IMPLEMENTATION OF PERFORMANCE ENGINEERED MIXTURES, AASHTO PP 84-18 TH-60 Westbound, Watonwan County, Minnesota

INTERIM REPORT

Prepared by:

Derek Tompkins American Engineering Testing, Inc.

Robert Golish MnDOT Concrete Engineering

April 2020

Published by:

Minnesota Department of Transportation Research Services & Library 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report documents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation. This report does not contain a standard or specified technique.

The authors and the Minnesota Department of Transportation do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

ACKNOWLEDGEMENTS

MnDOT gratefully acknowledges the support of the Federal Highway Administration Pooled Fund TPF-5(368), "Performance Engineered Concrete Paving Mixtures." We also thank MnDOT personnel, consultants, and contractors for all the additional work required to perform the testing and data collection related to the implementation of Performance Engineered Mixtures, AASHTO PP 84.

TABLE OF CONTENTS

Chapter	1 Introduction	1
1.1	Background	1
1.2	Scope and objectives	1
1.3	Overview of report	1
Chapter 2	2 Project information	2
2.1	Paving project details	2
2.2	Concrete paving mix design	3
Chapter 3	3 Tests Performed	5
3.1	Tests performed	5
3.2	Results in summary	7
Chapter 4	4 Conclusions and Discussion 1	2
4.1	Super air meter 1	2
4.2	Maturity and strength 1	2
4.3	Box test	2
4.4	Bucket test 1	3
4.5	Phoenix test	3
Reference	es1	4

- Appendix AMnDOT 3A21-2 Mix Design SummaryAppendix BLaboratory Mix Testing
- Appendix C Field Test Results
- Appendix D Phoenix Test (Unpublished Paper with Procedure)

LIST OF FIGURES

l
2
2
3
1
5
3
)
)
)
)

LIST OF TABLES

Table 1. Mix design summary for initial and final designs used for TH-60 paving mix	. 3
Table 2. Results of field tests using SAM (Mix 3A21-2)	. 7
Table 3. Laboratory results for tests of fresh mix (3A21-13)	. 7
Table 4. Effective surface resistivity results and formation factor from bucket tests (AASHTO	
TP 119) of laboratory batched mix (MnDOT 3A21-13)	. 8
Table 5. Maturity meter test results from field beams (includes interpreted third-point flexural	
strength, calculated using relationship in Figure 10)	11

EXECUTIVE SUMMARY

The Minnesota Department of Transportation (MnDOT), as a participant in the Federal Highway Administration Pooled Fund TPF-5(368), "Performance Engineered Concrete Paving Mixtures," specified the use of Performance Engineered Mixture (PEM) concrete mixture designs for two paving projects constructed in Minnesota. The first project involved the construction of an unbonded concrete overlay of an existing jointed plain concrete pavement along Trunk Highway TH-60 in Watonwan County, Minnesota (MnDOT S.P. 8309-52).

CHAPTER 1 INTRODUCTION

1.1 Background

The Federal Highway Administration Pooled Fund TPF-5(368), "Performance Engineered Concrete Paving Mixtures," is a collaborative effort among many state transportation agencies to deploy performance engineered mixtures in highway paving projects. As a participant in this study, the Minnesota Department of Transportation (MnDOT) has worked to implement Performance Engineered Mixture (PEM) designs in paving projects constructed in Minnesota in fulfilling Work Task 5 of TPF-5(368). The first implementation of PEM in fulfillment of Work Task 5 is MnDOT S.P. 8309-52, an unbonded concrete overlay of an existing jointed plain concrete pavement along Trunk Highway TH-60 in Watonwan County, Minnesota.

1.2 Scope and objectives

This portion of the Work Task 5 effort focused on the following objectives.

- On-site training and support for contractor use of Super Air Meter (SAM)
- Collect and compile all contractor construction QA/QC test data related to PEM
- Complete PEM Pooled Fund Administrator data collection spreadsheet

In addition, the fulfillment of the Work Task 5 objectives includes the production of this postconstruction report summarizing the project and data collection.

