CHOOSING THE PROPER PCC MIX FOR DURABILITY

National Concrete Pavement Technology Center lowa's Lunch–Hour Workshop In cooperation with the Iowa DOT and the Iowa Concrete Paving Association

What Properties from Mix are Needed

Assuming we have quality aggregates and quality cementitious materials

- 1. Strength
- 2. Workability
- 3. Crack Resistance
- 4. Freeze Thaw Resistance
- 5. Deicing Chemical Resistance

Strength

- Standard mixes are adequate to obtain proper strength gain in a reasonable time.
- Exceptions may be special circumstances where early opening is required.
 - IDOT maintenance mixes provide for the early openings but have increased potential for dry shrinkage
 - Standard mixes with excess accelerator admixtures can result in cracking before finishing and/or saw cutting can be completed.

Adding Cement Goes so Far with Strength

Strength Gain Cementitious Material Properties

	Silica	Alumina	Calcium Oxide	Sulfate
Type I Cement	22%	5%	65%	1%
Class F	52%	23%	5%	0.80%
Class C	35%	18%	21%	4.10%
Slag	35%	12%	40%	9%

SCM's can can slow initial strength gain but improves long term strength

Silica – Ties up alkalies to help control ASR

<u>Alumina</u> – Set off right away and to control flash set use gypsum (sulfate)

<u>Calcium Oxide</u> – Provides faster set possibilities

<u>Sulfates</u> – Help control aluminates to prevent permanent hardening (flash set). Too much sulfate causes false set but can be overcome.

Workability

- Important property of fresh concrete
- Amount of mechanical work required to place and consolidate the concrete
- Provides adequate consolidation and reduced entrapped trapped air voids
- Proper aggregate gradation greatly improves workability

- Proper filling of voids between larger particles

Aggregate Moisture States

Absorption is a function of the amount of void space in the aggregate

Aggregate Gradation

- Should be well-graded
- Control combined grading to increase amount of aggregate in the mix
 - Reduced paste (shrinkage, heat, cost)

Aggregate is inexpensive and a good filler

Aggregates Gradation

- Most of the volume of a mixture
- Influences:
 - Strength
 - Workability
 - Durability

Crack Resistance

- Use Type I/II cements (avoid high early strength except special conditions)
 - Minimize shrinkage
 - Helps with slab warping
- Use SCM to reduce thermal shrinkage
- Use low CTE aggregates
 - Minimize curvature & stress
 - Helps prevent aggregate expansion

DURABILITY

Durability

Iowa Concrete Pavements are Durable

Some joint distress have appeared in the last 5 years

Primary factors causing distress:

- Reaction between certain deicers in the matrix of 1) concrete
- 2) Lack of proper air entrainment; freeze-thaw damage
- 3) Saturation (permeability); freeze-thaw damage

How to Achieve Durability

Air Entrainment

- Vinsol / Resin / Tall Oil / Synthetics
- Air Void System
 - Spacing factor <0.008 inch
 - Air content >5% behind the paver
 - SAM

Figure 3-16. Spacing factor is the average distance from any point to the nearest air void. (Ozyildirim)

Super Air Meter (SAM)

 Over 90% of test mixes, a SAM number of 0.20 has been shown to correctly determine whether the spacing factor is above or below the 0.008 inch.

Lower Water/ Cement Ratio

Low W/C= Low Permeability = Less Saturation= Improve Durability

 w/c 0.60 – dark voids where water once occupied space – left pores

Water

- Watch the amount of added water!
- Added water not to exceed max w/c (check batch tickets)
- If water added, mix for additional 30 revolutions

For: 212	7.	
	READY MIX CONCRETE	
Contor	61enw	ood Plant
~	309 Ticket No.	
Date 8/15/1	3 Des. No	
Proj. No. DHS-	706-0(15)	7H-65
Mix MA CUHTBIT	Retarder/Water Red	ucer? 🛛 Yes 🗌 No
Conc. mis Truck	912	C.Y./m ³
Air agent added this true		12 oz./mL
Time Batched	0 Discharged	4:20
Rev. Mixed (Plant)	Grade	
Water (gal./L or lbs./kg	This Truck) 8.83lbs./gal	
In Aggregate	70 gal./1	lbs./kg
Added (Plant) _	JHS gal./L	lbs./kg
Subtotal	215 gal./L	lbs./kg
Added Grade	gal./L	lbs./kg
TOTAL WATER	230 gal./L_	lbs./kg
Maximum Water Allows	291 gal./L	lbs./cy or kg/m ³
Air 121	Slump	2"
Plansp. 200	reno de Ce	sete Swizo
Receiving Insp. 5te	ve Welfer 45	4
	1	

