Internal Curing Concrete

Dr Peter Taylor
Payam Vosoughi

With thanks to:
John Ries, ESCSI
Dale Bentz, NIST
Jason Weiss, Oregon State
Internal Curing

• Why?
• How?
• So What?
Internal Curing - Why

• Curing is promoting hydration by
 ➢ Providing water
 ➢ Keeping it warm
Internal Curing - Why

- Without curing we will increase risk of
 - Cracking
 - Scaling
 - A soft surface
 - Warping
- What about strength?
Internal Curing - Why

![Graph showing property change over time with continuous cure and curing stops.]

- **Continuous cure**
- **Curing stops**
Internal Curing - Why

External water
Internal Curing - Why

Internal water
Internal Curing - How

- Material should
 - Hold sufficient water
 - Hold the water until needed and not effect w/c
 - Give up water at high RH (desorption)
 - Not adversely effect the concrete quality
Internal Curing - How

- Lightweight fine aggregate
- Super Absorbent Polymers
Simple IC Mixture Design

- Need 7 lbs of IC water per 100 lbs of cementitious
- 600 lbs cementitious = 42 lbs of IC water
- Assume 18% LWA absorption in the field
- Assume LWA at 55 lbs/cf
- $55 \times 0.18 = 9.9$ lb/cf water
- 90% desorption = 8.9 lb/cf water
- Need 42 lbs IC water / 8.9 = 4.7 cf of LWA
- 4.7 cf x 55 lb/cf = 259 lbs of LWA aggregate
Guide Specification

• In preparation
• QC is critical
• Minimum 15% absorption
• Monitor moisture state of LWFA and adjust mixture
• Monitor strength and formation factor
The LWFA should be wet

- Place under sprinkler for minimum of 48 hours
- Allow stockpiles to drain for 12 to 15 hours immediately prior to use
- Measure absorption before batching
Internal Curing - How

• Can we do without this?
• Nope
 ➢ Still have to keep the surface hydrating
 ➢ That’s where the abuse happens
Internal Curing - So What

• Benefits
 ➢ Better hydration & SCM reaction
 ➢ Improved durability
 ➢ Less cement
 ➢ Less shrinkage, warping, cracking
 ➢ Extended service life
 ➢ Improved economics
 ➢ Increased sustainability
Internal Curing - So What

- More Hydration

Espinoza-Hajazin (2010) 90 days, cured @ 50% RH
Internal Curing

- Relative permittivity (RP) of fresh concrete
 - RP of water is 20 times higher than other components
 - Therefore higher RP means higher moisture content
Internal Curing

- Reduced capillary pressure
- Reduced risk of plastic cracking
Internal Curing – So What

• Less Shrinkage (Sealed)

Henkensiefken (2009)
Internal Curing – So What

• Less Shrinkage = Less Cracking

Schlitter (2010)
Internal Curing – So What

- Reduced Warping
Internal Curing – So What

- Reduced Permeability
Internal Curing - How

• Looks too easy…
 • Need an extra stockpile
 • It has to be wet
 • Transport?
Internal Curing – So What

- Service Life Prediction (MEPDG)
Internal Curing – So What

Cusson (2010)
Buchanan County

- Three span bridge at Pine Creek
 - One half conventional (both lanes)
 - Other half using Internal Curing Concrete

- About 20% (by mass) of fine aggregate replaced with light weight aggregate
- Other mix proportions unchanged
Looking West – IC placed first
Construction
Hardened Properties

<table>
<thead>
<tr>
<th>Age (days)</th>
<th>Laboratory</th>
<th>Field</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Field samples</td>
<td>Lab samples</td>
</tr>
<tr>
<td></td>
<td>Control 20% IC</td>
<td>Control 20% IC 30% IC</td>
</tr>
<tr>
<td>3</td>
<td>7 6.6</td>
<td>6.4 7.3 8.7</td>
</tr>
<tr>
<td>7</td>
<td>9.8 9.2</td>
<td>9.2 10.6 12.6</td>
</tr>
<tr>
<td>28</td>
<td>22.6 22.8</td>
<td>20.9 38.3 51.1</td>
</tr>
<tr>
<td>56</td>
<td>33.3 32.2</td>
<td>31.2 57 74.4</td>
</tr>
<tr>
<td>86</td>
<td>41.1 45.6</td>
<td>42.6</td>
</tr>
<tr>
<td>365</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Sidewalk Demonstration
Mechanical Properties

- No significant change in tensile strength
- Slight increase in compressive strength
- Significant decrease in stiffness

<table>
<thead>
<tr>
<th></th>
<th>Tensile strength (psi)</th>
<th>Compression strength (psi)</th>
<th>MoE (ksi)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>28-day</td>
<td>91-day</td>
<td>28-day</td>
</tr>
<tr>
<td>Control concrete</td>
<td>505</td>
<td>683</td>
<td>6824</td>
</tr>
<tr>
<td>IC concrete</td>
<td>507</td>
<td>698</td>
<td>6925</td>
</tr>
</tbody>
</table>
The Big Story

• Reduced Warping
• Theoretically sound
• Some construction challenges
• Little change in structural performance
• Helps durability and cracking risk
• Recommended for
 ➢ Bridge decks
 ➢ Thin overlays

“Go do good things”