Module 5b

Early-Age Cracking (temperature, shrinkage, strength)

National Concrete Pavement Technology Center lowa's Lunch–Hour Workshop In cooperation with the Iowa DOT and the Iowa Concrete Paving Association

IOWA STATE

(IMCP—pages 148–164)

Early-Age Cracking

- 1. Concrete cracks when tensile stresses exceed tensile strength.
- 2. The challenge is to control the number and location of cracks
 - Construct proper and timely joints
 - Use good curing practices
 - Understand that concrete needs to gain strength to resist random cracking
- 3. Cracking is generally due to a combination of several factors.

(IMCP—pages 116, 125–130)

Fresh concrete always shrinks. This shrinkage leads to cracking. Cracking is not necessarily bad and can be controlled. A number of factors affect early age cracking:

- Volume changes and restraint
- Curling and warping
- Strength gain during the stages of hydration
- Subgrade support
- Early loading

IOWA STATE

(IMCP—page 149)

Primary Factors of Early-Age Cracking

Concrete expands as temperature rises
 and contracts as temperature falls

IOW/A STATE

 Concrete expands as moisture increases and contracts as moisture decreases

(IMCP—page 150)

Strength and Stiffness

Strength: The greater the concrete strength, the greater stress it can withstand.

- Early-age concrete has not gained all its potential strength
- Stresses in early-age concrete can surpass the concrete's strength

IOWA STATE

Construction (Sawing Window)

⁶

Factors Affecting Sawing Window

• Weather:

UNIVERSITY

- Sudden temperature drop or rainshower
- Sudden temperature rise
- High winds & low humidity
- Cool & cloudy
- Hot & sunny

- Concrete Mixture:
 - Rapid early strength
 - Retarded set
 - Supplementary cementing materials

(IMCP—page 150)

Strength and Stiffness

Stiffness: The stiffer the concrete (as indicated by modules of elasticity), the greater the stresses resulting from volume change.

- Unfortunately, stiffness increases faster than strength for the first few hours after setting
- First few hours
 - Minimize temperature & moisture change
 - Minimize the build up of stresses when the concrete has not gained sufficient strength

(IMCP—page 125)

Volume Shrinkage

Total shrinkage is the sum of individual shrinkage mechanisms. Minimizing any or all mechanisms will reduce the risk of cracking.

(IMCP—page 150)

External Restraint: A bonding or friction between a slab and the base or an abrupt change in the slabs cross-section.

Internal Restraint: The outer concrete shrinks or expands and the core does not.

IOWA STATE

(IMCP—page 150)

Shrinkage/Cracking

(a) Cracks generally do not develop in concrete that is free to shrink.

(b) Slabs on the ground are restrained by the subbase, creating tensile stresses that result in cracks.

(IMCP—page 125)

Autogenous Shrinkage

The amount of chemical shrinkage that can be measured in a sample.

- Chemical shrinkage is a reduction of volume
- Results from hydration products occupying less space than the original materials
- Typically only significant for W/C less than 0.42

IOWA STATE

Autogenous Shrinkage

Time

UNIVERSITY

(IMCP—page 125)

Settlement Shrinkage

- Bleeding is the development of a layer of water at the top or surface of freshly placed concrete.
- It is caused by sedimentation (settlement) of solid particles (cement and aggregate) and the simultaneous upward migration of water.
- Some bleeding is normal. It should not diminish the quality of properly placed concrete.

Settlement Shrinkage

Time

IOWA STATE

UNIVERSITY

(IMCP—pages 125, 158, 159)

Plastic Shrinkage

which may cause cracking.

Tech Center

IOWA STATE

Plastic Shrinkage

Time

IOWA STATE UNIVERSITY

(IMCP—page 158)

Plastic Shrinkage Cracks

(IMCP—pages 125–126)

Drying and Thermal Shrinkage

- Drying and thermal contraction shrinkage
 - Most frequent causes of early-age cracks
 - Thermal-related cracks
 - » Normally observed in the first day
 - Drying-related cracks
 - » May appear over a longer period

IOW/A STATE

- Loss of mixing water through hydration and evaporation
 - Overall volume contracts
 - Greater paste content results in greater drying shrinkage and higher tensile stress
 - Low relative humidity of air can affect shrinkage diffusion

IOWA STATE

Wind on Shrinkage

IGURE 6 Combined early age and long-term shrinkage for three different curin environments (Holt and Leivo, 2000). [1 mm/m = 1,000 μm/m (0.001 in./in.).]