1.3 Overview of report

This report provides general information on tests performed and a summary of test results related to the use of PEM for the unbonded overlay of TH-60. Appendices to the report include MnDOT mix design development documents, laboratory mix testing results, field testing results, and a unpublished article describing the Phoenix test, respectively.

Figure 1. Overview of paving operations along TH-60 near St. James, MN

CHAPTER 2 PROJECT INFORMATION

The project was located along TH-60 near St. James, MN. The project area is illustrated in Figure 2 and Figure 3.

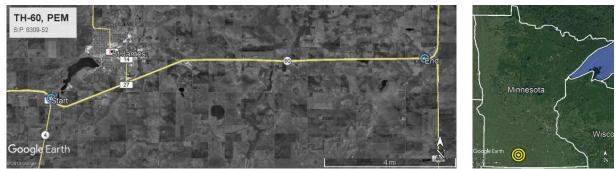


Figure 2. Location of paving project along TH-60 near St. James, MN

Figure 3. MnDOT construction plans for S.P. 8308-113 and S.P. 8309-52

2.1 Paving project details

Details relating to the use of PEM and the paving project include the following items.

- An unbonded concrete overlay was placed along a 12-mile stretch of TH-60 during June 6 July 18, 2019.
- The 7.5-inch unbonded concrete overlay was placed on a 1.5-inch permeable asphalt stabilized stress relief course (PASSRC) interlayer (Figure 4). The existing jointed plain concrete pavement (JPCP) was 9 inches in thickness.

- The paving contractor was PCi Roads of St. Michael, MN.
- The contractor established a mobile concrete plant near the intersection of TH-60 and County Road CR-12. The mobile plant was certified by MnDOT prior to paving.
- At MnDOT's request, the contractor performed additional pre-paving tests of the concrete paving mix (Appendix B) and cast additional field specimens during paving.

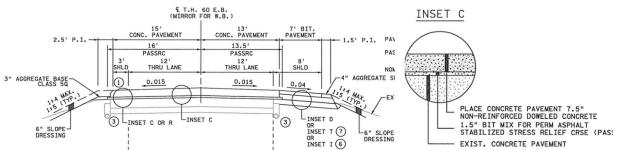


Figure 4. TH-60 design plans for unbonded overlay on a PASSRC interlayer

2.2 Concrete paving mix design

The initial concrete mixture used for the overlay was designated MnDOT 3A21-13; a revised mix was requested by the paving contractor to improve workability and finish. This mix – the mix used for paving – was designated as 3A21-2. Details of both 3A21-13 and 3A21-2, as tested and reported in Work Task 1 of the Pooled Fund effort for this project, are summarized in Table 1 below and in Appendix A to this report. Gradations performed on the mix aggregates are represented in Figure 5 using the tarantula curve.

Table 1. Mix design summary for initial and final designs used for TH-60 paving mix

	Amount	t per yd ³
Material	3A21-13	3A21-2
Type I/II Continental Davenport Cement (lbs)	412	400
Boral, Headwaters Coal Creek Type F (lbs)	203	200
Coarse Agg., 1-1/2" Minus, Pit #52003 (lbs)	586	595
Coarse Agg., 3/4" Minus, Pit #52003 (lbs)	1,173	1,191
Fine Agg., Pit #52007 (lbs)	1,159	1,177
Water (lbs)	240	228
Air Entrainer, Mapei Polychem SA (oz/cwt)	2.0	2.0
Mid-Range Water-Reducer, Mapei Paver Plus (oz/cwt)	4.0	4.0
HRWR, Dynamon SX (oz/cwt)	2.0	

PEM-specific tests of 3A21-13 were performed in the laboratory immediately after batching, at 15 minutes after batching, and at 30 minutes after batching. These results are summarized in Chapter 3 and in Appendix B.

