

Guidance for Increasing the Use of Recycled Concrete Pavement Materials

Tara Cavalline, PhD, PE, UNC Charlotte Mark B. Snyder, PhD, PE, Pavement Engineering and Research Consultants (PERC) Tom Cackler, PE, Woodland Consulting Peter Taylor, PhD, PE, National Concrete Pavement Technology Center

Iowa Better Concrete Conference November 14, 2019

FHWA Concrete Recycling Initiative

- Part of FHWA Sustainable Concrete Pavement Program
 - Program Goals: Encourage innovation and extended application of sustainable pavement technologies on projects
- <u>Concrete Recycling Initiative</u> promote recycling of concrete pavement materials in cost-effective applications while optimizing the triple bottom line (social, environmental, economic)

44 of 50 states allow use of RCA in various applications (FHWA, 2004 + new info)

Reasons for Concrete Recycling

- Dwindling landfill space/increasing disposal costs
 - 50000 U.S. landfills accepting PCC in 1980
 - 5000 U.S. landfills accepting PCC in 2000
- Rapidly increasing demand for aggregates with limited resources
- Sustainability
 - Conservation of materials
 - Potential reduced environmental impact due to reduced construction traffic, reduced landfill
 - Cost savings
- Potential for improved pavement performance
- A proven technology it works!

IH 10 in Texas, 100% RCA CRCP, 1995 construction (photo: Andy Naranjo, TxDOT)

Overview of Concrete Recycling Initiative

- Survey of state agencies & industry
- Synthesis of existing knowledge, practice, concerns
- Identification and review of ongoing research
- Development of Technical Guidance
 - Webinars (4)
 - Technical Briefs (7)

Practitioner's Manual

Source: Phillip Lamoureux, FHWA Western Federal Lands

Key Recycling Resources: Prior to this Initiative

- ACPA EB043P (2009) Recycling Concrete Pavements
- CP Tech Center Deployment Plan for RCA in Concrete Paving Mixtures (2011)
- NRMCA Report Crushed Returned Concrete as Aggregates for New Concrete (2007)

End uses for crushed concrete

2016 Survey Findings

- Production and use of RCA is common in pavement projects
- Unbound applications of RCA (bases) are most predominant
- Agencies and contractors want to increas the use of RCA
- Opportunities exist to increase volume of RCA used
 - Threshold for economical recycling is relatively low (< 5000 cy)
 - Most agencies have less stringent technical requirements for RCA sourced from agency's own pavements
 - Agencies rely on state/federal agencies for guidance concerning environmental compliance

Some barriers exist for both bound and unbound uses

Industry Benchmarking Survey

Application	Percentage (% use)
Granular subbase	40
Crushed products for other markets	18
Embankment (includes backfill)	12
Coarse concrete aggregate	9
Other (given to owner agency)	7
Chemically stabilized granular subbase (CTB, lean concrete etc.)	4
Haul road	3
Granular shoulder material	3
Fine concrete aggregate	2
Surplus fines	1
Plant site subbase	1
Erosion control applications	0
Slope stabilization materials	0
Underdrain filter material	0
Rip rap	0

Survey Findings – Agency Barriers

Survey	Barriers	Average
Question		response
Barriers for	gradation issues (particularly fines)	2.5
RCA use in	potential environmental impacts (from runoff, leachate, etc.)	2.3
pavement	cost of producing RCA	2.0
foundations	potential for concrete exhibiting materials-related distress to be incorporated into bases	1.9
	concerns with RCA foundation strength and/or stability	1.7

Barriers for	alkali-silica reactivity (ASR) or D-cracking potential of the RCA	3.5
RCA use in	availability of good, inexpensive natural sources of aggregate	3.3
new concrete	concerns with concrete workability	3.0
mixtures	economics	
	lack of guidance on concrete mixture designs with RCA	2.9
	concerns with concrete shrinkage	2.6
	concerns with concrete strength	2.4

Scale: 0 = not a significant barrier to 5 = significant barrier

NEW CONCRETE RECYCLING RESOURCE DEVELOPED AS PART OF THIS INITIATIVE:

