Early-Age Cracking
(temperature, shrinkage, strength)

National Concrete Pavement Technology Center
Iowa’s Lunch–Hour Workshop
In cooperation with the Iowa DOT
and the Iowa Concrete Paving Association
Early-Age Cracking

1. Concrete cracks when tensile stresses exceed tensile strength.

2. The challenge is to control the number and location of cracks
 - Construct proper and timely joints
 - Use good curing practices
 - Understand that concrete needs to gain strength to resist random cracking

3. Cracking is generally due to a combination of several factors.
Facts

Fresh concrete always shrinks. This shrinkage leads to cracking. Cracking is not necessarily bad and can be controlled. A number of factors affect early age cracking:

- Volume changes and restraint
- Curling and warping
- Strength gain during the stages of hydration
- Subgrade support
- Early loading
Primary Factors of Early-Age Cracking

- Concrete expands as **temperature** rises and contracts as **temperature** falls

- Concrete expands as **moisture** increases and contracts as **moisture** decreases
Strength and Stiffness

Strength: The greater the concrete strength, the greater stress it can withstand.

- Early-age concrete has not gained all its potential strength
- Stresses in early-age concrete can surpass the concrete’s strength
Construction (Sawing Window)

Hydration (first 72 hours)

Stage 1: Initial Mix (15 minutes)
- High heat followed by rapid cooling

Stage 2: Dormancy (24 hours)
- Cool, plastic, workable

Stage 3: Acceleration (4-8 hours)
- Significant heat, less workable, begins to harden
 - Begin curing
 - Cut joints

Stage 4: Deceleration (-24 hours)
- Becomes hard and dense
 - Continue curing

Stage 5: Slow Hydration (Indefinitely)
- 70 – 75% hydrated after 28 days
 - Can continue indefinitely, as long as water can reach un-hydrated particles
Hydration and Strength Curves
Factors Affecting Sawing Window

- Weather:
 - Sudden temperature drop or rainshower
 - Sudden temperature rise
 - High winds & low humidity
 - Cool & cloudy
 - Hot & sunny

- Concrete Mixture:
 - Rapid early strength
 - Retarded set
 - Supplementary cementing materials
Strength and Stiffness

Stiffness: The stiffer the concrete (as indicated by modules of elasticity), the greater the stresses resulting from volume change.

- Unfortunately, stiffness increases faster than strength for the first few hours after setting
- First few hours
 - Minimize temperature & moisture change
 - Minimize the build up of stresses when the concrete has not gained sufficient strength
Volume Shrinkage

Total shrinkage is the sum of individual shrinkage mechanisms. Minimizing any or all mechanisms will reduce the risk of cracking.
Restraint

External Restraint: A bonding or friction between a slab and the base or an abrupt change in the slabs cross-section.

Internal Restraint: The outer concrete shrinks or expands and the core does not.
Shrinkage/Cracking

(a) Cracks generally do not develop in concrete that is free to shrink.

(b) Slabs on the ground are restrained by the subbase, creating tensile stresses that result in cracks.

Shrinkage + freedom to move = no cracks

Shrinkage + subbase restraint = cracks

Not to scale
Autogenous Shrinkage

The amount of chemical shrinkage that can be measured in a sample.

- Chemical shrinkage is a reduction of volume
- Results from hydration products occupying less space than the original materials
- Typically only significant for W/C less than 0.42
Autogenous Shrinkage

Heat

Cement
Water
Aggregate

Initial set

Final set

Early sawing window

Conventional sawing window

Hydration acceleration

Strength/Stress development

Hydration deceleration

Stage 1: Mixing
- Lasts about 15 minutes

Stage 2: Dormancy
- Lasts about 2–4 hours

Stage 3: Hardening
- Lasts about 2–4 hours

Stage 4: Cooling
- Continues for years

Stage 5: Densification

IMCP Manual – Early-Age Cracking: 14
Settlement Shrinkage

- Bleeding is the development of a layer of water at the top or surface of freshly placed concrete.
- It is caused by sedimentation (settlement) of solid particles (cement and aggregate) and the simultaneous upward migration of water.
- Some bleeding is normal. It should not diminish the quality of properly placed concrete.
Settlement Shrinkage

- Heat
- Initial set
- Hydration acceleration
- Strength/Stress development
- Hydration deceleration
- Final set
- Conventional sawing window
- Early sawing window

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>Dormancy</td>
<td>Hardening</td>
<td>Cooling</td>
<td>Densification</td>
</tr>
<tr>
<td>Lasts about 15 minutes</td>
<td>Lasts about 2–4 hours</td>
<td>Lasts about 2–4 hours</td>
<td>Continues for years</td>
<td></td>
</tr>
</tbody>
</table>
Plastic Shrinkage