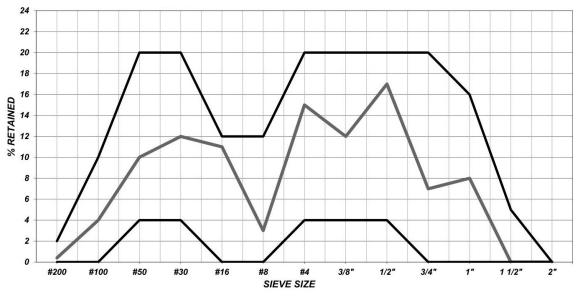


Figure 5. Tarantula curve for paving mix (MnDOT 3A21-2)

CHAPTER 3 TESTS PERFORMED

3.1 Tests performed

In addition to conventional tests to characterize fresh mix and hardened concrete performance in the laboratory and field, MnDOT and the paving contractor oversaw tests described in AASHTO PP 84-18 to characterize the performance of PEM for concrete paving. These tests include the following procedures, which are either unconventional or otherwise unfamiliar to most paving contractors.

<u>Super air meter</u>. The Super Air Meter (SAM) method assesses the volume of air and characterizes the air void system using a measure known as the SAM number. Laboratory and field tests using SAM followed the procedure outlined in AASHTO TP 118.

<u>Vibrating Kelly ball (VKelly)</u>. The vibrating Kelly ball test evaluates the flow and workability of placed mix in terms of the penetration rate of a probe (in millimeters per root-seconds). Laboratory VKelly tests were performed according to AASHTO TP 129.

<u>Box test</u>. The box test assesses the flow and workability of a given concrete paving mix. This test is presented as an alternative to VKelly in AASHTO PP 84-18. Laboratory box tests were performed on 3A21-2 according to the procedure outlined in Appendix X3 of AASHTO PP 84-18. Box test results include (A) a qualitative measure to estimate the deformed surface relative to reference photographs and (B) a measure of edge slump (in inches) using a straightedge.

<u>Bucket test</u>. The bucket test assesses the resistivity of concrete cylinders to chloride ion penetration after soaking in a five-gallon bucket containing a chloride solution. The resistivity indirectly evaluates the formation factor (or "F Factor") of the concrete. The formation factor can be used in place of other measures to understand the long-term durability of paving concretes. The bucket test procedure, as performed in this study, is outlined in AASHTO TP 119.

<u>Phoenix test</u>. The laboratory tests also included the Phoenix test to assess water/cementitious ratio (w/c). This test uses rapid heating of a concrete sample to induce water loss and quickly determine the water-to-cementitious ratio. The determination of w/c is based on an understanding of the mix design, the volume and mass of the sample, and the total mass loss, which is assumed in the procedure to be water.

As the Phoenix test is not included in AASHTO PP 84-18 nor described in a current AASHTO or ASTM standard, the basic procedure is outlined below.

- Prepare test apparatus this step is important as the test materials are unusual (Pan, cylinder mold, heating element, scale)
- Obtain air content
- Mold sample using 4x8 cylinder (i.e. sample has known volume)
- Empty sample into pre-heated pan on heating element (which are all located on the scale for regular mass measurements)
- Heat sample, apply searing iron, for anywhere between 10-30 minutes
- Record mass until mass remains constant over a period of 3-5 minutes

The procedure above summarizes more extensive detail from the unpublished article, "Determining the Water to Cement Ratio of Fresh Concrete by Evaporation," by Robertson and Ley of Oklahoma State University (OSU). This article, which is reproduced in full in Appendix D, was provided to MnDOT to assist in scoping and performing the Phoenix test.

Figure 6. Phoenix test apparatus [Photo provided by Robertson and Ley of Oklahoma State University]

3.2 Results in summary

Full results of the field and lab tests are reported in Appendix A and recorded in the PEM Pooled Fund Administrator data collection spreadsheet ("MNDOT_TH60_Watanwon_Co_State-Data-Entry-Form.xlsx").

3.2.1 Super air meter

SAM test results are summarized in Table 2 and Table 3 for field and laboratory results, respectively. The average SAM number of field tests was 0.21. The average SAM number from laboratory tests was 0.19. Laboratory tests of 3A21-13 also included an ASTM C457 (Procedure A) assessment of hardened air, which estimated the spacing factor as 0.003 inches.

