Integrated Materials and Construction Practices for Concrete Pavement

2nd Edition

National Concrete Pavement Technology Center

Purpose

A resource to:

- Bridge the gap between research and practice
- Encourage good practices
- Provide practitioners with tools to design, build, and maintain concrete pavements
- Help practitioners improve communication between practice areas

Learning objectives

- Understand concrete pavements as integrated systems
- Appreciate that constructing a concrete pavement project is a process involving interrelated practices
- Implement technologies to optimize performance
- Recognize and avoid factors leading to premature distress
- Access how-to and troubleshooting information

Audience

Anyone interested in optimizing concrete performance

- Engineers
- Quality control (QC) personnel
- Specifiers
- Contractors
- Materials and equipment suppliers
- Technicians
- Construction supervisors
- Tradespeople

What's New

This edition is an update:

- Sustainability
- MEPDG
- PEM
- RTS

Authors

- Peter Taylor
- Tom Van Dam
- Larry Sutter
- Gary Fick

Review by

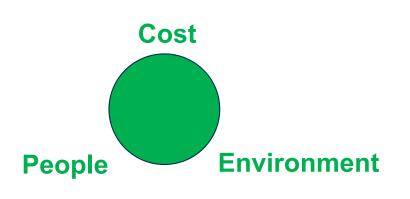
- TAC
- Previous authors

Overview

- 10 Chapters
 - Sustainability
 - Design
 - Materials and Mixtures
 - Construction
 - Quality
 - Troubleshooting

Contents

Chapter 2 Basics of Concrete Pavement Sustainability


- What is Pavement Sustainability?
- Concrete Pavement Design
- Materials
- Construction

What is Sustainability?

A sustainable pavement is one that achieves its specific engineering goals, while:

- It meets basic human needs
- Uses resources effectively
- Preserves/ restores surrounding ecosystems

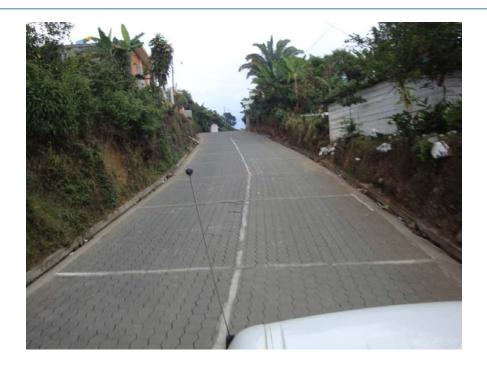
"Meet[ing] the needs of the present without compromising the ability of future generations to meet their own needs" [wced 1987]

Muench and Van Dam

Strategies for Design

- Longevity
 - Reduced user impact
 - Durable mixtures
 - Increased Thickness
 - CRCP for heavy traffic
- Local and Recycled Materials
 - Use less fuel to haul it in
 - Avoid throwing away the old pavement

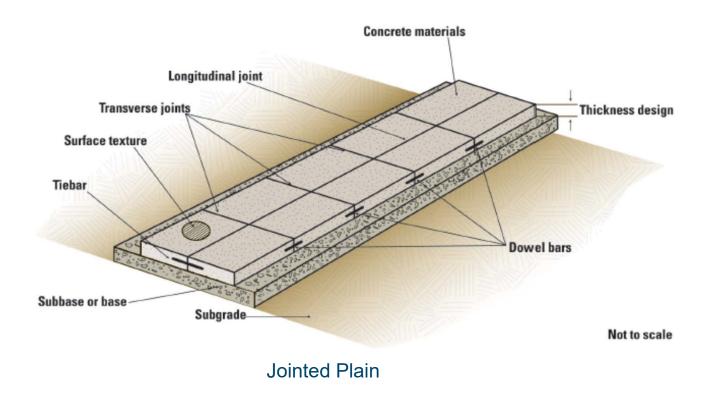
Sustainability and Materials


- Recycled, Coproduct, and Waste Materials
- Cementitious Materials and Concrete Mixtures
 - Portland Cement
 - Supplementary Cementitious Materials
 - Blended Cements
- Aggregate Materials
- Concrete Mixture Proportioning and Production
- Other Concrete Mixtures and Emerging Technologies

What About Operations?