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

Recycling Concrete Pavement Materials -Practitioner's Reference Guide

Ch. 1: Introduction to Concrete Pavement Recycling

Ch. 2: Economics and Sustainability

Ch. 3: Project Selection and Scoping

Ch. 4: Using RCA in Pavement Base Products

Ch. 5: Using RCA in Unbound Aggregate Shoulders

Ch. 6: Using RCA in Concrete Paving Mixtures

Ch. 7: Mitigating Environmental Concerns

92 pages of useful technical info, many case studies, and up-to-date implementation guidance

Tech Center

Chapter 1: Introduction

- Brief historical background
- Summary of benefits of concrete pavement recycling
 - Economic benefits
 - Cost savings as high as \$5M on a single project (CDRA 2008)
 - Illinois Tollway >\$45M savings in materials and hauling costs recycling 3.4 million tons of concrete 2008-2016
 - Environmental benefits
 - Introduced, covered extensively in Chapter 2
 - Impact of using RCA on concrete pavement performance
 - RCA may offer improved performance particularly in bases (Ch 4 and 5)
 - Acknowledges impact of RCA on concrete properties, but provides readily implementable strategies to address these impacts (Ch 6)

Ch. 2 Economics and Sustainability

Concrete recycling addresses sustainability "Triple Bottom Line":

- Environmental benefits
 - Conservation of aggregates
 - Reduction of landfill use
 - Reduction of greenhouse gases, sequestration of carbon

<u>Economic benefits</u>

- Metals recovery
- Fuel savings due to reduced haul distances
- Reduced disposal costs
- Extension of landfill life
- Potential tax credits, other incentives
- Societal benefits
 - Reduced land use and reduced impact to landscape

Quantifying Sustainability Benefits

Measurement tools can be used to quantify sustainability benefits, weigh alternatives and facilitate decision-making.

<u>Economic Analysis</u>

- Life Cycle Cost Analysis, LCCA

<u>Environmental Assessment</u>

- Life Cycle Assessment, LCA

- <u>Rating Systems</u>
 - INVEST
 - Greenroads
 - Envision
 - Others

Incorporate recycling activities into these tools to quantify sustainability benefits

	Economic Analysis	Environmental	Rating Systems	90
	(LCCA)	Assessment	(Greenroads, Invest,	Tech Center
		(LCA)	Envision, etc.)	
	> Agency costs	Functional unit	Most consider pavement as a	
	Pavement costs		contributing subsystem to a larger	
too	Non-pavement costs (such as	System boundaries	system or project such as:	
to	safety, engineering, inspection,	Inputs of row motorials	 Infrastructure project Boadway project 	
Ч	testing)	Inputs of raw materials, feedstock and energy	Roadway projectSite development project	
each	User costs	recustock and energy	 Agency sustainability effort 	
6 G	Vehicle operating costs	Outputs of waste and	Agency sustainability chort	
L	Travel delay costs	pollution	Factors considered often include:	
for	Crash costs	P	Ecological impact	
้าร	"Equivalent" designs	Impacts of transport	Community impact	
5	Rehabilitation options and		Connectivity	
ti	schedules	Evaluate over the	Aesthetics	
La	Time to first activity	following phases:		
he	Activity life	Raw material	Rating systems differ by:	
considerations	Cost of activities	acquisition	Grouping of performance	
Ü	Analysis period	Material processing	criteria	
2	 Discount rate (inflation/\$cost) 	Manufacturing Construction	Delineation and computation of	
	End of Analysis (Residual) Value	ConstructionUse	metricsThresholds for obtaining points	
eral	Remaining service life	End-of-Life	and ratings status	
	Salvage value		 Certification methodology (self- 	
en	 Value as recycled materials 		certification or third-party	
U	 Demolition costs and landfill 		certification)	
	tipping fees			
				15

	Economic Analysis	Environmental	Rating Systems
	(LCCA)	Assessment	(Greenroads, Invest,
		(LCA)	Envision, etc.)
Specific considerations for <u>recycling activities</u> can include:	 Economic costs of alternatives to recycling purchase and hauling costs for virgin material landfill tipping fees for disposal of existing material Economic costs of recycling hauling costs crushing/grading equipment (onsite or offsite) contractor efficiency production efficiency 	 Fuel consumption Emissions Non-renewable resource use Freshwater use Hazardous and non- hazardous waste generation Local impacts such as noise and dust 	 Amount of materials reused (mass or volume percentage) Method of recycling utilized Use of recycled materials in new mixtures Emissions reductions Noise reductions Planning initiatives End-of-life considerations