3.2.2 Box test

Laboratory box tests were performed at 0 minutes, 15 minutes, and 30 minutes after batching. Results for box tests are reported in Table 3.

I dole It itesta	tes or mera				9			
Station	1654+00	1619+50	1600+15	155+90	1537+32	1239+56	1265+17	1303+87
Test Date	6/13/2019	6/14/2019	6/14/2019	6/17/2019	6/17/2019	6/19/2019	6/19/2019	6/24/2019
Test Time	1:50	8:25	11:45	8:37	11:42	10:00	14:43	11:12
SAM Number	0.23	0.23	0.27	0.19	0.07	0.18	0.17	0.24

Table 2. Results of field tests using SAM (Mix 3A21-2)

Station	1323+18	1340+37	1358+62	1440+18	1468+50	1499+25	1512+68	1275+17
Test Date	6/24/2019	6/24/2019	6/26/2019	6/28/2019	6/28/2019	6/29/2019	6/29/2019	7/1/2019
Test Time	15:00	17:20	9:02	10:55	14:57	7:15	9:55	11:17
SAM Number	0.23	0.2	0.17	0.27	0.19	0.34	0.05	0.18

Station	1296+55	1518+88	1508+08	1418+73	1878+08	1721+37	1595+65
Test Date	7/2/2019	7/3/2019	7/8/2019	7/8/2019	7/9/2019	7/10/2019	7/11/2019
Test Time	9:16	10:40	8:15	14:14	15:28	11:52	9:46
SAM Number	0.16	0.19	0.23	0.17	0.31	0.3	0.12

Table 3. Laboratory results for tests of fresh mix (3A21-13)

		- /	
Minutes after batching	0	15	30
Unit Weight (pcf)	143.6	142.8	143.2
Slump (in)	2.8	2.50	2.25
Air Content (%)	6.3	6.0	5.8
Super Air Meter (SAM) Number	0.16	0.19	0.21
Box Test, Vertical Surface Ratings	2, 2, 2, 1	2, 2, 2, 1	1, 2, 2, 1
Box Test, Edge Slump (in)	0.00	0.00	0.25

3.2.3 Vibrating Kelly ball (VKelly)

Results of laboratory VKelly tests on Mix 3A21-13 are summarized in Figure 7, which is excerpted directly from the laboratory report in Appendix B. These results were measured in the laboratory using inches instead of millimeters. The results in Figure 7 are reported (in inches) at 0 minutes, 15 minutes, and 30 minutes after batching. These results, when converted to millimeters, correspond with VKelly values of 9.9, 10.6, and 12.1 mm/ \sqrt{s} . These values are

below AASHTO PP 84-18 specifications of 15-30 mm/ \sqrt{s} . As noted in Section 3.1, no VKelly tests were performed on the field mix (3A21-2).

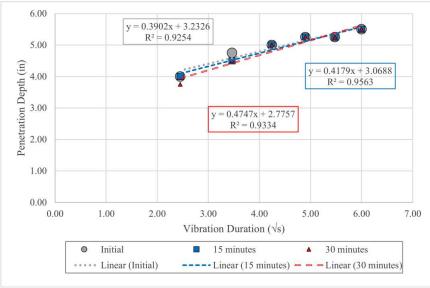


Figure 7. Results of vibrating Kelly ball test (3A21-13)

3.2.4 Bucket test and formation factor

MnDOT collected field samples for bucket tests, which were performed in the laboratory. Field bucket tests were not performed.

Summary bucket test results from laboratory testing of 3A21-2 are reported in Table 4 and Figure 8. Measured surface resistivity results (i.e. raw test data) are provided in Appendix B of this report. The calculated formation factor of 1270 is also reported in Table 4.

Effective surface resistivity was calculated automatically in the worksheet provided to MnDOT by Oregon State University for bucket test data entry. Those calculations consider measured surface resistivity, specimen dimensions, specimen temperature, and surface probe sensor spacing. Equations and other assumptions describing the calculations for effective surface resistivity and formation factor are provided in AASHTO TP 119 and AASHTO PP 84, respectively.

