

Webinar Agenda

- Welcome and Introduction
- Concrete Pavement Smoothness Specifications
- · Guidelines for Building Smooth Concrete Pavements
- Real-Time Smoothness and Other Tools for Monitoring Smoothness
- Q&A

TRANSTEC GROUP

- Welcome and Introduction
- Concrete Pavement Smoothness Specifications
- · Guidelines for Building Smooth Concrete Pavements
- Real-Time Smoothness and Other Tools for Monitoring Smoothness
- Q&A

Current (2019) Specifications for PCCP: IRI Basis

 Summary of IRI-based specification thresholds for concrete pavement (28 states)

	Incentive Upper Limit	Full Pay Lower Limit	Full Pay Upper Limit	Disincentive Lower Limit	Disincentive Upper Limit	Threshold for Correction
Min	39.9	40.0	54.0	54.1	67.5	67.5
Max	68.0	68.1	93.0	93.1	140.0	140.0
Avg	56.8	57.1	72.3	71.8	94.2	93.9

 Summary of IRI-based specification incentives and disincentives (28 states)

National Concrete Pavement Technology Center

Incentive/Disincentive Bas	Max Incentive	Max Disincentive	
	Min	\$200	-\$250
\$ per lot (0.1-mi) 14 states	Max	\$1,700	-\$2,250
	Avg	\$1,087	-\$1,088
	Min	\$0.50	-\$1.12
\$ per lot (SY) 3 states	Max	\$2.80	-\$1.12
	Avg	\$1.65	-\$1.12
\$ per lot (1.0 mi) 1 state		\$7,350	-\$7,350
\$ per lot (0.01 mi) 1 state		\$50	-\$500
\$ per lot (500 ft) 1 state		\$250	-\$250
	Min	\$200	-\$250
All \$ per 0.1 mi lot, extended 20 states	Max	\$1,971	-\$5,000
	Avg	\$1,002	-\$1,240
	Min	101%	97%
Pct. Contract Price 8 states	Max	108%	50%
	Avg	105%	80%

Current (2019) Specifications for PCCP: Localized Roughness Provisions

- Why IRI?
 - Objective measure of pavement Ride Quality, not just Smoothness.
 - Simulates vehicle response (suspension motion) to the true pavement profile.

- Why switch to IRI?
 - Inertial Profiler (IP) technology is readily available and affordable.

- Why switch to IRI?
 - IP sensor issues with longitudinal tined/diamond ground surfaces have been resolved with wide footprint sensors.
 - Efficiency of data collection
 - Safety for workers
 - HPMS reporting uses IRI

TRANSTEC GROUP

TRANSTEC GROUP

- Model Specification for PCCP Smoothness
 - · Incentive-based IRI specification for new construction
 - Based on AASHTO R 54 with added commentary
 - Agencies can adapt to state-specific practices/preferences
 - Provides a summary of national averages for IRI thresholds and pay adjustments
 - Addresses key issues specific to concrete pavement
 - JPCP curl/warp diurnal changes in profile and roughness, time of day for profile data collection
 - Highlights importance of QC and tools such as real-time smoothness

- Materials and Mixtures
 - Performance engineered mixtures (PEM), optimized for:
 - Durability of the mixture
 - Economics
 - Sustainability
 - Utilization of locally available materials
 - Workability of the mixture
 - Other performance objectives

National Concrete Paveme Technology Center

- Materials and Mixtures
- Response to vibration in the lab
 - Box test

National Concrete Pavement echnology Center

Vkelly

Technology Center

• The paver is the field QC test

TRANSTEC GROUP

Guidelines for Building Smooth Concrete Pavements

- Mixture Production
 - 1. Supply uniform concrete to the paving operation
 - 2. Produce and deliver the concrete at a rate that will allow the paving operations to maintain a consistent speed with minimal paver stops (consistent delivery)