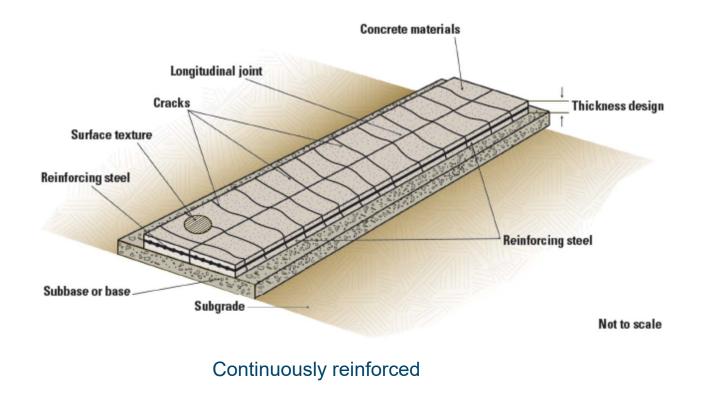
- At least 80% of the energy and emissions associated with pavements is incurred during use
 - Fuel efficiency
 - Traffic flow
 - Rolling resistance
 - Albedo
 - Heat island
 - Lighting costs
 - Noise

Which is more "sustainable"?



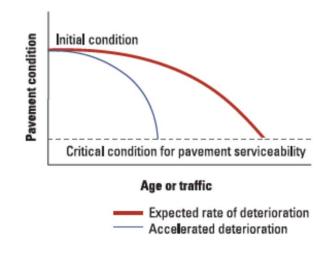
Contents

Chapter 3 Basics of Concrete Pavement Design


- Integrated Pavement Design
- Pavement Types
- What Do We Want?
- What Factors Do We Have to Accommodate?
- Getting What We Want
- Constructability Issues
- Concrete Overlays

It's Not Just Thickness

14


It's Not Just Thickness

15

What Do We Want?

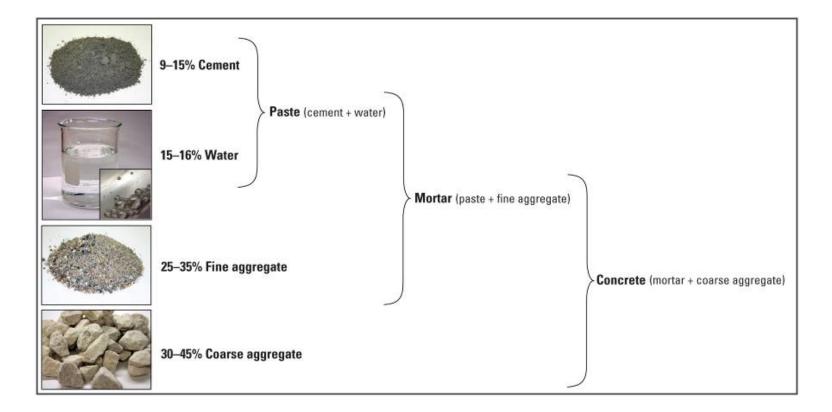
- Service life
 - Structural models assume that materials will not fail
 - How long should it last?
- Performance:
 - Structural
 - Functional

What Do We Want?

• Structural – is it broken?