 Table 4. Effective surface resistivity results and formation factor from bucket tests

 (AASHTO TP 119) of laboratory batched mix (MnDOT 3A21-13)

	001 ator y	Datencu	batched mix (windo'r 5/121-15)									
Age (d)	1	3	5	7	14	28	56	91				
Average Effective Surface Resistivity (kOhm-cm)	2.28	2.43	2.70	2.89	3.97	6.79	11.09	12.70				
Formation Factor												

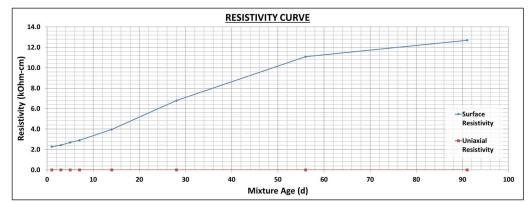


Figure 8. Effective surface resistivity results from bucket tests (AASHTO TP 119) of laboratory batched mix (MnDOT 3A21-13)

3.2.5 Phoenix test

Phoenix testing was performed in the laboratory on concrete batched at a w/c ratio of 0.39. Phoenix testing of this mix estimated the w/c ratio to be 0.38. This value was calculated from the total lost mass through heating (water loss, shown in Figure 9); the volume and mass of the concrete sample; and the amount of cementitious products (binder) in the mix design. More detail on the Phoenix test procedure, test data, and w/c calculation is provided in Appendix D.

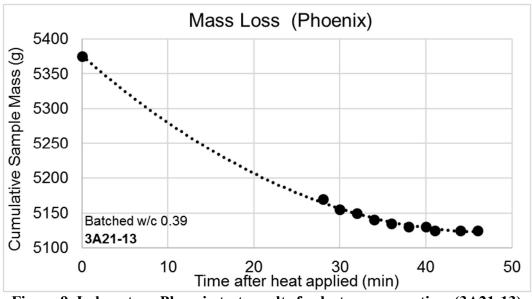


Figure 9. Laboratory Phoenix test results for lost mass over time (3A21-13)

Due to issues with test equipment, Phoenix testing in the field was not performed for the TH-60 paving project.

3.2.6 Laboratory maturity curve and field maturity beams

Initial maturity testing for the TH-60 paving used compressive and flexural strength test specimens to develop strength-maturity curves for 3A21-13 (Figure 10). Appendix B summarizes the results and test procedures followed. These curves are consulted when using a maturity meter to evaluate beams cast in the field. The flexural strength laboratory test samples

for 7 days and 14 days produced results that did not agree with trends normally observed for flexural strength development. Therefore, these points are excluded when developing a logarithmic regression equation relating maturity and flexural strength (inset in each subfigure of Figure 10).

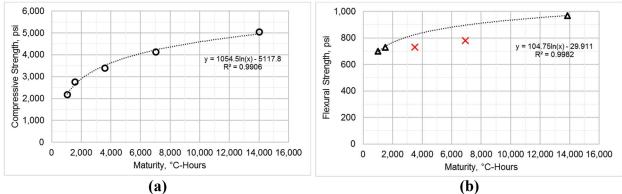


Figure 10. MnDOT 3A21-13 (a) compressive strength-maturity curve and (b) flexural strength-maturity curve (red marks denote beam data at 7 and 14 days, discussed in text)

3.2.7 Field maturity data and maturity curve

As discussed above, 3A21-2 was adopted as the final paving mix for this project; as a result, the lab-developed maturity information for 3A21-13 was not considered to be a reliable basis for field maturity testing. Additional maturity testing was performed using field-produced mix (3A21-2) to develop revised maturity-strength correlation curves (Figure 11). Additional field maturity results are reported in Table 5 and Appendix C.