National Concrete Pavement Technology Center

Guidelines for Building Smooth Concrete Pavements

- Mixture Production
- Uniformity, Uniformity, Uniformity
 - Within batch

National Concrete Paveme Technology Center

Between batch

• Mixture Production

		Factors	Recommendations	
	 Uniformity 	Mixture proportions	Calibrate scales and water meters regularly to assure that mixture proportions are within specified tolerances.	
			Maintain stockpiles at a moisture content above saturated surface dry (SSD).	
			Draw aggregates from areas of the stockpiles that have known moisture contents.	
		Total water content	Update moisture compensation values in the plant control system to match the aggregate stockpile moistures. Moisture content testing of the aggregate stockpiles and adjustment of the moisture compensation value should be performed at least twice per day and more frequently if	
			Reject aggregates that do not meet job mix formula tolerances.	
		Aggregate gradation	Observe proper stockpiling techniques to minimize segregation. Blending of individual aggregate stockpiles may improve uniformity and mitigate moisture variability.	
		Air content	Monitor air content at the plant and adjust admixture dosages as needed.	
		Segregation of the mixture during transport	Maintain the haul route in a manner that minimizes excessively rough sections which can segregate the concre mixture in non-agitating trucks.	
	National Concrete Pavement Technology Center		TRANSTEC GROUP	

Guidelines for Building Smooth Concrete Pavements

- Equipment Setup
 - Paving mold
 - Vibrators
 - Tiebar inserter(s) centerline and/or pavement edge
 - Dowel bar inserter (DBI)
 - Steering and elevation control (stringline or 3-D machine control)
 - Dry run

National Concrete Pavemer Technology Center

TRANSTEC GROUP

- Slipform Paving Mixture adjustments
 - Subtraction/Addition of water (not to exceed the w/cm of the approved mixture design)
 - Adjustment of admixture dosages
 - Minor reproportioning of aggregates
 - Heating or cooling the mixture

TRANSTEC GROUP

TRANSTEC GROUP

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Process Adjustments
 - · Make measured and methodical adjustments one at a time
 - Be data driven
 - Keep a meticulous log of process adjustments and events that have the potential to impact pavement smoothness measurements

- Slipform Paving Subbase Preparation
 - Finished to appropriate tolerance (±0.01')
 - Maintain a uniform head of concrete

TRANSTEC GROUP

TRANSTEC GROUP

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Trackline
 - Adequate width
 - Finished to appropriate tolerance (±0.01')
 - Stable

National Concrete Paveme Technology Center

- Slipform Paving Stringline
 - Stringline pins spaced at no greater than 25 ft. c/c
 - Tension the stringline using a winch. Check and re-tension stringline that has been in place for more than five days
 - Raise the stringline where the base course is high (less than design thickness of concrete pavement will be constructed)
 - "Eyeball" adjust the stringline for smoothness

TRANSTEC GROUP

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving 3D Controls
 - Evaluate IRI of the model
 - · Monitor the following:
 - Distance between the robotic total station and the paver
 - Line of sight issues between the robotic total station and the prism mounted on the paver
 - High winds causing movement to the robotic total station and/or the prism mounted on the paver
 - 3-D system errors (radio, software, hardware, wiring, batteries, etc.)

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Spreading Concrete
 - React to changes in concrete head level quickly
 - Communication is key

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Paver Speed
 - Minimize stops
 - · Consistent speed
 - Slow down when necessary, but not too much
 - "Rhythm"

National Concrete Pavem Technology Center

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Vibrators
 - Frequency is speed dependent
 - Rebound from stiff base
 - Adjust height

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Paver Attitude (Lead/Draft)
 - Stay as flat as practical
 - One person responsible for adjustments
 - Reduce lead/draft when paving uphill
 - Increase lead/draft when paving downhill

- Slipform Paving Hydraulic Response (sensitivity)
 - Slight adjustments can have significant impacts

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Hand Finishing
 - When done correctly, it improves initial smoothness
 - Many different approaches
 - Float to fill surface voids first (16' to 12')
 - Straightedge to cut bumps and fill dips last (16' to 20')

National Concrete Pavemer Technology Center

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Texture and Cure
 - Even with line lasers, texture will influence IRI results strive for uniformity
 - · Cure completely to mitigate early age warping effects on IRI