Water & Permeability

 More water – means more space between cement grains

w/c = High

Effects of Extra Water on Concrete

- Adding 1 gallon / yd3
- Increases workability ~1"
- Lowers strength ~200 psi
- Increases drying shrinkage ~10%
- Increases permeability ~ 50%

Low Permeability

Sizes of Concrete Components

Tech Center

Second- Filling of Larger Pores -Entrained and Entrapped Air-(months to years) Capillary Pores

Critical Saturation Rates

Weiss 2014

High Concentrations of Deicers

 High concentration of magnesium and or calcium chlorides (deicers) can react with cementitious matrices.

• This results in expansive deposits that can lead to diminished durability.

Impact on Joints

- These types of deicers can be more effective for ice removal
- Even when low concentration of deicers are applied to the pavement, evaporation that occurs during drying cycles will eventually produce a highly concentrated deicing solution
- At some point these levels will reach a level of super saturation that affects mineral deposits in the concrete

Impact on Joints

- The formation of Calcium Silicate Hydrate (C-S-H) and Calcium Hydroxide (CH) are the two principal ingredients that mesh into a solid mass forming concrete pavement.
- Magnesium and calcium chloride will react with CH with water at between 32°F and 122°F, depending on the salt concentration.

Impact on Joints

- This reaction results in the formation of calcium oxychloride which results in flaking (expansion) of the hardened paste causing significant damage particularly in joints.
- Oxychloride expansion can be 3 times greater than freeze-thaw expansion.
- The use of SCM's (fly ash, slag, and silica fume) has shown to reduce the formation of calcium oxychlorides by tying up CH.
- Use of sealers has also shown the potential to limit the interaction between salts and CH by reducing exposure.

Temperature for Calcium Oxychloride Formation (when hydrated cement paste is brought into contact with calcium chloride solution)

How Do Also SCMs Work?

Cement + = C-S-H Water +

SCM + Water + CH = more C-S-H

Putting It Together

Defining PCC Mix Types

How do we know what PCC mix to use?

Conventional PCC: Class C & M Mixes (SUDAS & Iowa DOT)

Urban Durability PCC: Class C-SUD Mix (SUDAS)

Rural Durability PCC: QM-C Mix (Iowa DOT)

Conventional PCC - C Mix

Use of SCMs will improve durability!!

How Much SCMs?

% of total cementitious

- Class F fly ash:
- Class C fly ash:
- Slag:

15% - 25% 15% - 40%

25% - 50%

Too little – no benefit Too much – slow setting, slow strength gain, cracking risk

Blended at the concrete batch plant, or blended or interground at the cement plant

Conventional PCC - C Mix

C-Mixes - Common for Conventional paving

Type Aggregate Composition

- C2 40% fine and 60% coarse
- C3 45% fine and 55% coarse
- C4 50% fine and 50% coarse
- C5 55% fine and 45% coarse
- C6 60% fine and 40% coarse

Target w/cm = 0.430 Max w/cm = 0.488

Conventional PCC - C Mix

Basic Absolute Volumes of Materials Per Unit Volume of Concrete

Γ	C MIXES Basic w/c = 0.430 Max w/c = 0.488					
	Mix No.	Cement	Water	Air	Fine	Coarse
	C-2	0.110	0.149	0.060	0.272	0.409
	C-3	0.114	0.154	0.060	0.302	0.370
	C-4	0.118	0.159	0.060	0.331	0.332
	C-5	0.123	0.166	0.060	0.358	0.293
Ш	C-6	0.128	0.173	0.060	0.383	0.256
C-WR MIXES Basic w/c = 0.430 Max w/c = 0.489						
	Mix No.	Cement	Water	Air	Fine	Coarse
	C-3WR	0.108	0.146	0.060	0.309	0.377
	C-4WR	0.112	0.151	0.060	0.338	0.339
	C-5WR	0.117	0.158	0.060	0.366	0.299
	C-6WR	0.121	0.163	0.060	0.394	0.262

C-3 & C-4 most common

Conventional PCC – M Mix

M-Mixes

High early strength for patching

M MIXES	Basic w/c = 0.328		x w/c = 0.400		
Mix No.	Cement	Water	Air	Fine	Coarse
M-3	0.149	0.153	0.060	0.287	0.351
M-4	0.156	0.161	0.060	0.311	0.312
M-5	0.160	0.165	0.060	0.338	0.277

