Geosynthetics

National Concrete Pavement Technology Center lowa's Lunch–Hour Workshop In cooperation with the Iowa DOT and the Iowa Concrete Paving Association

Presentation Items

- 1. What are Geosynthetics?
- 2. Soils and Support
- 3. Geogrids
- 4. Woven geotextiles Subbase/subgrade separation
- 5. Nonwoven geotextiles Separation Layer for Unbonded Concrete Overlays

What are Geosynthetics?

Geosynthetics are a class of **geomaterials** that are used to **improve soil conditions** for a number of applications. They consist of manufactured polymeric materials used in contact with soil materials or pavements as an integral part of a **man-made** system (ASTM D 4439).

Most common applications:

- Paved and unpaved roadways
- Reinforcing embankments & foundation soils
- Improving drainage

What are Geosynthetics used for?

Geosynthetics have been used in pavement foundation layers for:

- Separation
- Filtration
- Drainage
- Reinforcement

The mechanisms by which geosynthetics provide reinforcement when placed at the subgrade interface include **lateral restraint** or **confinement** of subbase material and increase of bearing capacity.

Geosynthetics

Geotextile

Geogrid

Geonet

Geomembrane

Geosynthetic clay liner

Geofoam

Geocomposite

Geosynthetic - Primary Uses

Polymer **Geogrids** act primarily as <u>reinforcement</u> by providing lateral restraint or confinement of aggregate layers above subgrade.

ech Cent

Woven & Nonwoven Geotextiles act

primarily as <u>separation layers</u> between strata to prevent the upward migration of finegrained particles from the subgrade into subbase layers. The nonwoven can also provide lateral drainage.

When to Use Geosynthetics

 Table 6H-1.04:
 Appropriate Conditions for Geosynthetic Use

Condition	Related Measures
Poor soils	USCS: SC, CL, CH, ML, MH, OH, or PT soils; or
	AASHTO: A-5, A-6, A-7, or A7-6 soils
Low strength	S _u <13 kPa, CBR <3, or MR <4500 psi
High water table	Within zone of influence of surface soils

When you have these soil conditions, consider improvements using geosynthetics

When to Use Geosynthetics

CBR	Function	Geosynthetic Guidance
2 – 3	Filtration, some separation	Nonwoven
1 – 2	Filtration, separation, some reinforcement	Woven
< 1	Filtration, separation, reinforcement	Geogrids, Woven & Nonwoven

¹ S_u (kPa) = undrained shear strength (1 kPa = 20.89 psf)

Source: Holtz et al. 1998

The Geosynthetic function to be provided is dependent on soil conditions

AASHTO Distribution of Iowa Soil

A-4 through A-7 = Subgrade rating of Fair to Poor

<u>A-4 soils</u> are predominantly silts with variable amounts of granular material or clay and some plasticity. Their strength varies with moisture content. These soils are very susceptible to frost heaving when located over sand pockets holding water in glacial till. They are very susceptible to erosion.

- <u>A-5 soils</u> are silty soils with moderate liquid limit (40 max)
- <u>A-6 soils</u> are clay soils with higher liquid limit (41 min)
- <u>A-7 soils</u> are predominantly clay with variable amounts of granular material or silt. They are highly plastic and their strength varies appreciably with moisture content. They are also expansive.

Capillary Action; Movement of water in narrow soil pores through intermolecular attractive forces between the soil and water.

Iowa Soil Challenges

- High Plasticity = High Plasticity Index = Instability
- Expansive clays = Volume change
- Weak soils = Poor bearing capacity
- Wet/soft subgrade = Poor support

Pavement Support Basics

- Firm, uniform, and non-erodible support is essential for concrete pavements
 - Reduces pavement defections from vehicle loadings
 - Avoids stress concentrations
- Must provide a stable working platform to expedite all construction operations
- Subgrade uniformity is more important than strength

Common Soil Improvement Options

Soil Conditions

Good

Bad

- 1. Scarify and drying
- 2. Blending soil
- 3. Add geosynthetics for support
- 4. Add chemical stabilization
- 5. Remove unsuitable and replace with select material in at least upper 2'

When evaluating soil conditions, a very poor soil may require chemical stabilization. (4"-6" ruts)

Geogrids

- Uniaxial commonly used in retaining walls (one-directional strength)
- Manufactured with high-density polymers (higher stiffness than geotextiles)
- Size of aperture is partially dependent on the selection of aggregate

Geogrids Application & Benefits

Geogrid + aggregate subbase:

- Creates stronger composite structure
- Minimizes subbase fill
- Reduce undercut
- Serves as construction platform
- Extends service life