 Slipform Paving – Real-Time Trace 2 100% GSI: 54.07 in/mi ft/min: 0.00 **Smoothness** QC feedback loop reduced from 18 hours to 2 hours 030+41 st 1031+03 st 1031+65 s Not a replacement for Trace 1 GSI: 53.48 in/mi conventional profiling for acceptance Not a replacement for <u>better</u> 1030+41 st 1031+03 st 1031+65 practices to construct Datalog File Setup 07172016-3 File smoother pavements Stop Status Logging Report View Realtime O History National Concrete Pavemer Technology Center TRANSTEC GROUP

Guidelines for Building Smooth Concrete Pavements

- Slipform Paving Real-Time Smoothness
 - · Sensor generally placed in the center of each lane
 - Systematically make changes in small increments
 - Get a minimum of 0.1 mile with consistent paving (no big events) and then evaluate if the adjustment made things smoother
 - Continue adjusting in small increments and evaluating every 0.1 mile

National Concrete Pavement Technology Center

Guidelines for Building Smooth Concrete Pavements

- · Check your hardened profiles after each day of paving
- Check your profiles as you pave with Real-Time Smoothness

ProVAL Software: Analysis Tools

Smoothness Assurance Module (SAM)

- · Side-by-side comparison of profile and roughness
- Diamond grinding simulation will it help?

ProVAL Software: Analysis Tools

Power Spectral Density (PSD)

- Identify dominating (repeating) features to contribute roughness.
- Helps to identify potential issues in the paving operation.

Real-Time Smoothness

• Real-time feedback, viewing and analysis capabilities:

Real-Time Smoothness: Comparison with Hardened Profiles

• Raw profiles are different but trends are similar

Real-Time Smoothness: Comparison with Hardened Profiles

- There is no fixed correlation between RTS and hardened numbers.
- In general, RTS numbers will always be higher, but the degree is project/crew/equipment specific.
- Any correlation will need to be established during the first few days of paving.
- Rule of thumb: the higher the RTS numbers, the greater the difference between RTS and hardened, the lower the RTS numbers, the smaller the difference.

TRANSTEC GROUP

Real-Time Smoothness: Comparison with Hardened Profiles

	Project A					
	Segment	RTS IRI (in/mi)	QC MRI (in/mi)	Difference (in/mi)		
Day 1	1	113.2	67.0	46.2		
	2	77.3	57.0	20.2		
	3	79.9	64.6	15.3		
	1	90.0	53.2	36.7		
Day 2	2	108.9	77.5	31.4		
	3	114.4	57.2	57.1		
	1	111.7	65.3	46.4		
Day 3	2	118.2	71.0	47.2		
Dayo	3	116.4	68.0	48.4		
	4	94.9	61.9	33.1		
Day 4	1	122.6	64.5	58.1		
Duy 4	2	122.5	61.9	60.7		
	Avg.	105.8	64.1	41.7		

Project B RTS IRI QC MRI Difference Segment (in/mi) (in/mi) (in/mi) 66.2 61.1 5.1 Day 1 2 65.7 62.2 3.5 58.0 48.8 9.2 1 59.3 51.6 7.7 2 594 477 11 7 Day 2 3 62.5 45.1 17.4 л 54.3 48.2 6.2 1 54.7 44.1 10.6 2 65.6 57.8 7.8 Day 3 3 69.6 57.6 12.0 4 70.9 61.1 9.8 58.1 53.0 5.1 1 2 91.8 66.3 25.4 Day 4 3 71.2 54.3 17.0 86.5 66.5 20.1 Avg 66.3 55.0 11.2

Joint spacing/dowel basket effects

• Project utilizing Dowel Bar Inserter

• Stringline and Stringless System Effects

• Load Spacing

• Localized roughness – improvement from finishers

Webinar Recap

- ✓ We reviewed the current state-of-the-practice for concrete pavement smoothness specifications.
- ✓ We discussed guidelines for best practices for constructing smooth concrete pavements.
- ✓ We discussed ProVAL and Real-Time Smoothness as tools for monitoring pavement smoothness during construction.

TRANSTEC GROUP