Quantifying Sustainability

- Beltline Highway Madison, WI
 - OF TRAN 1.5 mile segment reconstructed using a variety of recycled materials
 - RCA used in base course or embankment fill
 - 9,870 CY of RCA from onsite material utilized, crushed and graded onsite
 - Additional RCA sourced from offsite
 - Source concrete qualified for use using WisDOT's specifications
 - Require AASHTO T 96 abrasion testing for off-site materials

Photo: Steven Theisen, WisDOT

UEPART

Quantifying Sustainability

OF TRANSPORT

- Beltline Highway Madison, WI
 - − LCCA \rightarrow cost savings of approx. \$130,000 at initial construction from RCA use
 - − LCA \rightarrow lifetime environmental impact reductions of:
 - Energy use (13% reduction),
 - Water consumption (12% reduction)
 - CO₂ emissions (13% reduction)
 - Hazardous waste (9% reduction)
 - LCA was performed with PaLATE tool (Horvath 2007, detailed in Bloom et al. 2016)

Photo: Emily Bloom, UW-Madison

Quantifying Sustainability

• Illinois Tollway

- Move Illinois: 15-year, \$12.1B program started 2011
- Extensive use of recycled materials
- LCCA used to identify \$50M in savings (through 2014) by use of recycled concrete rather than virgin aggregate in pavement bases.
- Modified version of INVEST rating system developed to adapt to Tollway needs, used to score (and compare) over 15 projects
- Tools for LCA for pavements developed and have been in proof-testing (since early 2016)
- Plans to integrate LCA with LCCA software and INVEST rating system (Gillen et al. 2015 and Gillen and Vavrik 2016)

Ch. 3 Project Selection and Scoping

Structured around a <u>flowchart</u> showing typical project selection and scoping process

- Includes checklist of considerations for use of RCA in different applications
 - Materials considerations
 - Production considerations
 - Other considerations

Ch. 3 Project Selection and Scoping

Checklist of considerations for use of RCA in different applications

RCA use	Materials	Production	Other		
	considerations	Considerations	considerations		
New RCA concrete and stabilized base materials		 Processing options 	 Project staging 		
Unbound bases and drainage layers	SourcesSpecifications	HaulingCrusher typesProduction	 Costs Environmental considerations 		
Filter material around drainage structures		rates/storage • QA/QC	PermittingPublic		
Fill (beneficial reuse of fines) not in pavement structure		 Residuals management 	perception		
! Highly simplified table shown here ! See Reference Guide for all details					

Ch. 4 Using RCA in Pavement Base Products

Unbound aggregate base applications

- Performance concerns
 - Structural issues
 - Drainage issues
- Qualification testing
 - General
 - Gradation
 - Other tests (abrasion, soundness, etc.)
- Subbase design and construction considerations
- Concrete pavement design considerations
- Environmental considerations

Bound (stabilized) base applications

- Lean concrete subbase and cement-stabilized subbase
- Asphalt concrete and asphaltstabilized subbase

Includes example projects for each application

Ch. 5 Using RCA in Unbound Aggregate Shoulders

- Constructability considerations
 - particle degradation during rolldown
 - moisture-density control
 - other concerns
- Qualification testing
 - gradation
 - Absorption
 - LA abrasion/MicroDeval
 - unconfined compression
 - Other tests
- Examples and Case Studies

Ch. 6 Using RCA in Paving Mixtures

- Constructability considerations

 Fresh properties
- Pavement design considerations
 - Hardened properties
- Developing concrete mixture designs using RCA
 - Qualification Testing
 - Proportioning
- Examples and Case Studies
 - D-cracking aggregate
 - ASR
 - Continuously reinforced concrete pavement

Ch. 7 Mitigating Environmental Concerns

- Legislative and regulatory considerations
- Overview of potential environmental concerns
 - water quality
 - air quality
 - noise/local impacts
 - waste generation
- Mitigating environmental concerns during project planning and design
 - Focus on water quality issues
- Mitigating environmental concerns <u>during construction</u>
 - Strategies for mitigating issues on-site

Potential Environmental Impacts

- Water quality
 - Contaminants in runoff and drainage
 - Alkalinity, chemical contaminants, other
 - Transported sediments
- Air quality
 - Equipment emissions
 - Fugitive dust
- Noise, other local impacts
 - Additional processing, handling
 - Traffic
- Waste generation and disposition
 - Solids, wastewater, slurries

Photo: Dwayne Stenlund, MnDOT

Must be mindful of (and mitigate) adverse environmental impacts. Treat RCA as an engineered material.

