ENHANCED DELIVERABLES AND THE DIGITAL JOBSITE
Background

• CP Tech Center/Snyder & Associates team
• EDC-2 3D Engineered Models
• EDC-4 e-Construction (Digital Construction Inspection)
What is a 3D Engineered Model

• 3D Engineered Model: A digital graphical representation of proposed facility/site data consisting of x, y, and z coordinates for producing objects in three-dimensions to communicate design intent useful for visualization, analysis, animation, simulation, plans, specifications, estimates production, and life-cycle asset management.
What is a 3D Engineered Model

• Surfaces – Existing/Proposed
• Utilities
• Structures
• Time
• Cost
Benefits of 3D Engineered Models

- Increased efficiency
- Early detection of issues
- Facilitates stakeholder buy-in
- Improves communication
- Models for presentation
Why should you care?

- Benefits to Owners/Designers
 - Increased Efficiency
 - More Accurate Quantity Takeoffs
 - Visualization Capabilities
 - Enhanced Quality Assurance in Design
 - Data Streamlining/Enhanced Deliverables
Increased Efficiency

• NO! Not less time designing – More Time
• More design iterations can be examined
• 2D Plans are the result of a 3D Model
Accurate Quantity Takeoffs

- Surface to Surface Comparisons
- Optimize Overlay Quantities
Visualization Capabilities

Photo courtesy of Snyder & Associates, Inc.
Enhanced Quality Assurance in Design

- 3D and Drivethrough views
- Clash Detection
- Clearance Measurements
Enhanced Quality Assurance in Design
Data Streamlining

- From Designer to Contractor
- Introduces Fewer Chances for Error
CAD Standards

- Level/Layer File names
- File Naming
- Alignments
- Templates
- Point Controls
• Universal Data Types are key!
 • Proprietary data types are only good when both parties are using the same software – typically not the case

• CADD files = DXF
 • 2D linework (i.e. Boundary/ROW)
 • 3D linework (i.e. Roadway section breaklines, terrain breaklines)
 • 3D modeled solids (i.e. Bridge abutments, piers, piles, girders, etc.)

• Alignments and Surfaces = XML
 • Horizontal Alignments and Profiles
 • Digital Terrain Models (DTMs), Triangulated Irregular Networks (TINs), etc.

• LiDAR Data = E57
 • Aerial LiDAR
 • Terrestrial LiDAR
 • Mobile LiDAR
Electronic File Needs

For Machine Control Grading
- Surface (Triangular Irregular Network)
- Linework File (Horizontal Only)
- File Types – XML’s or .DXF’s

For Machine Control Paving, Milling, Trimming
- 3D Polylines – XML’s or DXF’s
- Alignment – XML’s
- Transition Locations (Supers)
AMG Paving - Setup
Survey Needs

• Tie In shots verified
• Tight Horizontal and Vertical Control
• Control points every 500’ on each side of road staggered
Digital Construction Inspection

- Designer’s role should continue into construction
- Designer reviewing contractor’s model
- Who is creating the model of record?
- Handling Changes in Construction
- How much of a surveyor will our construction inspectors have to become?
1.15 ADDITIONAL CONTRACTOR RESPONSIBILITIES

If a form of automated machine guidance (AMG) is used for grading or paving operations, the following is required:

A. At least one week prior to the preconstruction meeting, submit to the Engineer for review a written AMG work plan which indicates the following:
 - Equipment type
 - Control software manufacturer and version
 - Proposed location of GPS base station for broadcasting differential correction data to rover units
 - Proposed locations where AMG will be utilized

B. Provide Engineer with up to 8 hours of formal training on Contractor’s AMG systems.

C. For grading contracts, provide a rover for use by the Engineer.

D. Check and recalibrate, if necessary, the AMG system at the beginning of each work day.

E. Contractor will bear all costs associated with use of the AMG system, including but not limited to reconstruction of work that may be incurred due to errors in application of the AMG system. Correction of grade elevation errors and any associated quantity adjustments resulting from the Contractor’s activities are to be done at no cost to the Contracting Authority.
How Much Survey in Construction?

• Field Calibration of Model and Survey Data Collection
• Selecting the Right Tool
• Hardware and Software Skills
• Greater Integration of Workflows with Design
GPS Rovers

• FHWA vision – Every Inspector has one of these
Uses

• Checking Grade (subgrade)
• Measuring Quantities (linear, area)
• Check Station/Offset Positioning
• Site Mapping
• Utility Locates/Conflict Documentation
• Utility Asbuilts
Other Tools

- Total Stations
- LiDAR
- HyDrone
- UAS
All tools are not created equal

<table>
<thead>
<tr>
<th>Method</th>
<th>Network Accuracy (RMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fixed Wing Aerial LiDAR/Photogrammetry</td>
<td>3” – 6”</td>
</tr>
<tr>
<td>Low Altitude Helicopter LiDAR/Photogrammetry</td>
<td>1” – 2”</td>
</tr>
<tr>
<td>Mobile LiDAR</td>
<td>½” – 1”</td>
</tr>
<tr>
<td>Tripod-Mounted Static LiDAR</td>
<td>¼” – ½”</td>
</tr>
<tr>
<td>Terrestrial Surveying: RTK GNSS/GPS (AMG too)</td>
<td>½” – 1”</td>
</tr>
<tr>
<td>Terrestrial Surveying: Total Station/Digital Level</td>
<td><¼” – ½”</td>
</tr>
</tbody>
</table>
Contact Information

Gabriel Nelson, P.E.
Civil Engineer

gnelson@snyder-associates.com