From: Transportation Research Circular E-C107, October, 2006

More Cement = More Water (W/C)

More Water = More Shrinkage

IOWA STATE

UNIVERSITY

Time

IOWA STATE

UNIVERSITY

(IMCP-pages 125, 127-130, 149)

Thermal Shrinkage

- Air temperature can cause significant changes in shrinkage and expansion rates
- Hydration peaks within the first 12[±] hours after the concrete is placed
 - Volume starts to contract as hydration slows and concrete temperature drops
 - Movement of slab is constrained by subgrade
 - Contraction produces tension
 - Accelerated contraction (such as cold front) can cause thermal shrinkage cracking

(IMCP—pages 125, 127–130, 149) Thermal Shrinkage

IOWA STATE UNIVERSITY

Thermal Shrinkage

IOWA STATE

UNIVERSITY

Thermal Shrinkage

Early entry saw, not deep enough

IOWA STATE

UNIVERSITY

IOWA STATE

UNIVERSITY

Late sawing or not deep enough

Need min. 6" embedment

Longitudinal Cracking (Not Sawing Deep Enough)

•Use of gutter joints not recommended for T < 9"

•Thinner pavements may not crack at gutter joint, causing longitudinal cracks at mid-panel

Gutterline Jointing

IOWA STATE

UNIVERSITY

Saw too late or not deep enough

UNIVERSITY

Panel too wide

Transverse Joints

Pavement Thickness	Transverse Joint Type	Transverse Joint Spacing
6"	С	12'
7"	С	15'
8"	CD ¹	15'
9"	CD ¹	15'
\geq 10"	CD^{1}	20'

¹ No dowels within 24" of the back of curb

IOWA STATE

UNIVERSITY

Source: SUDAS Specifications Figure 7010.901

Transverse Cracking

Sawed too late

Diagonal (Random) Cracking

IOWA STATE

UNIVERSITY

Very poor subgrade

Diagonal (Random) Cracking

Very poor subgrade

Early Loading Stress – Corner Cracking

• Subgrade _I	м			aximum subgrade pressure	
pressures are	Loading position *				
widely			psi	tons per square foot.	
distributed,	1.	Slab interior	3	0.22	
except at the	2.	Transverse joint edge	4	0.28	
edges and	3.	Outside edge	6	0.43	
corners of the	4.	Outside corner	7	0.50	
slab.	* 12,000 lb. Load on a 12-in plate (~100 psi)				

- Shoulders/curbs
 help
 - Equal to 2' offset

IOWA STATE

UNIVERSITY

(IMCP—page 152)

(IMCP—pages 150–151)

Curling and Warping

- Differential temperature and moisture levels throughout slab depth typically occur during the first 72 hours
- Variations in contraction and expansion cause differential, non-uniform movements

Curling => Change in Temperature

IOWA STATE

Warping => Change in Moisture

 These movements, especially when restrained, can cause cracking

(IMCP—pages 150–151)

Curling and Warping of Slabs

IOWA STATE

UNIVERSITY

Curling

(IMCP—pages 150–151)

IOWA STATE

UNIVERSITY

Corner Cracking

IOWA STATE UNIVERSITY

Pavement too thin & saturated subgrade

SCM Effects

- Delayed final set
- Reduced heat peak
- Extended heat generation
- Increased long-term strength
- Reduced permeability
- May reduce ASR (class F)
- Slows Bleeding
- Higher risk of scaling

(IMCP—page 78)

Water Reducers' Effects (IMCP—pages 79, 99)

- Possibly slower strength gain (slows rate of alite reactions)
- Possibly faster aluminate reactions (and risk of flash set)
- More mix water available for hydration

(IMCP—page 79)

Retarders' Effects

- Lengthened dormancy
- Slowed hydration
- Reduced heat peak
- Extended heat generation
- Increased long-term strength
- Reduced permeability
- Similar to SCMs

Sawing window

(IMCP—page 79)

Accelerators' Effects

- Calcium Chloride
- Shortened dormancy (increased rate of ion saturation)
- Earlier initial and final sets (steeper hydration Sawing window
 Curve)

Combined Shrinkage and Curling Stresses

Tech Center

IOWA STATE

UNIVERSITY

HIPERPAV curve If the sum of stresses exceeds established strength, cracks can develop.