Planning and Design Considerations

Characterization of the Source Concrete

Considerations:

- Known (agency) or unknown source
- Exposure conditions during service
- Visual observations in service or demolished

Concrete from known agency project(s)

- Testing for environmental toxicity <u>not needed</u>
- To promote recycling, ensure specifications excempt material from environmental toxicity testing and hazardous materials considerations

Concrete from unknown project(s) or unknown/suspect exposure sonditions

- Testing for environmental toxicity may be warranted
- Incorporate specification provisions that:

 do not allow concrete from these sources for recycling, or
 provide guidance for environmental toxicity testing in accordance with appropriate agency regulations or goals (e.g. leaching tests, waste classification regulations, etc.) Concrete exhibiting contamination beyond that which could be reasonably expected from typical in-service highway conditions OR Exceeding AASHTO M319-02 guidance on contamination limits

Not recommended for recycling

Mitigating Environmental Concerns: <u>Planning and Design</u> Considerations

 Planning considerations and design techniques that protect water quality

RCA Use	Environmental Consideration			Mitigation Strategies		
Unbound bases		Source concrete Mitigation strategic specifically for con	• Source concrete preq • Source concrete preq Cite and useration gu Mitigation strategies are provided specifically for concrete recycling		guidance os, bioswales, ons)	
Fill (beneficial reuse of fines)	High pH leachatePollutants in leachate		 Detailed site and vegetation guidance provided 			
New RCA concrete mixtures	 Contamination / pollutants from source concrete 			None required		

Mitigating Environmental Concerns: <u>Construction</u> Strategies and Controls

• Construction Controls to Protect the Environment

	Mitigation Strategies					
Consideration	Location		Site Layout and Controls	Process Controls	Operations	
Air quality (emissions and dust)	 Wind considerations Natural topography / features 		 Hauling strategies Site maintenance Wind screens	 Misters Maintenance / operations of plant & vehicles 	 Strategies for weather, vehicle operations, stockpiles 	
Water quality	 Processing/stole location guida Washing equi 	Mit	• Rupoff trenches igation strategies are provid ecifically for concrete recyclin related activities.			pile ement olids treatment ize crushing
Waste generation	 Washing equipation of the second se		 Two-way transport 	 reduction and treatment Chutes / conveyors 	fines	Ŭ
Community impacts	considerations		Noise attenuation			g of operations

Minimizing Jobsite Footprint

"Be wary of sensitive receptors" (DETR 2000)

Reduce impacts from

- noise
- traffic
- light
- dust
- water
 pollutants

Site selection: Onsite vs. offsite

Well-implemented onsite material crushing program. Water spray source was freeze depressed by addition of automobile window wash fluid (from Dwayne Stendlund, MnDOT)

Reducing Jobsite Impacts (DETR 2000)

LOCATION

- On-site recycling (or close)
- Location away from sensitive areas
- Account for prevailing wind conditions
- Use buildings, natural topography, or vegetation as wind screen
- Provide noise attenuation barriers

SITE LAYOUT

- Minimize haul distances
- Encourage two-way transport to reduce trips
- Reduce vehicle movements

SITE CONTROLS

- Haul road surfacing, chemical stabilization of surfaces
- Application of water misters, spray rigs/nozzles for prewetting

Photo: Dwayne Stenlund, MnDOT

Reducing Jobsite Impacts (DETR 2000)