Rapid loss of water through evaporation causes concrete **on the surface** to shrink. If shrinkage is restrained, tension develops, which may cause cracking.
Plastic Shrinkage

Time

Cement
Water
Aggregate

Plastic Shrinkage

Initial set

Hydration acceleration

Strength/Stress development

Hydration deceleration

Conventional sawing window

Early sawing window

Stage 1
Mixing
Lasts about 15 minutes

Stage 2
Dormancy
Lasts about 2–4 hours

Stage 3
Hardening
Lasts about 2–4 hours

Stage 4
Cooling
Continues for years

Stage 5
Densification

IMCP Manual – Early-Age Cracking: 18
Plastic Shrinkage Cracks

Some cracks form perpendicular to wind direction.
Drying and Thermal Shrinkage

- Drying and thermal contraction shrinkage
 - Most frequent causes of early-age cracks
 - Thermal-related cracks
 - Normally observed in the first day
 - Drying-related cracks
 - May appear over a longer period
Drying Shrinkage

• Loss of mixing water through hydration and evaporation
 ▪ Overall volume contracts
 ▪ Greater paste content results in greater drying shrinkage and higher tensile stress
 ▪ Low relative humidity of air can affect shrinkage diffusion
Wind on Shrinkage

![Graph showing shrinkage over time under different conditions.](image)

Figure 6 Combined early age and long-term shrinkage for three different curing environments (Holt and Leivo, 2000). [1 mm/m = 1,000 μm/m (0.001 in./in.).]

From: Transportation Research Circular E-C107, October, 2006
Drying Shrinkage

More Cement = More Water

(W/C)

More Water = More Shrinkage
Drying Shrinkage

Time

Conventional sawing window

Early sawing window

Final set

Dry Shrinkage

Initial set

Strength/Stress development

Hydration acceleration

Hydration deceleration

<table>
<thead>
<tr>
<th>Stage 1</th>
<th>Stage 2</th>
<th>Stage 3</th>
<th>Stage 4</th>
<th>Stage 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mixing</td>
<td>Dormancy</td>
<td>Hardening</td>
<td>Cooling</td>
<td>Densification</td>
</tr>
<tr>
<td>Lasts about 15 minutes</td>
<td>Lasts about 2–4 hours</td>
<td>Lasts about 2–4 hours</td>
<td>Continues for years</td>
<td></td>
</tr>
</tbody>
</table>
Drying Shrinkage
Thermal Shrinkage

- Air temperature can cause significant changes in shrinkage and expansion rates
- Hydration peaks within the first 12± hours after the concrete is placed
 - Volume starts to contract as hydration slows and concrete temperature drops
 - Movement of slab is constrained by subgrade
 - Contraction produces tension
 - Accelerated contraction (such as cold front) can cause thermal shrinkage cracking
Thermal Shrinkage
Thermal Shrinkage

Stage 1: Mixing
- Lasts about 15 minutes

Stage 2: Dormancy
- Lasts about 2-4 hours

Stage 3: Hardening
- Lasts about 2-4 hours

Stage 4: Cooling
- Continues for years

Stage 5: Densification

Time

Thermal Shrinkage

Ambient Temperature

Heat

Initial set

Final set

Strength/Stress development

Hydration acceleration

Hydration deceleration

Conventional sawing window

Early sawing window
Thermal Shrinkage
Longitudinal Cracking

Early entry saw, not deep enough
Longitudinal Cracking

Late sawing or not deep enough

Need min. 6” embedment
Longitudinal Cracking
(Not Sawing Deep Enough)

- Use of gutter joints not recommended for $T < 9”$
- Thinner pavements may not crack at gutter joint, causing longitudinal cracks at mid-panel
- Saw depth must be $T/3$

Longitudinal Spacing

- 6.5’ min. -12.5’ max. for $T < 9”$
- 14.5’ max. for $T > 9”$

SEE DETAIL "A"

- #4 BAR FOR L-1 JOINT
- #5 BAR FOR L-2 & L-3 JOINT

'L-1', 'L-2', & 'L-3'
Longitudinal Cracking

Saw too late or not deep enough
Longitudinal Cracking

What happened?