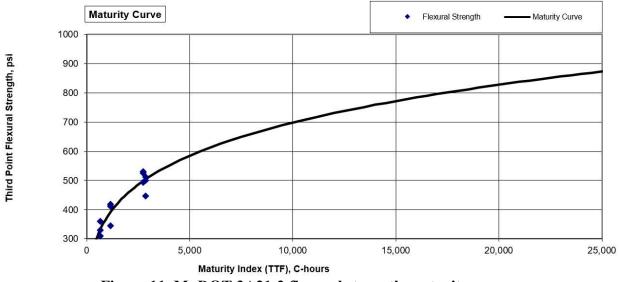


Figure 11. MnDOT 3A21-2 flexural strength-maturity curve

 Table 5. Maturity meter test results from field beams (includes interpreted third-point flexural strength, calculated using relationship in Figure 10)

Station	1683+26	1626+74	1626+74	1565+52	1565+52	1565+52	1291+35	1291+35	1291+35	1291+35	1291+35	1344+08
Age (d)	4.8	3.8	4.5	1.7	2.7	3.6	2.0	2.2	3.5	4.1	4.5	2.1
Maturity (C-h)	2735	2166	2627	1107	1681	2135	1066	1430	1863	2254	2455	1166
MR (psi)	501	470	495	389	438	468	385	419	451	475	486	395

Station	1344+08	1344+08	1419+91	1419+91	1419+91	1493+58	1493+58	1523+40	1515+57	1515+57	n/a	n/a
Age (d)	2.5	4.5	1.5	3.5	4.5	2.8	3.9	4.8	1.9	2.5	5.5	4.5
Maturity (C-h)	1371	2753	1816	2374	3001	2063	2724	3311	1280	1651	3688	3071
MR (psi)	414	502	448	482	514	464	500	527	406	436	543	517

CHAPTER 4 CONCLUSIONS AND DISCUSSION

The implementation of PEM on this project was an opportunity to familiarize MnDOT and contractor personnel with PEM testing, especially the SAM and maturity testing. One accomplishment not shown in test data is the level of collaboration – everyone involved worked well together in training and performing the tests and collecting the test data. Overall, the PEM testing went well on this project. The effort helped to educate MnDOT personnel and the contractor on the use and effectiveness of PEM. The following items discuss individual tests related to PEM.

4.1 Super air meter

MnDOT required the contractor to perform the SAM testing for this project. The contractor was trained to use the SAM by American Engineering Testing (AET) at their facility and at the project site.

- The measured percent air using SAM did not correlate well with ASTM measurements of air on several of the tests. It was determined that the SAM was likely leaking. MnDOT asked the contractor to perform leak tests on the SAM daily thereafter, we observed better agreement between SAM and the ASTM standard for air.
- SAM tests results that were run correctly indicated that we had freeze thaw durable concrete (SAM numbers of 0.25 or less).
- Hardened air tests have not been conducted to date on the SAM samples. They will be sent to Oklahoma State University (OSU) for testing in 2020.
- With more experience and training, MnDOT believes that the SAM can provide realtime results regarding the freeze thaw durability of the concrete pavement.

4.2 Maturity and strength

This project was contractor's first experience using maturity to estimate the strength of the concrete.

- The contractor first used the maturity curve that was developed in the lab. The lab maturity curve did not match well with the concrete that was batched at the plant, as the contractor adjusted the mix design from 3A21-13 to 3A21-2 to get better workability and finish.
- A strength-maturity curve using the on-site batch plant mix was instead developed and applied. Once the new curve was established, maturity testing provided better estimates of strength performance.

4.3 Box test

The Box Test was only conducted during the lab testing and not in the field. MnDOT did not require the box test during the paving process.

4.4 Bucket test

Bucket test samples for the formation factor were made by MnDOT personnel and delivered the next day to AET for testing in the laboratory. MnDOT elected to use laboratory bucket tests to avoid field training for project personnel on this test (for the time being).

4.5 **Phoenix test**

The Phoenix test was supposed to be conducted on this project but after equipment issues it was removed from the scope of work. MnDOT has been using this device on several other paving projects with very good results, and MnDOT has been relaying our experiences to Oklahoma State University as they further refine the test apparatus and procedure.