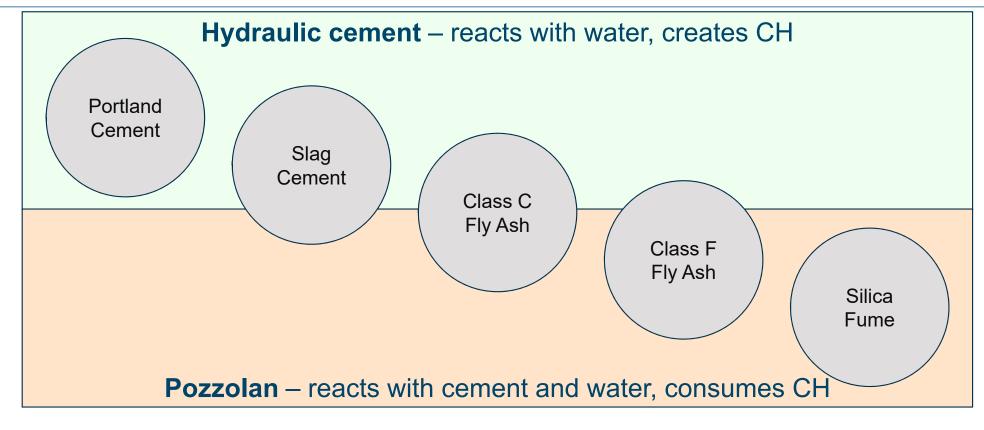
What Do We Want?

• Functional – do I want to drive on it?


Contents

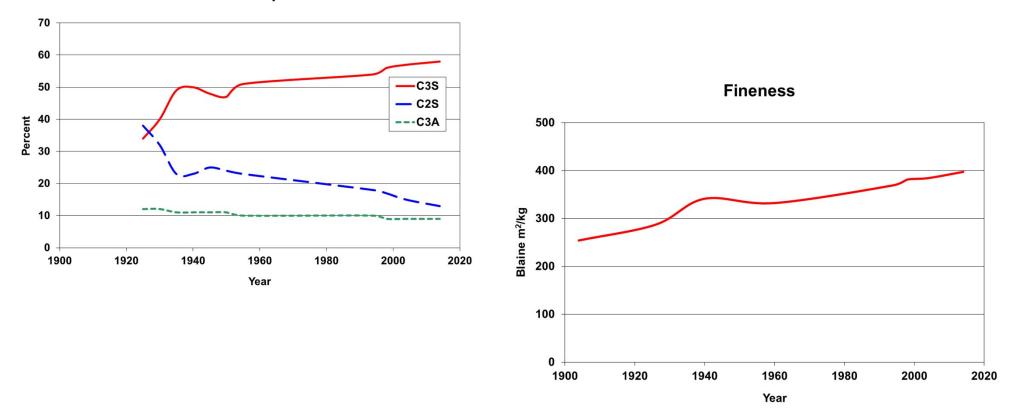
Chapter 4 Fundamentals of Materials Used for Concrete Pavements

- Cementitious Materials
- Aggregates
- Water
- Chemical Admixtures
- Dowel Bars, Tiebars, and Reinforcement
- Curing Compounds
- References


What do we have to work with

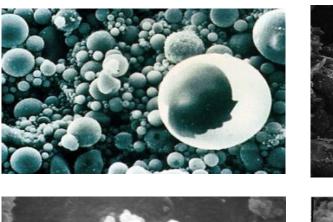
Aggregates

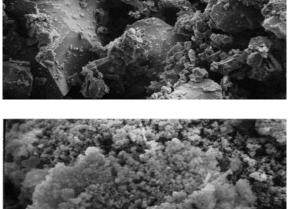
- Aggregates comprise ~70% of the volume of a concrete mix.
- Aggregate properties can have an influence on concrete properties:
 - Durability
 - Workability
 - Strength
 - Dimensional changes


Cementitious Materials

Not to scale

Cement is Changing


Chemical Composition



Supplementary Cementitious Materials

- Fly ash
- Slag
- Natural pozzolan
- Silica fume

"We deal with the negatives to get a positive"