www.hiperpav.com

Troubleshooting

MIX DESIGN

Method of Control or Prevention	Why This Works	
Avoid using high early strength cements (Type III cements) unless for special conditions.	High early strength cements increase shrinkage potential by generating hear at a faster rate.	
Use aggregate with low coefficient of thermal expansion (CTE).	Minimize aggregate expansion to help control volume change.	
Use W/C ratio 0.42 to 0.45.	High paste and, thus, high water content increases shrinkage potential.	
Consider using a water-reducing admixture.	Reduces paste content and helps reduce shrinkage. Typically reduces water requirements by 5% to 10% and may increase air content by 1%.	
In very hot weather, consider using a set- retarding admixture.	Reduces heat generated, thus reducing thermal contraction.	
In cold weather consider using a accelerating admixture.	Increases the rate of strength development. However excess acceleration may result in cracking before joint sawing.	

MIX DESIGN

Method of Control or Prevention		Why This Works	
Incorporate fly ash or ground, granulated blast furnace (GGBF) slag.		Reduces thermal shrinkage. In comparison to portland, these materials lower the amount of heat generated while extending the hydration process. Also improves long term density and strength and helps with control of deicing scaling.	
During extreme hot weather, consider using pre-cooled materials in the batch (e.g., shade and dampen aggregates, use chilled water or ice in the mix).		Lowers the temperature of the mix and, thus, minimizes the amount of cooling and shrinkage after final set.	
Use saturated, surface dry aggregates.		Dry aggregates absorb moisture meant for cement hydration out of the mix. Wet aggregates add water to the mix, which can increase the water/cement ratio and reduce durability.	
Use well-graded aggregates.		Requires less paste and thereby less water, which leads to a lesser potential for shrinkage.	
		IMCP Manual – Early-Age Cracking: 52	

RESTRAINED VOLUME CHANGE

Mechanism	Method of Control or Prevention	Why This Works
Restrained volume change	Dampen the pavement subgrade.	Dry subgrade pulls moisture out of the pavement.
Restrained volume change	Do not spray water on the slab to facilitate finishing. Do not finish the surface while bleed water is present.	Such actions lead to weakening of the pavement surface and can lead to scaling.
Restrained volume change	Avoid paving when weather conditions may cause rapid drying. (e.g., try to avoid final set at the peak day temperature).	Such weather conditions can increase potential for plastic or drying shrinkage cracks.
Restrained volume change	During extremely hot weather, consider paving in late afternoon, early evening, or at night.	Minimize the amount of thermal shrinkage after final set.
Restrained volume change; Curling and/or warping	Avoid significant concrete temperature changes as concrete is placed and cured (e.g., protect the surface if exposed to cold fronts within the first two nights).	Such weather conditions can increase differential concrete temperature and volume changes throughout the slab depth, thus resulting in a buildup of stresses from the top to bottom of the slab, causing cracking.

RESTRAINED VOLUME CHANGE, BASE SUPPORT & EARLY LOADS

Mechanism	Method of Control or Prevention	Why This Works
Restrained volume change	Cure properly and promptly. (Immediately after finishing, cover surface thoroughly with white-pigmented curing compound and cure for 72 hours without traffic.	Protects surface from high evaporation rates that can lead to shrinkage cracks and loss of water for hydration.
Restrained volume change; Loads	Construct joints properly with regard to type, timing, spacing and depth. Make sure spacing of longitudinal joints do not exceed 12.5' for pavements < 9 " thick and 14.5' for pavement ≥ 9.0 ".	Directs cracks to joint locations and prevents random cracking.
Restrained volume change	Do not tie too many lanes together with tiebars. Do not tie lanes together when the weather is excessively hot or cold.	The new (weaker) pavement does not move the same as the existing (stronger) pavement, particularly under high temperature changes.
Uniformity of subgrade/base support	Ensure a uniformly stable subgrade and base.	Prevents the stress buildup that results from different support conditions.
Loads	Keep construction traffic away form the pavement slab edges when opening strength has not been obtained.	Allows concrete to develop the strength and stiffness necessary to support and distribute loads.
Other	Do not overwork or over-finish.	Leads to bleeding and map cracking

How to Avoid Random Cracks

IOWA STATE

UNIVERSITY

Thank you

www.cptechcenter.org

IOWA STATE

UNIVERSITY