Cluster of tie bars

2 lane roadway
Longitudinal Cracking

Panel too wide
Transverse Joints

Table 5G-2.01: Transverse Joint Requirements

<table>
<thead>
<tr>
<th>Pavement Thickness</th>
<th>Transverse Joint Type</th>
<th>Transverse Joint Spacing</th>
</tr>
</thead>
<tbody>
<tr>
<td>6”</td>
<td>C</td>
<td>12’</td>
</tr>
<tr>
<td>7”</td>
<td>C</td>
<td>15’</td>
</tr>
<tr>
<td>8”</td>
<td>CD<sup>1</sup></td>
<td>15’</td>
</tr>
<tr>
<td>9”</td>
<td>CD<sup>1</sup></td>
<td>15’</td>
</tr>
<tr>
<td>≥ 10”</td>
<td>CD<sup>1</sup></td>
<td>20’</td>
</tr>
</tbody>
</table>

¹ No dowels within 24” of the back of curb

Source: SUDAS Specifications Figure 7010.901
Transverse Cracking

Sawed too late
Diagonal (Random) Cracking

Very poor subgrade
Diagonal (Random) Cracking

Very poor subgrade
Early Loading Stress – Corner Cracking

- Subgrade pressures are widely distributed, except at the edges and corners of the slab.
- Shoulders/curbs help
 - Equal to 2’ offset

<table>
<thead>
<tr>
<th>Loading position</th>
<th>Maximum subgrade pressure</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>psi</td>
</tr>
<tr>
<td>1. Slab interior</td>
<td>3</td>
</tr>
<tr>
<td>2. Transverse joint edge</td>
<td>4</td>
</tr>
<tr>
<td>3. Outside edge</td>
<td>6</td>
</tr>
<tr>
<td>4. Outside corner</td>
<td>7</td>
</tr>
</tbody>
</table>

* 12,000 lb. Load on a 12-in plate (~100 psi)

(IMCP—page 152)
Curling and Warping

- Differential temperature and moisture levels throughout slab depth typically occur during the first 72 hours.
- Variations in contraction and expansion cause differential, non-uniform movements.

Curling => Change in Temperature

Warping => Change in Moisture

- These movements, especially when restrained, can cause cracking.
Curling and Warping of Slabs

- Temperature curling
- Moisture warping

<table>
<thead>
<tr>
<th>Hot days</th>
<th>Cool nights</th>
</tr>
</thead>
<tbody>
<tr>
<td>(curling counteracts warping)</td>
<td>(curling compounds warping)</td>
</tr>
</tbody>
</table>
Curling

Direction of traffic

Not to scale
Corner Cracking

Pavement too thin & saturated subgrade
Corner crack

Expansion

Contraction

A. M. pour

Corner crack

P. M. pour

2 lane existing roadway

Added lane
SCM Effects

- Delayed final set
- Reduced heat peak
- Extended heat generation
- Increased long-term strength
- Reduced permeability
- May reduce ASR (class F)
- Slows Bleeding
- Higher risk of scaling
Water Reducers’ Effects

• Possibly slower strength gain (slows rate of alite reactions)

• Possibly faster aluminate reactions (and risk of flash set)

• More mix water available for hydration
Retarders’ Effects

• Lengthened dormancy
• Slowed hydration
• Reduced heat peak
• Extended heat generation
• Increased long-term strength
• Reduced permeability
• Similar to SCMs
Accelerators’ Effects

• Calcium Chloride

• Shortened dormancy (increased rate of ion saturation)

• Earlier initial and final sets (steeper hydration curve)
Combined Shrinkage and Curling Stresses

If the sum of stresses exceeds established strength, cracks can develop.