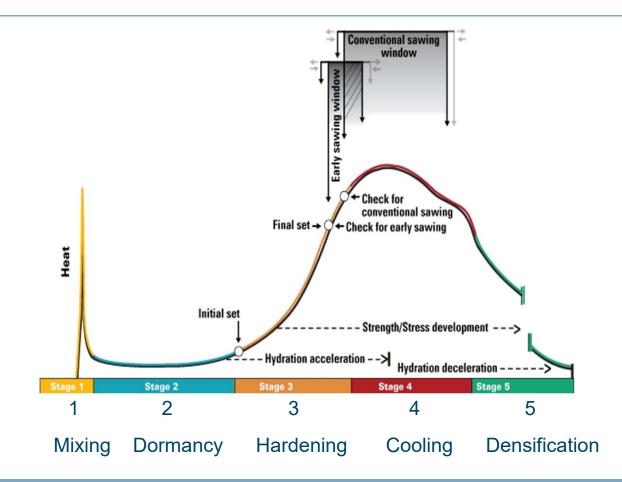
Effects of Extra Water on Concrete

- Increases workability
- Lowers strength
- Increases drying shrinkage
- Increases permeability and reduces durability

Chemical Admixtures

- Air entraining admixtures (AEA)
- Water reducers
- Set modifying admixtures

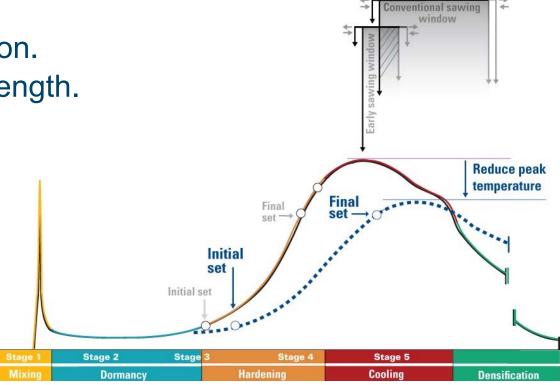
Don't use to fix a bad mixture, use to Enhance!



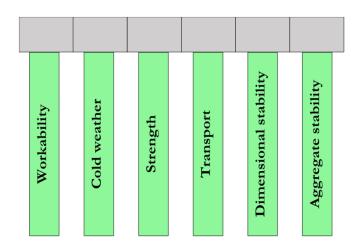
Contents

Chapter 5 Hydration

- Stages of Hydration: Overview
- Portland Cement
- Supplementary Cementitious Materials
- Impact of Hydration
- Stages of Hydration: Details


Five Stages of Hydration

Effects of SCMs


- Delayed final set.
- Reduced heat peak.
- Extended heat generation.
- Increased long-term strength.
- Reduced permeability.

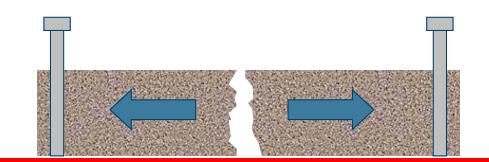
Contents

Chapter 6 Critical Properties of Concrete

- Introduction
- Fresh Properties
- Mechanical Properties
- Durability Related Properties

Fresh Properties

- Uniformity
- Workability
- Segregation
- Bleeding
- Setting
- Temperature effects


Mechanical Properties

- Strength
- Stiffness
- Shrinkage
- Polishing
- Cracking

Early-Age Cracking

- Factors
 - Concrete moves (temperature and moisture gradients)
 - Movement + Restraint \rightarrow Load
 - Loads + Stiffness \rightarrow Stress
 - Stress > Strength = Cracks

Early Age Cracking

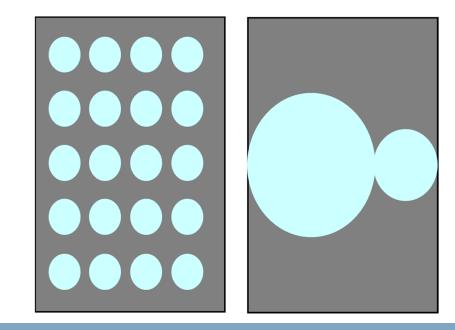
Discuss

Early Age Cracking

Discuss

Durability Properties

Ability of the concrete to survive the environment to which it is exposed:

