A Presentation to Blow You Away: Wind Turbine Foundations

Kirk B. Morgan, P.E., P.Eng.
Senior Civil Engineer
Barr Engineering Co.
Overview

Foundation Types
Materials
Market Regulation
Design Requirements
Design Brief
Future Developments
Foundation Types
BASE case

Photo credits: Jenny Hager, Kirk Morgan
Spread Footing

- 50-70 ft across x 8-12 ft deep
- Cast-in-Place
- Robust
Rock Anchors and Cap

- Smaller excavation (30ft dia)
- Anchors
 - installation testing
 - fatigue design
 - corrosion protection
 - long-term monitoring
Piles and Cap

- Costly
- Cap dead weight
- Soil / structure interaction
- Stiffness offset issues
- Pile steel fatigue design
Short Pier*

- 16-18+ ft diameter x 25-35 ft depth
- Stiffness offset issues
- Construction challenges
- Economical

* Not the same as a rock socket foundation
Materials (US)

spread foundations
materials –

cement

- 300 to 500 yds and more
- 4500 to 6000 psi (typically 5000 psi)
- \(\frac{3}{4}\)" to 1 \(\frac{1}{2}\)" coarse aggregate
- Entrained air per code
- Fly Ash or GGBFS (less common)
- ASR avoided (or sealers used)
- site geotechnical can influence cement type
• standard cylinders
• hot / cold weather concrete
• mass concrete measures
• workability not a concern with good practice
• attention to curing in extreme conditions
- ASTM A615 60 and 75 ksi
- deformed bars
- #4 to #11 size
 - #14 increasingly used; still not that common
materials – anchor bolts

- ASTM A615 ($f_y = 75$ ksi)
- Custom (e.g. $f_y = 90$ ksi)
- ASTM A722 ($f_y = 120$ ksi)
- cold-formed threads

- common sizes 1 1/4” and 1 3/8”
- sleeves (PVC, heat shrink)

- post-tensioned (80 to 100 kips)
• Materials:
 - Alignment ring & embedment plate
 - ASTM (A36, A529, A572, etc.)
 - 1 to 2 inches thick
 - Dimensions matching tower flange typically
tower flange grout

- modified cementitious or epoxy
- 8000 – 15000 psi
- formed above or recessed
- 1 ½ to 3 in thick
- volume extended
Market Regulation
Standards Bodies / Codes

- International Code Council (ICC)
 - American Concrete Institute (ACI)
 - Committee 378 Concrete Towers
 - American Institute of Steel Construction (AISC)

- American National Standards Institute (ANSI)
 - American Wind Energy Association (AWEA)
 - Wind Standards Committee and Subcommittees

- International Electrotechnical Commission (IEC)
 - Technical Committee No. 88

- EN Eurocodes
- CEB-FIP
Independent Engineers

- Finance
- Equity
- Transactions
Certification Bodies

- Projects
- Turbines
- Components
 - Blades
 - Towers
 - Foundations
 - Misc
Foundation Design Requirements
Performance Criteria

- Stability
- Strength
- Rotational Stiffness
- Settlement
- Durability
- Economy

Photo credits:
Foundation Design Requirements

ASCE/AWEA RP2011, Recommended Practice for Compliance of Large Land-Based Wind Turbine Support Structures

- “IEC 61400-1 Ed.3: Wind turbines – Part 1: Design requirements”
- FUTURE – “IEC 61400-6: Wind turbines – Part 6: Tower and foundation design requirements”
- CEB-FIP Model Code 1990
- DNV, “Offshore Standard C502 Offshore Concrete Structures”
- GL, “Guideline for the Certification of Wind Turbines”

US industry document (used outside US too)

US and International codes and standards
IEC Load Cases

- Operational
- Start-up, shut-down, e-stop
- Machine faults
- Grid interaction
- Extreme wind events
- Combinations of the above
Perspective

- Building or bridge code cycles ($\# \times 10^6$)
- Wind turbine cycles ($\# \times 10^9$ and below)

1. Detail category $\Delta \sigma_C$
2. Constant amplitude fatigue limit $\Delta \sigma_D$
3. Cut-off limit $\Delta \sigma_L$

wind turbine foundation design steps
spread footing

1. Input tower bottom flange dimensions, design loads, stiffness requirements, and soil properties
 - Select preliminary concrete, grout and steel strengths, anchor bolt size and grade, embed plate thickness and grade

2. Select preliminary foundation width, thickness, and embedment
 - Select top and bottom rebar size, spacing and cutoffs

3. Check overturning stability, soil contact percentage, soil bearing pressure, and foundation stiffness
 - Check concrete shear strength
 - Check anchor bolt, grout, embed plate and foundation connection

Check top and bottom bending strength and two way shear
- Check concrete and steel fatigue strength

Fail
- Go back to 1, 2 and/or 3

Pass
- Complete or go back to 1, 2 and/or 3 to optimize

Pass
- Input codes, industry standards, technical references
Rigid plate analysis

Figure 8-1. Loading under idealised conditions.
Effective bearing area

capacity of the foundation is the effective area representation to be chosen.

For a circular foundation area with radius R, an elliptical effective foundation area A_{eff} can be defined as:

$$A_{eff} = 2 \left[R^2 \arccos\left(\frac{e}{R}\right) - e\sqrt{R^2 - e^2} \right]$$

with major axes

$$b_e = 2(R - e)$$

and

$$l_e = 2R \sqrt{1 - \left(1 - \frac{b}{2R}\right)^2}$$

Scenario 1 corresponds to load eccentricity with respect to one of the two symmetry axes of the foundation. By this scenario, the following effective dimensions are used:

$$b_{eff} = b - 2 \cdot e, \quad l_{eff} = b$$

Scenario 2 corresponds to load eccentricity with respect to the other symmetry axis.
Finite Element Analysis
Barr Iowa Wind Foundation Projects

- Barton I and II
- Carroll
- Century I, II and III
- Charles City
- Crane Creek
- Eclipse
- Endeavor II
- Flying Cloud
- Hawkeye
- Highland
- Ida Grove
- Intrepid
- Laurel
- Lundgren
- Macksberg
- Morninglight
- New Harvest
- Pomeroy I, III and IV
- Rippey
- Rolling Hills
- Tjaden
- Top of Iowa I and III
- Valmont
- Victory
- Vienna I and II
- Walnut
- Wellsberg
Anchored precast beams (RUTE Foundation Systems)
Precast box spread (RUTE Foundation Systems)
Formless integrated tower and foundation (RCAM)
Tower of precast column and panels (Hexcrete, ISU)
Questions?
unexpected conditions –
cattle

• cattle on plastic / curing concrete
• evaluate for restoration via composite action with prepared overlay
• hydro-demolition, preparation and overlay
Are wind turbines designed for tornados?

- Extreme winds in range of 50 m/s
- Gust factoring / load factoring equivalent speed in range of 100 m/s (230 mph) which is less than some tornados.
- Intense shears and reversals across rotor not considered (blade fail / tower strike)

Image: www.bluechannel24.com
Thank you!

Kirk B. Morgan, P.E., P.Eng.
kmorgan@barr.com