Basic Absolute Volumes of Materials Per Unit Volume of Concrete

More cement than C mixes

Conventional PCC

Minimum Opening Strength – Full Depth Repairs

	Strength for Opening to Traffic (psi)			
	Repair Length <10 ft		Slab Replacements	
Slab Thickness (in.)	Compressive	3 rd Point Flexural	Compressive	3 rd Point Flexural
6.0	3000	490	3600	540
7.0	2400	370	2700	410
8.0	2150	340	2150	340
9.0	2000	275	2000	300
10 +	2000	250	2000	300

Table 6.6. Minimum Opening Strengths for FDRs (ACPA 2006)

Urban Durability Mix (C-SUD)

- If joint deterioration is not a concern, recommend Class C mix (with SCM)
- If future joint deterioration is a concern on higher volume roads
 - Consider C-SUD (SUDAS mix)

Urban Durability Mix (C-SUD)

C-SUD (SUDAS Mix)

- Lower w/cm for durability
- Target w/cm = 0.40, Max. w/cm = 0.45
- Lower permeability than C-mix
- Can consider 3 aggregate mixes for greater workability and lower permeability
- <u>Can add SCM for enhanced durability</u>

Urban Durability Mixes (C-SUD)

• Proportion Table 4 (I.M. 529)

Basic Absolute Volumes of Materials Per Unit Volume of Concrete

C-SUD MIXES		Basic w/c = 0.400	Max w/	c = 0.450	
Mix No.	Cement	Water	Air	Fine	Coarse
C-SUD	0.106	0.133	0.060	0.315	0.386

Class C & Class C-SUD

Class C-4 Mix

Cement	0.118
Water	0.159
Air	0.06
Fine Aggr.	0.331
Coarse Aggr.	0.332

Class C-SUD Mix

Cement	0.106		
Water	0.133		
Air	0.06		
Fine Aggr.	0.315		
Coarse			
Aggr.	0.386		

Rural Durability Mixes (QM-C) (by Contractor)

- Quality Management Concrete (QM-C) mix
 - Improved placement characteristics (workability) for slip form only
 - Improved workability = improved durability
 - Required on Iowa DOT projects > 50,000 SY
 - Three gradation aggregate (typ. central plant not ready mix)
 - Ideal for large mainline rural paving projects
 - Not ideal for small, urban or extensive staging projects

Rural Durability Mixes (QM-C)

- Quality Management Concrete (QM-C) mix
 Iowa DOT DS-15038
 - Basic w/cm ratio is 0.40
 - Max. w/cm ratio is 0.42.

Rural Durability Mixes (QM-C)

Table DS-15038.03-1: Concrete Mixture Constraints

Nominal Maximum Coarse Aggregate Size	Greater than or equal to 1 inch	
Gradation	Materials I.M. 532	
Cementitious Content	Minimum, 560 pounds per cubic yard*	
Fly Ash Substitution Rate	See Article 2301.02, B, 6	
Water/Cementitious Ratio	Maximum, 0.45 0.42	
Air Content	6% ± 1%, Design Absolute Volume = 0.060	
28 Day Flexural Strength, Third Point	Minimum, 640 pounds per square inch	

CONSTRUCTION

Concrete Materials Performance: Ch. 9.6 Iowa DOT Field Inspection Manual

Check air after paver to determine loss

Air Content (on grade before consolidation)

- Slip form (8.0% +/- 2.0%)
- Non slip form (7% +/- 1.5%)
- Adjust the mix when:
 - Slip form Air < 7% or > 9%
 - Non slip form Air <6% or > 8%

Concrete Materials Performance: Ch. 6 Iowa DOT Field Inspection Manual

Aggregate Correction Factor (Iowa DOT I.M. 318)

- For quarries with highly absorptive aggregate
- Example:
 - Specified air is 8% +/- 2%
 - Using highly absorptive aggregate
 - Correction factor is 1%
 - Target air is 9% (8% + 1%)

Concrete Materials Performance: Ch. 6 Iowa DOT Field Inspection Manual

- Air content outside tolerance
 - Make immediate adjustments to mix
 - Take test after paver to identify limits
 - Need compliance in two consecutive loads
 - Price adjustments

Questions

www.cptechcenter.org