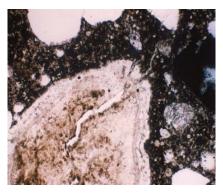

- Transport
- Cold weather
- Sulfates
- AAR

Transport

The ease with which fluids can penetrate concrete

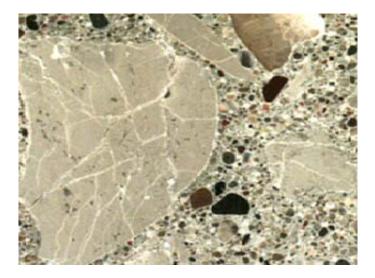
- Significance
 - All durability damage is governed by permeability
- Factors
 - w/cm
 - SCM type and dose
 - Hydration
 - Cracking

Cold Weather


Two mechanisms:

- Saturated freeze thaw
- Oxychloride formation

Alkali-Silica Reaction


- Water + alkali hydroxide + reactive silicate aggregate → alkali silicates
- Alkali silicates + water \rightarrow gel + expansion
- Silicates from aggregates
- Alkalis from cement (Na and K)

D-Cracking

- Certain calcareous aggregates absorb water
- Pore size prevents water leaving the system
- Freezing causes damage

Contents

Chapter 7 Mixture Design and Proportioning

- Introduction
- Sequence of Development
- Aggregate Grading Optimization
- Calculating Mixture Proportions
- Adjusting Properties

"The beast of interesting proportions"

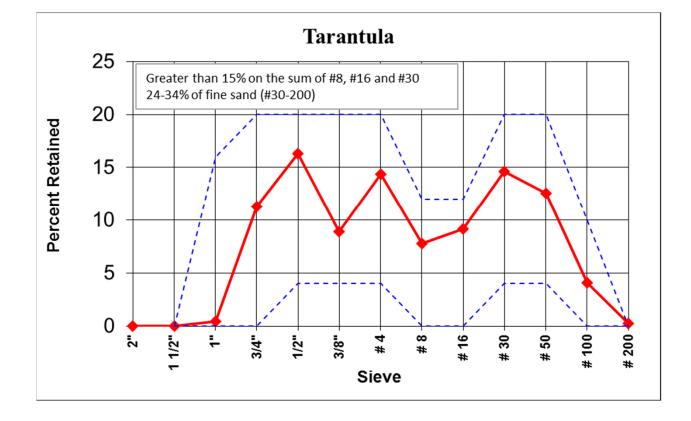
Design

- Choosing what you need
 - Workability, setting time
 - Durability, strength, cracking risk

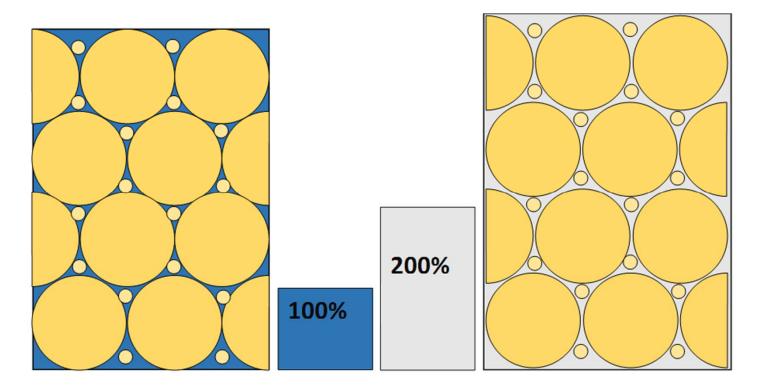
Proportioning

How do we proportion to achieve design goals?

