Internal Curing Concrete

Dr Peter Taylor Payam Vosoughi

National Concrete Pavement Technology Center

With thanks to: John Ries, ESCSI Dale Bentz, NIST Jason Weiss, Oregon State

Institute for Transportation

Internal Curing

- Why?
- How?
- So What?

Internal Curing - Why

Curing is promoting hydration by
 Providing water
 Keeping it warm

Internal Curing - Why

- Without curing we will increase risk of
 - > Cracking
 - Scaling
 - A soft surface
 - ➤ Warping
- What about strength?

Internal Curing - Why

Internal Curing - Why External water

Internal Curing - Why Internal water

Internal Curing - How

Material should
Hold sufficient water
Hold the water until needed and not effect w/c
Give up water at high RH (desorption)
Not adversely effect the concrete quality

Castro 2011

Internal Curing - How

- Lightweight fine aggregate
- Super Absorbent Polymers

Simple IC Mixture Design

- Need 7 lbs of IC water per 100 lbs of cementitious
- 600 lbs cementitious = 42 lbs of IC water
- Assume 18% LWA absorption in the field
- Assume LWA at 55 lbs/cf
- 55 x .18 = 9.9 lb/cf water
- 90% desorption = 8.9 lb/cf water
- Need 42 lbs IC water / 8.9 = 4.7 cf of LWA
- 4.7 cf x 55 lb/cf = 259 lbs of LWA aggregate

Guide Specification

- In preparation
 - QC is critical
 - Minimum 15% absorption
 - Monitor moisture state of LWFA and adjust mixture
 - Monitor strength and formation factor

Guide Specification for Internally Curing Concrete

Draft August 2017

The LWFA should be wet

- Place under sprinkler for minimum of 48 hours
- Allow stockpiles to drain for 12 to 15 hours immediately prior to use
- Measure absorption before batching

Internal Curing - How

- Can we do without this?
- Nope
 - Still have to keep the surface hydrating
 - > That's where the abuse happens

 Benefits Better hydration & SCM reaction Improved durability Less cement Less shrinkage, warping, cracking Extended service life >Improved economics Increased sustainability

• More Hydration

Espinoza-Hajazin (2010)

90 days, cured @ 50% RH

Internal Curing

- Relative permittivity (RP) of fresh concrete
 - > RP of water is 20 times higher than other components
 - > Therefore higher RP means higher moisture content

Internal Curing

- Reduced capillary pressure
 - Reduced risk of plastic cracking

• Less Shrinkage (Sealed)

Henkensiefken (2009)

• Less Shrinkage = Less Cracking

Schlitter (2010)

Reduced Warping

Reduced Permeability

Internal Curing - How

- Looks too easy...
 - Need an extra stockpile
 - It has to be wet
 - Transport?

Service Life Prediction (MEPDG)

Cusson (2010)

Buchanan County

- Three span bridge at Pine Creek
 - One half conventional (both lanes)
 - Other half using Internal Curing Concrete
- About 20% (by mass) of fine aggregate replaced with light weight aggregate
- Other mix proportions unchanged

Construction

Looking West – IC placed first

Construction

Hardened Properties

A go (days)		Su	Field				
Age (days)			Гієїц				
	Field	samples	Lab samples				
	Control	20% IC	Control	20% IC	30% IC	Control	20% IC
3	7	6.6	6.4	7.3	8.7		
7	9.8	9.2	9.2	10.6	12.6		
28	22.6	22.8	20.9	38.3	51.1		
56	33.3	32.2	31.2	57	74.4		
86	41.1	45.6	42.6			50.3	52.7
365						70.7	73.9

Sidewalk Demonstration

Mechanical Properties

- No significant change in tensile strength
- Slight increase in compressive strength
- Significant decrease in stiffness

	Tensile strength (psi)		Compression	strength (psi)	MoE (ksi)	
	28-day	91-day	28-day	91-day	28-day	91-day
Control concrete	505	683	6824	8367	6981	7047
IC concrete	507	698	6925	8430	5461	5489

The Big Story

Reduced Warping

Closing

- Theoretically sound
- Some construction challenges
- Little change in structural performance
- Helps durability and cracking risk
- Recommended for
 - Bridge decks
 - Thin overlays

"Go do good things"