HIPERPAV curve

www.hiperpav.com
Troubleshooting

MIX DESIGN

<table>
<thead>
<tr>
<th>Method of Control or Prevention</th>
<th>Why This Works</th>
</tr>
</thead>
<tbody>
<tr>
<td>Avoid using high early strength cements (Type III cements) unless for special conditions.</td>
<td>High early strength cements increase shrinkage potential by generating heat at a faster rate.</td>
</tr>
<tr>
<td>Use aggregate with low coefficient of thermal expansion (CTE).</td>
<td>Minimize aggregate expansion to help control volume change.</td>
</tr>
<tr>
<td>Use W/C ratio 0.42 to 0.45.</td>
<td>High paste and, thus, high water content increases shrinkage potential.</td>
</tr>
<tr>
<td>Consider using a water-reducing admixture.</td>
<td>Reduces paste content and helps reduce shrinkage. Typically reduces water requirements by 5% to 10% and may increase air content by 1%.</td>
</tr>
<tr>
<td>In very hot weather, consider using a set-retarding admixture.</td>
<td>Reduces heat generated, thus reducing thermal contraction.</td>
</tr>
<tr>
<td>In cold weather consider using a accelerating admixture.</td>
<td>Increases the rate of strength development. However excess acceleration may result in cracking before joint sawing.</td>
</tr>
<tr>
<td>Method of Control or Prevention</td>
<td>Why This Works</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Incorporate fly ash or ground, granulated blast furnace (GGBF) slag.</td>
<td>Reduces thermal shrinkage. In comparison to portland, these materials lower the amount of heat generated while extending the hydration process. Also improves long term density and strength and helps with control of deicing scaling.</td>
</tr>
<tr>
<td>During extreme hot weather, consider using pre-cooled materials in the batch (e.g., shade and dampen aggregates, use chilled water or ice in the mix).</td>
<td>Lowers the temperature of the mix and, thus, minimizes the amount of cooling and shrinkage after final set.</td>
</tr>
<tr>
<td>Use saturated, surface dry aggregates.</td>
<td>Dry aggregates absorb moisture meant for cement hydration out of the mix. Wet aggregates add water to the mix, which can increase the water/cement ratio and reduce durability.</td>
</tr>
<tr>
<td>Use well-graded aggregates.</td>
<td>Requires less paste and thereby less water, which leads to a lesser potential for shrinkage.</td>
</tr>
</tbody>
</table>
RESTRAINED VOLUME CHANGE

<table>
<thead>
<tr>
<th>Mechanism</th>
<th>Method of Control or Prevention</th>
<th>Why This Works</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restrained volume change</td>
<td>Dampen the pavement subgrade.</td>
<td>Dry subgrade pulls moisture out of the pavement.</td>
</tr>
<tr>
<td>Restrained volume change</td>
<td>Do not spray water on the slab to facilitate finishing. Do not finish the surface while bleed water is present.</td>
<td>Such actions lead to weakening of the pavement surface and can lead to scaling.</td>
</tr>
<tr>
<td>Restrained volume change</td>
<td>Avoid paving when weather conditions may cause rapid drying. (e.g., try to avoid final set at the peak day temperature).</td>
<td>Such weather conditions can increase potential for plastic or drying shrinkage cracks.</td>
</tr>
<tr>
<td>Restrained volume change</td>
<td>During extremely hot weather, consider paving in late afternoon, early evening, or at night.</td>
<td>Minimize the amount of thermal shrinkage after final set.</td>
</tr>
<tr>
<td>Restrained volume change; Curling and/or warping</td>
<td>Avoid significant concrete temperature changes as concrete is placed and cured (e.g., protect the surface if exposed to cold fronts within the first two nights).</td>
<td>Such weather conditions can increase differential concrete temperature and volume changes throughout the slab depth, thus resulting in a buildup of stresses from the top to bottom of the slab, causing cracking.</td>
</tr>
<tr>
<td>Mechanism</td>
<td>Method of Control or Prevention</td>
<td>Why This Works</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Restrained volume change</td>
<td>Cure properly and promptly. (Immediately after finishing, cover surface thoroughly with white-pigmented curing compound and cure for 72 hours without traffic.)</td>
<td>Protects surface from high evaporation rates that can lead to shrinkage cracks and loss of water for hydration.</td>
</tr>
<tr>
<td>Restrained volume change; Loads</td>
<td>Construct joints properly with regard to type, timing, spacing and depth. Make sure spacing of longitudinal joints do not exceed 12.5’ for pavements < 9” thick and 14.5’ for pavement ≥ 9.0”.</td>
<td>DIRECTS CRACKS TO JOINT LOCATIONS AND PREVENTS RANDOM CRACKING.</td>
</tr>
<tr>
<td>Restrained volume change</td>
<td>Do not tie too many lanes together with tiebars. Do not tie lanes together when the weather is excessively hot or cold.</td>
<td>The new (weaker) pavement does not move the same as the existing (stronger) pavement, particularly under high temperature changes.</td>
</tr>
<tr>
<td>Uniformity of subgrade/base support</td>
<td>Ensure a uniformly stable subgrade and base.</td>
<td>Prevents the stress buildup that results from different support conditions.</td>
</tr>
<tr>
<td>Loads</td>
<td>Keep construction traffic away from the pavement slab edges when opening strength has not been obtained.</td>
<td>Allows concrete to develop the strength and stiffness necessary to support and distribute loads.</td>
</tr>
<tr>
<td>Other</td>
<td>Do not overwork or over-finish.</td>
<td>Leads to bleeding and map cracking.</td>
</tr>
</tbody>
</table>
How to Avoid Random Cracks

Manage Change!
Thank you

www.cptechcenter.org