		Workability	Transport	Strength	Cold weather	Shrinkage	Aggregate stability
Aggregate System	Type, gradation	√ √	-	-	-	-	√ √
Paste quality	Air, w/cm, SCM type and dose	✓	√ √	~ ~	~ ~	✓	✓
Paste quantity	Vp/Vv	✓	-	-	-	$\checkmark\checkmark$	-


Step 1 Paste Quality

- Binder type
 - Cement type
 - SCM type and dosage
- w/cm
 - •~0.38-0.42
- Air void system
 - <0.2 SAM
 - <0.008 in. spacing factor</p>
 - >5% in place
 - Stable



Step 2 Aggregate system

Tarantula Curve

Step 3 Paste Content

Paste should be approximately 1.5x - 2x of voids

Contents

Chapter 8 Construction

- Subgrades
- Bases
- Concrete Paving

Support system should be stable and uniform with decent drainage

Contents

Chapter 9 Quality and Testing

- Quality Assurance
- Monitoring the Mixture
- Monitoring Construction Activities
- Test Methods

"Delivering what is expected"

Defining Quality

- Simple Definition (Philip Crosby)
 - Quality: "Conformance to requirements"
 - Quality is defined by our customers
- QA = "Making sure the quality of a product is what it should be"

Why Should I Care

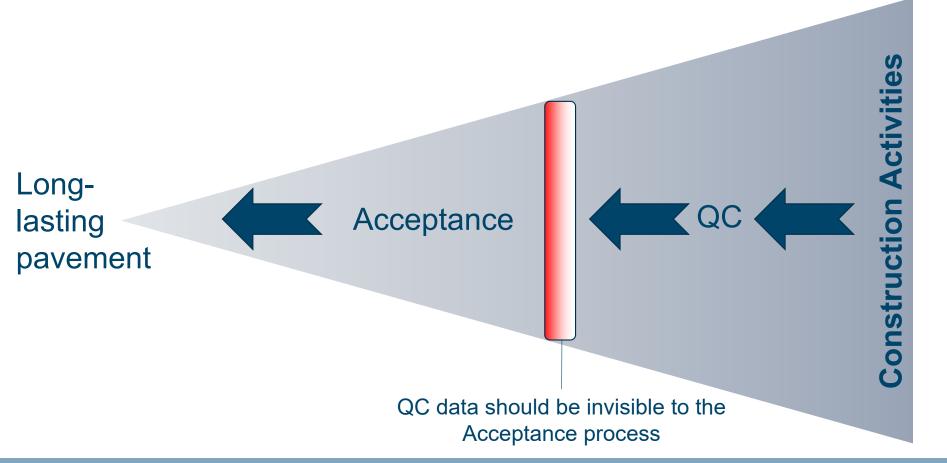
- Money!
 - Penalties vs Incentives

CONTRACTOR

Why Should I Care

- Better working environment
 - Project partners are qualified
 - Contractor knows how the Agency will accept/pay for the product
 - QC Plans remove some of the daily stress
- Product you paid for

OWNER

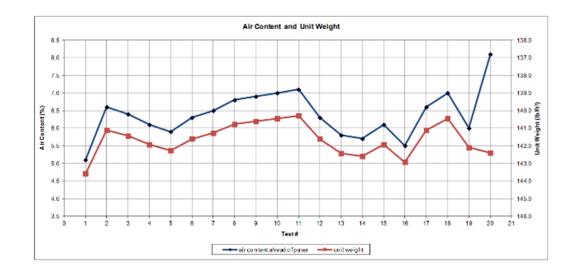

Trick Question

- How do the following people affect quality?
 - Designer/Specifier
 - Agency Inspector
 - QC Technician
 - Loader Operator at the concrete plant
 - Truck Driver
 - Paver Operator
 - Concrete Finisher
 - Texture/Cure Machine Operator

Core Elements of an Agency QA Program

The Goal...

How Do We Evaluate the Mixture?


