
 – MN2-1, 8.2, 84%
 – MN4-1, 7.8, 88%
 – MN4-2, 8.2, 22%
 – WI1-1, 4.4, 8%
 – WI1-2, 4.6, 2%
 – WY1-1, 4.3, 0%
 – WY1-2, 4.3, 0%

• Stabilized Base Sections
 – KS1-1, 5.5, 0%
 – KS1-2, 5.5, 0%
 – MN3-1, 5.0, 2%

Long panels (L/l > 6) with RCA generally experienced more cracking than when natural aggregate was used.
There was no apparent effect on shorter panels.
Effects of RCA and Mix Design on Strength and Thermal Properties
(after FHWA, 1997)

<table>
<thead>
<tr>
<th>Project</th>
<th>CT</th>
<th>KS</th>
<th>MN1</th>
<th>WY</th>
<th>MN4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section</td>
<td>RCA</td>
<td>Natural</td>
<td>RCA</td>
<td>Natural</td>
<td>RCA</td>
</tr>
<tr>
<td>w/cm</td>
<td>0.40</td>
<td>0.45</td>
<td>0.41</td>
<td>0.41</td>
<td>0.47</td>
</tr>
<tr>
<td>% Fine RCA:</td>
<td>0</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>f’c (psi)</td>
<td>5690</td>
<td>5130</td>
<td>7210</td>
<td>6340</td>
<td>6860</td>
</tr>
<tr>
<td>E (10^6 psi)</td>
<td>4.60</td>
<td>4.76</td>
<td>5.12</td>
<td>5.20</td>
<td>5.25</td>
</tr>
<tr>
<td>α (10^-6/°F)</td>
<td>6.4</td>
<td>5.9</td>
<td>5.8</td>
<td>5.2</td>
<td>6.2</td>
</tr>
</tbody>
</table>

Reducing w/cm and/or adding some RCA fines often resulted in RCA concrete mixtures with improved properties!
2006 Study Conclusions

- Need to treat RCA as “engineered material” and modify mix and structural designs accordingly
 - Reduce w/c
 - ASR mitigation
 - Reduced panel lengths
 - Other modifications as needed.

- Mortar contents are generally higher for RCA
 - Varied with aggregate type, crushing process
 - Higher mortar contents often had more distress – may need to control reclaimed mortar content
Case Study: Recycling D-Cracked Concrete into US TH 59 in Minnesota

For additional information, see presentation by Matt Zeller, Concrete Paving Association of MN
For Workshop 3: Recycled Concrete Aggregate
11th International Conference on Concrete Pavements (ICCP)
San Antonio, Texas, USA
2016
Original Construction

• Mix Design???
• Coarse aggregate sources:
 – Hallett Edgerton
 – Hallett Luverne
• Both D-cracking gravel aggregates with >50% limestone
• Current MnDOT spec limit is <30%
1980 Reconstruction

- ~3000 vpd, ~8 percent heavy commercial
- 8-in thickness, 24-ft width, 16 centerline miles
- 15.5’ effective skewed, undoweled transverse joints
- 1955 base left in place, capped with 1”+ RCA fines
- Longitudinal edge drains added
1980 Reconstruction – Procedures

- Remove asphalt overlay and joint seal material
- Break pavement with a diesel hammer
 - ~2-ft fragment size
- Primary crusher: jaw-type 36 in. x 48 in.
- Secondary crusher: 54-in. cone-type
- Products:
 - Coarse: 95 - 100% passing ¾-in, 0 - 5% passing #4
 - Fine fraction used as stabilizer/cap for granular base
1980 Reconstruction

• Mix Design – 3A20R
 – 465 lb cement
 – 109 lb fly ash
 – 255 lb water
 – 1198 lb sand
 – 1653 lb RCA (4.5% absorption)
 – 5.5% air
 – 14-day flex strength ~700 psi
• w/c = 0.44 (theoretical)
• First major recycle of D-cracked PCC into new PCC!
• RCA aggregate properties
 – 3/4” top size (for freeze-thaw durability)
 – Passing #4 sieve was used for base and shoulder
 – Not washed
MN 3 (US 59 Worthington-Fulda) Polished Section
Estimated Cost Savings

MnDOT estimated savings due to use of recycled concrete aggregate of $600,000 – 700,000 (~27% of total project costs) and 150,000 gallons of fuel.
1994 Evaluation

- No recurrent D-cracking observed after 24 years of service
- Primary performance-related problems due to excessive panel length, lack of dowels, lack of drainage
 - Longer skewed panels developed mid-panel cracks
 - Average faulting ~1/4 inch (maximum faulting >1/2 inch)
- Freeze-thaw testing of drilled cores (ASTM C666): DF<60
2004 Rehabilitation (CPR)

- Pavement ride quality becoming intolerable (faulting of joints and cracks)
- Concrete samples still failing freeze-thaw test
- Still no recurrent D-cracking
 - Apparently no critical saturation in the field
- MnDOT decided to proceed with CPR due to lack of deterioration
2004 CPR