OPERATIONS

- Work during periods of low wind velocities
- Minimize drop height of material
- Use chutes/conveyors
- Reduce vehicle speeds
- Shrouds, tarps on haul trucks
- Vehicle wheel and chassis washes
- Stockpile controls
 - Limit height of stockpiles and disturbance
 - Cover or provide a three-sided wind barrier
- Maintain vehicles and plant equipment
 - Maximize fuel efficiency, utilize emissions checks
 - Avoid leaving plant equipment and/or vehicles operating unnecessarily

reducing vehicle speeds from 30 mph to 20 mph reduces dust emissions by 22 percent (BCPH 2017)

Photos: Dwayne Stenlund, MnDOT 32

Stockpile Management – Best Practices

- For RCA, many states generally refer to handling/stockpiling practices for conventional aggregates
- Store material sourced from different types of concrete in separate stockpiles

"Clean" stockpile for RCA production

Stockpile of broken concrete with excessive fines

Photos: Iowa DOT - IM 210

Stockpile Management - Best Practices

- Select location to mitigate impact on surface waters
- Traditional physical controls
- Redundant perimeter
 controls
 - Berms, straw bales, filter channels
 - Silt fences
 - Trench encircling stockpile
 - Control drainage to maintained sediment trap
 - Nearby stormwater inlets off-line

Stockpiles for crushing set inside roadway depression with inlets offline (source: Dwayne Stenlund, MnDOT)

Stockpile Management - Best Practices

Demolished material stockpiled beneath bridge prior to crushing. Silt fence and upland vegetative buffer used. High-performance perimeter control using concrete blocks wrapped in geotextile fabric.

Could also use crushed concrete wrapped in geotextile.

RCA can actually be used in stormwater BMPs as filter material!

RCA used as filter for concrete slurry removal produced by other processes

- Salvaged RCA base reclaimed as berm for perimeter control of sawcutting slurry, along with sediment control "log."
- Water exits clear, checked for pH, adjusted to 7.0 ± 1.0 using CO₂ bubblers

Stockpile Management – Best Practices

- Control height (WSDOT 24 ft max)
- Minimize fines
- Moisture control recementing of particles
 - Bigger issue in stockpiles of fine aggregate
 - surface area, contact area
 - Open graded materials may not become recemented within short term (1 year) (Snyder 1996)
- Covers geotextile or plastic
- Mist area with water for dust control

Plastic cover and perimeter berm

Water Quality – Perimeter Control

Source: Dwayne Stenlund, MnDOT

Perimeter control at waterway near demolition and concrete crushing operations

- geotextile wrapped Jersey barriers
- RCA filter berm on inside
- water for dust suppression

Webinars:

http://www.cptechcenter.org/concrete-recycling/

1) Introduction to Concrete Pavement Recycling (Mark Snyder and Tara Cavalline)

2) Environmental Considerations in Concrete Pavement Recycling (Tara Cavalline)

3) Construction Considerations in Concrete Pavement Recycling (Gary Fick)

4) Case Studies in Concrete Pavement Recycling (Mark Snyder)

Tech Briefs

- Introduction to Concrete Recycling
- Quantifying the Sustainability Benefits of Concrete Pavement Recycling
- Concrete Pavement Recycling Project Selection and Scoping (MAP Brief)
- RCA in Unbound Aggregate Shoulders
- RCA in Concrete Paving Mixtures
- Mitigating Environmental Concerns During Project Planning and Design
- Mitigating Environmental Concerns During Construction

http://www.cptechcenter.org/concrete-recycling/

Acknowledgments

- Mark Snyder, PhD, PE, Engineering Consultant to the CP Tech Center
- Tom Cackler, Woodland Consulting, Inc.
- Dale Harrington, Snyder & Associates
- Peter Taylor, Iowa State University, CP Tech Center Director
 - American Concrete Pavement Association
 - Applied Research Associates, Inc. (formerly ERES Consultants)
 - Gary Fick, Trinity Construction Management Services, Inc.
 - Federal Highway Administration
 - Jeff Roesler, University of Illinois at Urbana-Champaign
 - Jeff Sturtevant, Prof. David Gress and the University of New Hampshire Recycled Materials Resource Center (RMRC)
 - Jim Foringer, PennDOT District 11-0
 - Maria Masten, Minnesota Department of Transportation
 - Moon Won, Texas DOT and University of Texas
 - Todd Hanson, Iowa Department of Transportation

Questions?