Geogrid – Mechanical Interlock

Allows surrounding soil materials to interlock across the plane of the geogrid

SUDAS Design Manual Chapter 6H

Geogrids & Geotextiles

Figure 4. Biaxial geogrid placed at the interface of subgrade and limestone base layers

Figure 3. Triaxial geogrid placed at the interface of subgrade and limestone base layers

Central Iowa Expo Pavement Test Sections, Tech Brief Dec 2013

Iowa DOT Geogrids Specs

Iowa DOT 4196.01.B.5

Table 4196.01-5: Fabric for use as Subgrade Stabilization (Polymer Grid)

Property	Value	Test Method
Minimum tensile strength at 2% strain. Both directions.	250 lbs./ft.	GRI Test Method GG1-87
Maximum aperture. Both directions.	2 in.	Internal Dimension Measuring Calipers
Minimum aperture. Both directions.	0.5 in.	Internal Dimension Measuring Calipers
Minimum Ultimate junction strength. Both directions.	800 lbs./ft.	GRI Test Method GG2-87

Rectangular Geogrids Specs

SUDAS Specification 2010.2.04.C.5

Table 2010.02: Geogrid (Rectangular or Square)

Property	Test Method	Units	Type 1 ¹	Type 2
Aperture stability modulus at 20 kg-cm	Kinney ² - 01	kg-cm/deg	3.2	6.5
Minimum true initial modulus in use				
Machine direction (MD)	ASTM D 6637	lb/ft	15,080	32,890
Cross Machine direction (CMD)			20,560	44,725
Tensile strength, 2% strain				
MD Machine Direction	ASTM D 6637	lb/ft	270	410
CMD Cross Machine Direction	ASTIVI D 0037	ID/IL	380	590
Junction efficiency	GRI-GG2-87	%	93	93
Flexural rigidity	ASTM D 1388	mg-cm	250,000	750,000
Aperture size				
Minimum	NI/A	in	0.5	0.5
Maximum	IN/A		2.0	2.0

¹Geogrids meeting the requirements of Iowa DOT Article 4196.01, B and Materials I.M. 496.01 will be acceptable

² Dr. Thomas C. Kinney, P.E. and US Army Corps of Engineers.

Geogrid Manufacturing Process

 "Punched & Drawn" manufacturing process

- Polymers are drawn in one or two directions
- Square edges and stiff apertures promote mechanical interlock with aggregate

Rectangular Geogrids Specs

Triangular Geogrids Specs

SUDAS Specification 2010.2.04.C.5

Table 2010.03: Geogrid (Triangular)

Property		Test Method	Units	Type 3	Type 4
Aperture stability modulus at 5 kg-cm		Kinney ¹ - 01	kg-cm/deg	3.0	3.6
Resistance to loss of load capacity					
Chemical resistance		EPA 9090 Immersion	0/	00 100	00.100
Ultra-violet light a (500 hrs)	and weathering	ASTM D 4355	70	90-100	0 90-100
Junction efficiency	Load Transfer Capability	GRI-GG2-87 GRI-GG1-87	% of ultimate tensile strength	93	93
Radial stiffness		ASTM D 6637	lb/ft @ 0.5% strain	15,000	20,000
Rib Patch					
Longitudinal		NI/A	in	1 5 1 75	1 5 1 75
Diagonal		IN//A		1.5-1.75	1.0-1.70
Mid-rib depth		N/A	in.	0.04-0.06	0.05-0.08
Mid-rib width		N/A	in.	0.035-0.05	0.035-0.055

¹Dr. Thomas C. Kinney, P.E. and US Army Corps of Engineers.

Rectangular vs. Triangular

Biaxial Geogrids

- US Manufactured
- Lower Cost for equal Performance
- Positive 35 year track record

Triaxial Geogrids

- Lower Cost (\$2-\$3/SY)
 Higher Cost (\$3-\$5/SY)
 - US Manufactured
 - Proprietary
 - 8 year track record
 - Limited testing compared to BX

What About Migration of Soils?

Improper selection of materials may lead to decreased performance

Rock too small or grid too large

Rock too large or grid too small

Jorenby & Hicks Research Findings

- Used a 1" minus crushed aggregate with 5.5% initial fines
- Introduced 8% soil contamination, in steps
- Aggregate structural strength dropped 50% with only 13% total fines
- Loss of drainage capability occurs with only 8% total fines content

Excessive fines lead to decrease in Resilient Modulus (k value)

Proper Selection of Materials

Properly selected geogrid and aggregate subbase provide separation through lateral restraint.