REFERENCES

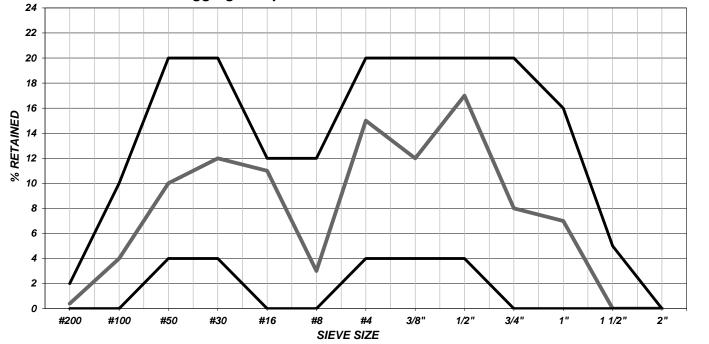
- AASHTO PP 84-18 (2018). *Developing Performance Engineered Concrete Pavement Mixtures*. American Association of State Highway and Transportation Officials, Washington D.C.
- AASHTO TP 118. Characterization of the Air-Void System of Freshly Mixed Concrete by the Sequential Pressure Method. American Association of State Highway and Transportation Officials, Washington D.C.
- AASHTO TP 119. Electrical Resistivity of a Concrete Cylinder Tested in a Uniaxial Resistance Test. American Association of State Highway and Transportation Officials, Washington D.C.
- AASHTO TP 129. Vibrating Kelly Ball (VKelly) Penetration in Fresh Portland Cement Concrete. American Association of State Highway and Transportation Officials, Washington D.C.
- Robertson, B. and M. T. Ley (2019). *Determining the Water to Cement Ratio of Fresh Concrete by Evaporation*. Unpublished Article Provided to MnDOT in Spring 2019, Oklahoma State University, Stillwater, OK.

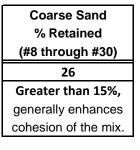
APPENDIX A MnDOT 3A21-2 Mix Design Summary

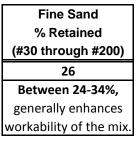
Project Specific Paving Mix Design (JMF)

DOT		•			0		0 (,							SP Num	ber			8309-5	2		
				Mn	DOT	Type/C	SP.G/]	Use for:									S	teve Ger	ster		
	Nan	ne/Mill/	Plant		viation	lass	Dosage			-	s 3,500	CY or g	reater	er Company			PCiRoads.com					
Cement		ental - Da		CON	DAIA	1/11	3.15		-	-		•			Phone		612-868-0662					
Fly Ash	Haedw	aters - Co	al Creek	COCL	JNND	F	2.50								Email		sgerster@pciroads.com					
Slag															Agency	Contact		В	Bob Willia	ams		
Other CM									Pit #	Si	ize	Class	SP.G.	ABS.	Agency			5	07-822-0	806		
Admx#1	GRT -	Polych	em SA	GRTP	OLYSA	AEA	2-12/cy	FA#1	FA#2				2.60	0.013	Agency	Email		bob.w	illiams@sta	ate.mn.us		
Admx#2		· - Paver		AGRT	PLYPP	А	2-8/cwt								Plant Na				oads - St			
Admx#3								CA#1	52003	1.5"	Minus	А	2.63	0.003	Plant #							
Admx#4								CA#2	52003	3/4"	Minus	А	2.63	0.005	Contrac	tor		P	CiRoads.	com		
Admx#5								CA#3							JMF Nu	mber			18-12	5		
Fiber									-			_					-					
Color																		_				
All weights are i	n Ib/cy.	Aggrego	ates are o	consider	ed to be	Oven Di	ry.					_	% Ag	ggregate	Proport	ion by Vo	lume					
			보	ے					er	7	Σ		40		20 40			e	Ę.	e te		
Mix #	% Air	Water	Cement	Fly Ash	Slag	Other CM	% Fly Ash	% Slag	% Other CM	% Ternary	Total CM	W/C Ratio	FA#1	FA#2	CA#1	CA#2	CA#3	Volume	Unit Wt.	% Paste Volume	Slump Range	
3A21-1	7.0	224	400	190			32				590	0.38	1185		600	1199		27.0	140.7	25.3		
3A21-2	7.0	228	400	200			33				600	0.38	1177		595	1191		27.0	140.4	25.8		
3A21HE-3	7.0	270	600	110			15				710	0.38	1105		559	1118		27.0	139.3	29.9		
3A41-4	7.0	228	400	200			33				600	0.38	1177		595	1191		27.0	140.4	25.8		
3A41HE-5	7.0	270	600	110			15				710	0.38	1105		559	1118		27.0	139.3	29.9		
I																						
																		1				

