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Cement and concrete are often viewed as problems

Architects should give up concrete 
say experts at Architecture of 
Emergency climate summit
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Embodied carbon in cement and concrete is on the radar of 
politicians and NGOs

City of Portland
Marin County
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Cement and concrete are critical to meeting societal goals

Meeting UN sustainable 
development goals

Addressing affordable 
housing shortage

Decreasing costs from 
natural disasters
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Quantitative sustainability assessments require a life cycle 
perspective and trade-off analysis
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A life cycle perspective should be used to evaluate potential 
to contribute to sustainability targets

Materials 
Production
• Use recycled 

materials
• Improve energy 

efficiency
• Improve material 

performance

Design & 
Construction
• Use less 

(i.e., stronger) 
material

• Create longer-
lasting designs

Use
• Reduce vehicle 

fuel consumption
• Reduce building 

energy 
consumption

• Reduce heat 
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End-of-Life
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• Increase 
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Concrete is a low-impact material

Source: Barcelo et al, 2014
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Concrete is the most used building material in the world

Source: Monteiro et al, 2017
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Concrete is a significant portion of nearly all buildings
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Concrete is a mixture that can be designed to meet 
performance requirements

Coarse aggregates

Fine aggregates

Binder

Water

Admixtures

Concrete Constituents
• 28-Day strength
• 3-Day strength
• Modulus of elasticity
• Density
• Slump
• Thermal control
• Chloride permeability
• Alkali-silica reaction
• Freeze-thaw
• Other durability

Performance Requirements
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Cement drives concrete’s environmental impact

Cement
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3000 psi mixture with no SCMs
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There are numerous solutions available today
for lowering concrete’s environmental impact
C
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t • Alternative fuels
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• Clinker replacement
• Cement formulation
• Carbon sequestration 

at cement plant
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in cement production C
on
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et

e • Cement replacement
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production

Bold = widespread 
use today
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Recommendations for reducing embodied impacts

1. Promote adoption of energy efficiency technologies for new 
and retrofit cement plants

2. Encourage and facilitate increased use of alternative fuels in 
cement plants

3. Encourage and facilitate use of blended cements 
4. Support development and deployment of carbon capture, 

use, and storage technologies for cement and concrete 
production

5. Support deployment of performance-based specifications for 
concrete and EPD reporting to spur innovation in low-carbon 
concrete mixtures

Adapted from WBCSD-IEA Technology Roadmap for Cement Industry
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A life cycle perspective should be used to evaluate potential 
to contribute to sustainability targets

Materials 
Production
• Use recycled
• Reduce energy
• Improve material 

performance

Design & 
Construction
• Use less 

(i.e., stronger) 
material

• Create longer-
lasting designs

Use
• Reduce vehicle 

fuel consumption
• Reduce building 

energy 
consumption

• Reduce heat 
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recovery
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GHG reduction opportunities for concrete, buildings, and 
pavements

Buildings Opportunities:
• Lower embodied impacts
• Increase thermal 

efficiency
• Increase lighting and 

appliance efficiency
• Decarbonize grid

Pavements Opportunities:
• Lower embodied impacts
• Increase albedo
• Increase carbonation
• Decrease deflection
• Decrease roughness

Gt CO2-eq

How to Cut U.S. Emissions Faster? Do What These Countries Are Doing. (NYTimes, Feb 2019)
2000

2050

2018

6.5

1.5
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Energy use dominates building life cycle impacts
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Results applicable for this case study only

Global 
Warming 
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Ref: MIT CSHub, Methods, Impacts, and 
Opportunities in the Concrete Building Life Cycle 

Building life cycle global warming potential (60 years)

http://cshub.mit.edu/sites/default/files/documents/MIT%20Buildings%20LCA%20Report.pdf
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Architecture 2030 claims that embodied carbon is significant

Approach: top-down estimate based on global economic and energy sector data

Embodied

Operational
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Our analysis of the US shows a very different picture

Approach: bottom-up estimate based on modeling of US buildings
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There are opportunities to reduce embodied carbon, 
but opportunities for operational carbon are much larger
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Excess fuel consumption dominates pavement life cycle impacts

Asphalt Pavement Concrete Pavement

Materials & 
Construction

26%

Use
66%

Maintenance 
& 

Rehabilitation
6%

End-of-Life
2%

Materials & 
Construction

26%

Use
72%

Maintenance 
& 

Rehabilitation
0%

End-of-Life
2%

Pavement design developed by Applied Research Associates (ARA), Inc,: 
AADTT 8k/day; 6 lanes; MO (wet freeze); MEPDG-based rehabilitation schedule.

Life cycle 
greenhouse 

gas emissions 
for urban 
interstate 

pavements in 
Missouri

*metric tons
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Pavement asset management strategies affect network 
performance
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A mix of fixes lowers network GHG emissions

GHG emissions due to roughness-induced excess fuel consumption on US routes in Iowa

Short-term treatments Mix of fixes

Cumulative reduction of 6000 tons of CO2 over 20 years
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Measure pavement roughness using Carbin app



Slide  24

Crowdsourced data can support asset management

http://www.fixmyroad.us/

156,391 miles
28 countries
10,002,420 data points

http://www.fixmyroad.us/
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Increasing pavement albedo nationwide has significant 
potential for global warming potential savings

Highest GWP savings:
equivalent to removing 
756,317 or 9%, of 
passenger vehicles from 
Texas roads for one year.

Unit: kton CO2-eq/year

Annual GWP savings from radiative forcing due to 0.2 albedo increase 
in all urban and rural roads across the U.S. 

Nationwide, savings would be equivalent to removing nearly 9.4 
million, or roughly 8%, of passenger vehicles
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Carbon uptake in concrete over time

Source: Xi et al, Nature Geoscience, 2016

4.5 GtC has been sequestered 
in carbonating cement 
materials worldwide from 1930 
to 2013, offsetting 43% of 
process CO2 emissions

Factors that affect carbon uptake rate:
• Exposed surface area
• Concrete mixture
• Climate



Slide  27

Recommendations for reducing life cycle impacts

1. Buildings: enable reduction of energy consumption 
through energy-efficient design

2. Pavements: 
1. Enable reduction of vehicle excess fuel consumption through 

smoother and stiffer pavements at project level
2. Employ mix of fixes to lower roughness in asset management
3. Create cool pavements through higher albedo

3. Carbon uptake: request estimates of uptake in concrete 
structures
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Quantitative sustainability assessments require a life cycle 
perspective and trade-off analysis
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cshub@mit.edu
http://cshub.mit.edu/
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