Progressive Loss of Pavement Foundation

Distressed Pavement

Design Base Aggregate Thickness

Premise for localized or total road reconstruction is the loss of foundation support.

Solution – Provide Separation with Geotextile

Geotextiles provide separation and reinforcement

What Are Geotextiles?

Definition

- Manufactured Fabrics used with soil, rock or other earthen materials to enhance the performance and/or reduce the cost of civil engineering projects.

History of Use

- Introduced in the 1960's
- Use grew rapidly
- US 2008 Civil Construction Market, 2.5 Billion SF

Composition

- Polypropylene (PP)
- Primary Types
 - Nonwoven
 - Woven

Rolled Goods

- Up to 17.5 ft. wide
- 500 sy 600 sy per roll
- Typ. 100 500 lb. per roll

Functions of Geotextiles

Separation

Reinforcement

Cushion/ Protection

Drainage

Geotextile Specs

AASHTO M288 Lists Requirements for:

- 1. Strength (Class 1 3, with 1 the highest)
- 2. Subsurface Drainage (permittivity, opening size)
- 3. Separation (permittivity, opening size)
- 4. Survivability (depends on subgrade conditions & construction equipment)
- 5. Stabilization (strength, permittivity, opening size)

SUDAS:

Manufactured of polymer fibers, meeting the requirements of ASTM D 4439.

Permittivity is the volumetric flow through a cross section of material

Geotextiles

Woven

- High strength support
- Less permeable (4 gpm/sf)
- Used for stabilization, filtration and separation
- 10% elongation
- Cost: ~\$2 per SY (\$0.60/SY material)

Nonwoven

- Lower strength than Woven
- More permeable (100 gpm/sf)
- Used for filtration and separation
- 50% elongation
- Cost: ~\$2 per SY (\$0.65/SY material)

Made of Polypropylene fibers

Woven Geotextile

Figure 1. Woven geotextile placed on subgrade as a separation layer

Central Iowa Expo Pavement Test Sections, Tech Brief Dec 2013

Nonwoven Geotextile

Figure 2. Non-woven geotextile placed on subgrade as a separation layer

Cost Example for Improved PCC Pavement Performance

Subgrade Conditions	Approach & Costs
Wet & Unstable	Chemically treated soils 6" Cement Modified Soils = \$4.50/ Sq.Yd. 5" aggregate subbase = <u>\$6.00/ Sq.Yd.</u> \$10.50/ Sq.Yd .
After compaction, slightly wet & somewhat stable but will not pass proof rolling	Dry out soil, place woven geotextile with 5" aggregate subbase. Geotextile (woven) = \$2.50/Sq.Yd. 5" aggregate subbase = <u>\$6.00/Sq.Yd.</u> \$8.50/Sq.Yd .
Meets moisture & density control and passes proof rolling	Non woven geotextile = $$1.75/Sq.Yd.$ 5" aggregate subbase = $\frac{6.00/Sq.Yd.}{7.75/Sq.Yd.}$

IHRB TR-640

Optimizing Pavement Base, Subbase and Subgrade Layers for Cost and Performance on Local Roads

Optimizing Pavement Base, Subbase and Subgrade Layers for Cost and Performance on Local Roads

IOWA STATE UNIVERSITY

Sponsored by Iowa Highway Research Board (IHRB Project TR-640) Iowa Department of Transportation (InTrans Project 11-422)

Field Investigation

David J. White, Ph.D., P.E. Associate Professor Director, CEER

Pavana KR. Vennapusa, Ph.D. Research Assistant Professor Asst. Director, CEER Guidance for Improving Foundation Layers to Increase Pavement Performance on Local Roads

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Sponsored by Iowa Highway Research Board (IHRB Project TR-640) Iowa Department of Transportation (InTrans Project 11-422)

NOVEMBER 2014

IHRB TR-640

- PCC Pavement (16 Sites) were tested to capture range of conditions statewide
 - Pavement Age: 30 days to 42 years
 - Surface Distress Conditions: Poor to Excellent (PCI = 35 to 92)
 - Support Conditions:
 - Natural Subgrade
 - Fly Ash Stabilized Subgrade
 - 6 in. to 12 in. Granular Subbase
 - Pavement Thickness: 6 to 11 in.
 - Traffic (AADT): 110 to 8900

IHRB TR-640 Benefits of Geotextiles

Nonwoven Geotextile for Unbonded Concrete Overlay Separation Layer

Isolation (from movement in underlying pavement)

 Shear plane that relieves stress, mitigates reflective cracking and prevents bonding

Drainage

 Must channel infiltrating water along the cross-slope to a ditch or working subdrain system