- Measure everything during prequalification
 - Constructible (Workable)
 - Dimensionally stable
 - Aggregates
 - Shrinkage
 - Impermeable (Transport properties)
 - Cold weather resistant
 - Freeze thaw
 - Salt attack
 - Strong (enough)

Concrete	Test description	Test method	Comments		
property	l est description	i est metnod	Comments		
Workability	Aggregate gradation	ASTM C 136 / AASHTO T 27 ASTM C 566 /AASHTO T 255	Use the individual gradations and proportions to calculate the combined gradation.		
	Combined gradation	Tarantula curve	 Adjust combined gradation to achieve optimum workability 		
	Paste content	Batch sheet	 Adjust paste content to find minimum paste needed while still workable Confirm that total is below maximum permitted for shrinkage 		
	VKelly or Box	TP129 / PP84 X2	 Confirm that the mixture responds well to vibration 		
	Slump at 0, 5,10,15, 20, 25, & 30 minutes	ASTM C 143 / AASHTO T 119	 Look for excessive slump loss due to incompatibilities. This is more likely at elevated temperatures. Determine approximate WRA dosage 		
	Segregation		 Look for signs of segregation in the slump samples 		
Air void system	Foam drainage	-	 Assess stability of the air void system for the cementitious / admixture combination proposed 		
	Air content	ASTM C 231 / AASHTO T 152, T196	 Determine approximate AEA dosage 		
	SAM	AASHTO TP118	 < 0.2 target 		
	Clustering	Retemper a sample and use optical microscopy to assess clustering	 Can affect strength, Air content can also jump with retempering 		
	Hardened air	ASTM C 457	 Calibrate SAM limits 		
	Mortar content	Vibrate a container (air pot) for 5 minutes. Measure depth of mortar at the top surface	 Provides information on the coarse aggregate content – maximum is ~ 1/4" 		
Unit weight	Unit weight	ASTM C 138 / AASHTO T 121	 Indicates yield the mixture and a rough estimate of air content Establish basis for QC monitoring 		
Strength development	Compressive or flexural strength	ASTM C 39 / AASHTO T 22 and/or ASTM C 78 / AASHTO T 97 at 1, 3, 7, 28 & 56 days	 Calibrate strength gain for early age QC Calibrate flexural with compressive strengths 		
	Maturity	ASTM C 1074	 Calibrate the mixture so maturity can be used in the field to determine opening times 		
Transport	Resistivity / F factor	Soak /store samples in salt solution	 Determine development of F Factor over time 		
	Sorption	ASTM C 1585	 Determine time to critical saturation 		
	w/cm	Microwave	 Calibrate microwave test with batch data 		
Other	Hydration	Semi-adiabatic calorimetry	 Determine hydration rates of mixture. 		

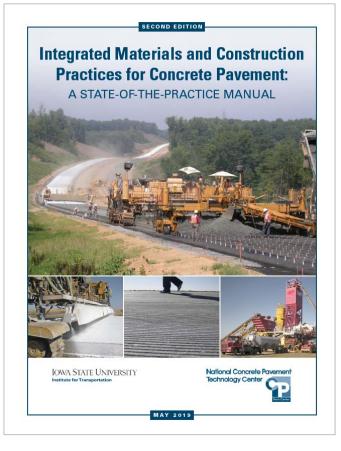
Quality Control

- QC should include
 - Unit weight
 - Calorimetry
 - Maturity
 - Strength development
 - Air void stability
 - And a response...
- Risk management

- 1. Get lab mix accepted
- 2. Ensure we are getting that mix

Contents

Chapter 10 Troubleshooting and Prevention


- Overview
- Before the Concrete Has Set
- After the Concrete Has Set
- In the First Days after Placing
- Some Time after Construction

IMCP 2nd Edition

- Format
 - Interactive pdf available to download
 - Limited printed copies
 - Dreaming of hotlinking with other publications

www.cptechcenter.org

IOWA STATE UNIVERSITY

Tech Center

Institute for Transportation