• Retrofit 1.25” dowel bars at existing transverse joints as well as mid-panel cracks
• 3 bars only in the outside wheel paths (9’, 10’ & 11’ from centerline)
• Diamond grind 100% of mainline pavement
• CPR as necessary
• Reseal transverse joints only (silicone)
• Good performance after 35 years of service
• Indicates D-cracked pavement can be used to produce RCA for new PCC pavement with appropriate precautions
 • Prevent critical saturation (drainage)
 • Limit aggregate top size
Case Study: Recycling ASR-Distressed Concrete into New Concrete on I-80 (Southeast Wyoming)

For additional information, see presentation by Bob Rothwell, Wyoming DOT 2017 Annual Concrete Pavement Workshop ACPA CO/WY Chapter Denver, Colorado
• 40 miles of PCCP constructed 1965 to 1978
• Early distress due to ASR
Original Construction (mileposts and dates)

- Cheyenne Marginal (EBL)
- Cheyenne Marginal (WBL)
- Archer East (West Half)
- Archer East (East Half)
- Burns Interchange
- Pine Bluffs West
- Pine Bluffs Marginal

MILE POST

360 370 380 390 400
Alkali Silica Reactivity - MP 392 WB

1975

1978
1985 Rehabilitation Options

1) Reconstruction with PCCP
 • Expensive
 • Lack of suitable local concrete aggregates

2) Reconstruction with Plant Mix
 • Rutting Problems of early 1980’s

3) Crack-and-Seat with Plant-Mix Overlay
 • Rutting Problems of early 1980’s
 • Expense in raising the grade and modifying structures

4) Reconstruction with Recycled PCCP
 • Risk of continuation of ASR
Reconstruction/Rehabilitation of Original Construction

• 2 miles reconstructed with conventional PCCP (1985)
• 28 miles reconstructed with RCA Concrete (1987 to 1990)
• 10 miles cracked-and-seated, overlaid with 4-inch plant mix, ¾-inch wearing course (1997 to 2000)
Reconstruction Dates

- Cheyenne Marginal (EBL)
- Archer East (West Half)
- Archer East (East Half)
- Burns Interchange
- Pine Bluffs West
- Pine Bluffs Marginal

MILE POST

- 360
- 370
- 380
- 390
- 400

Dates:
- 1978
- 1997
- 2000
- 1966
- 1988
- 1990
- 1966
- 1987
- 1965
- 1987
- 1968
- 1985
ASR Reconstruction Example: I-80, Pine Bluffs, Wyoming

- 1985 Reconstruction:
 - 65 percent coarse RCA, 22% fine RCA
 - Low-alkali (<0.5%) cement, 30% Class F flyash, w/c = 0.44
 - 4400 ADT in 1985 (30 - 40% heavy)

- 2004 Rehabilitation:
 - DBR, grind, joint reseal
 - 2006 ADT: 8000 vpd (30-40% heavy)
RCA-Virgin Blend PCC Mix Design

Coarse Aggregate:
1080 lbs Recycled
600 lbs Virgin Limestone

Fine Aggregate:
280 lbs Recycled
800 lbs Virgin

Low-Alkali Cement: 488 lbs

Class F Fly Ash: 133 lbs

w/cm: 0.38
“It has been brought to my attention that the above referenced area [MP 382 to 393] on I-80 may be developing the reactive aggregate cracking that we experienced before the reconstruction.”
Various Studies Followed ...

- Dave Stark (CTL, 1991): cores showed “no evidence of new gel reaction product formation or microcracking.”
- U-Mn/ERES (1995): small localized areas of recurrent ASR observed
- David Vollmer (CTL, 1997): “…cores submitted do not exhibit deleterious [ASR] … small amount of gel observed appears to be associated with the recycled concrete as aggregate … cracks are not typical of cracks induced by expansion from ASR and no crack is observed containing ASR gel.”
- David Campbell (Campbell Petrographic Services, 1997): “An [ASR] reaction appears to be continuing in the recycled concrete and beginning in the host concrete, but neither of these relatively recent developments is beyond the earliest stages.”
So What Is The Crack Mechanism?

- ASR
- Shrinkage
- Vibrator-Related
- All of the above?
- Other?
2004 REHABILITATION

- Slab Replacement
- Dowel Bar Retrofit
- Diamond Grinding
DOWEL BAR RETROFIT

• Mixed success related to the integrity of the existing concrete
 • MP 392 to 400: Successful
 • MP 382 to 392: No DBR
 • MP 372 to 382: Many areas exhibiting concrete failures adjacent to dowels
 • No DBR in WB lanes from MP 375 to 377
Successful DBR (MP 393 to 400)

MP 393.37 EBL
Failing DBRs (MP 372 to 382)
Failing/Failed DBRs (MP 372 to 382)

MP 372.4 EB

MP 378 EB
MP 375.3 to 377.3 WB No Dowels

MP 377 WBL
Reconstruction Pavement Life

The chart shows the life expectancy of pavement sections over years. The bars are color-coded to indicate original and current conditions. Each section (labeled 1 to 7) shows a comparison between the life expectancy of the original and current conditions.
Planned Future Rehab

CPR:

Recycled Sections
MP 382 to 393 2021
MP 393 to 400 2022

Plant-Mix Overlays:

Virgin Reconstruction Sections
MP 400 to 402 2015, 2016

Crack and Seat and Overlay Sections
MP 362 to 372 2017, 2019

Recycled Sections
MP 372 to 382 2020
Conclusions

- Recycling of ASR-distressed pavement was successful
 - Continued progression of ASR distress, but at a slow rate
 - 30-year design life achieved
- RCA pavement life being extended with CPR and plant-mix overlays
- DBR pros and cons
 - Reduced faulting, improved ride
 - Increased susceptibility to distress
Case Study: 100% RCA in CRCP
Reconstruction on Texas I-10

- Houston, TX between I-45 & Loop 610W
- 1995-98 Reconstruction – 5.8 CL miles
- Original CRCP built in 1968
- 10 Lanes + HOV

No Virgin Aggregates Used for New Concrete:

100% RCA (Coarse & Fine)

8” CRCP
6” CSB

Original

Reconstruct and Unbonded Overlay

14” CRCP
3” ASB
6” LTS

11” CRCP
1” BB

2007 Photo
RCA Properties

• Specific Gravity: 2.4 ~ 2.5 for CA & FA
• Water Absorption: CA - 3~5 % FA - 6~9 %
• Reclaimed Mortar Content
• Sulfate Soundness Loss
• LA Abrasion Loss
• Angularity
Concrete Properties

• Strength
• Modulus of Elasticity
• Drying Shrinkage
• Thermal Coefficient
• Abrasion Resistance
Compressive Strength of Various Concrete Mixtures
Effect of Recycled Sand on Tensile Strength

Tensile Strength (psi)

Recycled Sand (%)
Modulus of Elasticity of Various Aggregate Mixes

Age (days)

Modulus of Elasticity (GPa)

VC/VF
VC/RF
RC/VF
RC/RF
Drying Shrinkage (x 10^-4) vs. Drying Time (weeks)

- Virgin
- RC/VF
- RCA (C&F)
Concrete Properties

Coefficient of Thermal Expansion (COTE):

RCA: 15.8 μ/°C
Virgin: 10.6 μ/°C
Abrasion resistance of various aggregate mixes

- VC/VF
- VC/RF
- RC/VF
- RC/RF

Depth of Wear (mm) vs. Loss in Mass (%)

- Depth of Wear
- Loss in Mass

0.05
0.10
0.15
0.20
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0

Tech Center
Findings & Conclusions-cont’d

• Concrete Properties

• Recycled fine aggregate has an adverse effect on strength.
• The use of both recycled coarse and fine aggregates reduces modulus of elasticity of concrete substantially.
• Thermal coefficient of concrete with 100% RCA is higher than that of virgin aggregate concrete.
• The effect of recycled aggregate on the abrasion resistance of concrete is inconclusive.
Findings & Conclusions-cont’d

• **Paving Operations/Pavement Performance**

 • CRCP utilizing 100% recycled coarse & fine aggregates has performed well.
 – Possible exception: skid performance, which needs to be monitored.

 • The large amount of old mortar in RCA does not appear to have adverse effect on CRCP performance.

 • **Moisture control of recycled aggregate is critical in producing consistent and workable concrete.**

 • No significant adjustment is necessary in paving operations due to the use of 100% RCA.
Spec Changes

• **1993**: Coarse aggregate shall be washed and shall consist of durable particles of gravel, crushed blast furnace slag, crushed stone, or combinations thereof.

• **2004**: Provide coarse aggregate consisting of durable particles of gravel, crushed blast furnace slag, recycled crushed hydraulic cement concrete, crushed stone, or combinations thereof.
Resources: ACPA EB043P

- Production of RCA
- Properties and Characteristics of RCA
- Uses of RCA
- Properties of Concrete Containing RCA
- Performance of Concrete Pavements Constructed Using RCA
- Recommendations for Using RCA
- Appendices:
 - Guidelines for Removing and Crushing Existing Concrete Pavement
 - Guidelines for Using RCA in Unstabilized (Granular) Subbases
 - Guidelines for Using RCA in Concrete Paving Mixtures
 - Relevant AASHTO/ASTM Standards
 - Glossary of Terms and Index
Acknowledgments

- American Concrete Pavement Association
- Federal Highway Administration
- Steve Gillen, Illinois State Toll Highway Authority
- Jeff Roesler, University of Illinois at Urbana-Champaign
- Bob Rothwell and the Wyoming Department of Transportation
- Jeff Sturtevant, Prof. David Gress and the University of New Hampshire Recycled Materials Resource Center (RMRC)
- Moon Won, Texas DOT and University of Texas
- Matt Zeller and the Concrete Paving Association of Minnesota
- Greg Cuttell, Julie Vandenbossche and many other former U-Mn Grad and Undergrad Research Assistants
Thank You!

Questions/Discussion?
Upcoming Webinars

Developed in cooperation with and sponsorship by FHWA.

Case Studies in Concrete Pavement Recycling
Offered again: July 12: 10:00 a.m. Central