Bedding

 Cushion for the overlay to reduce bearing stresses and the effects of dynamic traffic loads and prevent keying from the existing pavement

Nonwoven Geotextile for Concrete Overlay Separation Layer

Practice began in Germany 20 years ago

In 2006, a team of public/private sector rep's brought practice to US (including FHWA and AASHTO)

- 2008 First US DOT project installed in Missouri
- ▶ 2008 2017
 - Over 100 projects have been specified & installed
 - Over 100,000,000 SF of Geotextile Interlayer installed

Separation Layer Type Nonwoven Geotextile vs. HMA

Cost

- Geotextile: \$3 per SY installed (\$42k per mile)
- 1" HMA layer: \$5 per SY in-place costs (\$70k per mile)

Anti-striping agent (lime) can be used

Placement/Installation

- No need for multiple contractors or large equipment
- Fabric can be placed in more diverse conditions vs. HMA

Separation Layer Fabric Weight

< 4" Overlay – Consider 13.3 oz. / sy- Typical thickness 130 mils</p>

5" Overlay & greater – Consider 14.7 oz. /sy – Typical thickness 170 mils

2013 MnRoad Research constructed a 3" ultrathin fiber reinforced concrete overlay on a thin, 8 oz per SY fabric - continuing to monitor performance

Color of Fabric

Two Predominant Colors Used Black and White

•Black - carbon molecules which absorb Ultra-Violet

energy
Requires damping to reduce heat below 120° F.

•Use in spring and fall

White - pure polypropylene resin and reflects Ultra-Violet energy
Does not require damping to reduce heat

•Use in summer months

IOWA DOT DS-15018

Developmental Specifications for Pavement Interlayer Geotextile

Effective Date October 20, 2015

Table DS-15018.02-1:	Pavement Interlay	ver Geotextile Pro	operties

	Property	Requirement	Test Method
	Fabric Type	Non-woven Geotextile, no thermal treatment	EN 13249, Annex F
Commence	Mass per unit area	≥13.3 oz/sq.yd and ≤16.2 oz/sq.yd	ASTM D 5261
Compressed 1/8" to 1/16" under dynamic load (3-4 psi)	Thickness under load (pressure)	0.29 psi: ≥ 0.12 inches 2.9 psi: ≥ 0.10 inches 29 psi: ≥ 0.04 inches	ASTM D 5199, modified under loads of 0.29, 2.9, and 29 psi
	Tensile strength	≥ 685 lb/ft	ASTM D 4595
	Maximum elongation	≤ 130%	ASTM D 4595
	Water permeability in normal direction under load (pressure)	≥ 3.3×10 ⁻⁴ ft/s[under pressure of 2.9 psi] Longitudinal drainage	ASTM D 5493
	Water permeability in the plane direction of the fabric (transmittivity) under load (pressure)	 ≥ 1.6×10⁻³ ft/s [under pressure of 2.9 psi] ≥ 6.6×10⁻⁴ ft/s [under pressure of 29 psi] Transverse drainage 	ASTM D 6574
	Weather resistance	Resistance ≥ 60%	EN 12224
	Alkali resistance	≥ 96% Polypropylene/Polyethylene	EN 13249, Annex B
Tech Center	Note: EN is European	Standard	

Must meet AASHTO M 288, except as modified above

Route D Missouri

2008 Unbonded Concrete Overlay First U.S. project with nonwoven geotextile fabric 5" min, 6' panels 9300 AADT (5% trucks) Severe joint distress

Route D Missouri

Separation Layer Installation (Nails)

To secure the geotextile, pins or nails should be punched through 2- to 2.75-in galvanized washers or discs every 6 ft or less (Hilti Gun)

Separation Layer Installation (Adhesive)

Pins/Nails vs. Adhesive

1. Cost

- Pins/Nails: \$0.18 \$0.25/sy installed
- Adhesive: \$0.20 \$0.22/sy installed

2. Placement/Installation

 Adhesive is much quicker than pins, requires less labor

3. Performance

- Adhesive performs in 40mph wind. Geotextile pulled through pins.
- Adhesive is "non destructive", pins penetrate into pavement

Control Concrete in Front of Paver

Driving on Fabric

- Geotextile traffics well
- Avoid sudden changes in acceleration
- Avoid sharp or sudden turns leave cut outs at access points
- Wrinkles should be cut out and fixed before paving

Nonwoven Geotextiles for Unbonded Concrete Overlays - Summary

- Cost and time savings
- Over 10 million SY placed nationally since 2008
- 10 year positive performance
- State agencies continue to optimize material and construction practices

Thank you!

National CP Tech Center www.cptechcenter.org/