The Concrete Engineer reviews the Contractor's concrete mix design submittal and approves the materials and mix design based on compliance with the contract. Final approval for payment is based on satisfactory field placement and performance.


MnDOT		
Approval		


Comments:



DOT											JMF	18-125
	FA #1	FA #2	CA #1	CA #2	CA #3	TOTAL %	WORKING	JI	٨F	TOTAL %		
Agg. Size	Sand		1.5" Minus	3/4" Minus		PASSING	RANGE	WOR	KING	RETAINED	SP	8309-52
Prop. %	40		20	40		100%	LIMITS	RAI	NGE			
2"	100.0		100.0	100.0		100	± 5	95	100	0		Mix #
1 1/2"	100.0		100.0	100.0		100	± 5	95	100	0		3A21-1
1"	100.0		63.0	100.0		93	± 5	88	98	7		3A21-2
3/4"	100.0		25.0	100.0		85	± 5	80	90	8		3A21HE-3
1/2"	100.0		3.0	69.5		68	± 5	63	73	17		3A41-4
3/8"	100.0		2.0	38.0		56	± 5	51	61	12		3A41HE-5
#4	100.0		2.0	1.3		41	± 5	36	46	15		
#8	92.0		2.0	1.0		38	± 4	34	42	3		
#16	67.0		1.0	0.7		27	± 4	23	31	11		
#30	37.0		1.0	0.5		15	± 4	11	19	12		
#50	12.0		0.7	0.3		5	± 3	2	8	10		
#100	2.9		0.5	0.2		1	± 2	0	3	4		
#200	1.1		0.4	0.1		0.6	<u><</u> 1.6	0.0	1.6	0		

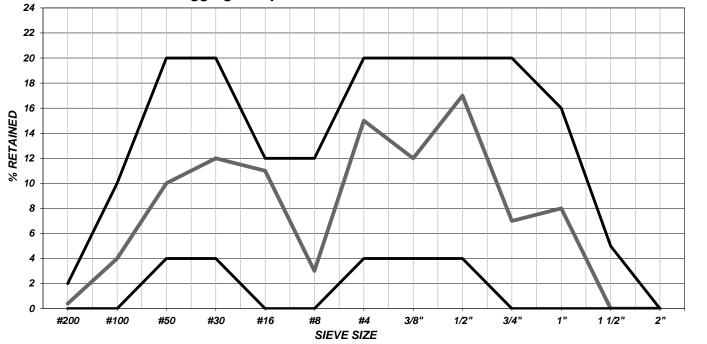
Well-Graded Aggregate Optional Incentive - % Retained Gradation Band

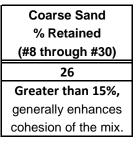
Project Specific Paving Mix Design (JMF)

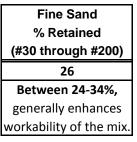
DOT	•	•			U		0 (•							SP Num	ber			8309-52	2	
				Mn	DOT	Type/C	SP.G/]	Use for	<u>:</u>					Request	ted By		S	teve Ger	ster	
	Nan	ne/Mill/	Plant	Abbre	viation	lass	Dosage		Paving	Project	s 3,500	CY or g	reater		Compar	ıy		P	CiRoads.	com	
Cement	Contin	ental - Da	venport	CON	DAIA	1/11	3.15	1							Phone			6	12-868-0	662	
Fly Ash	Haedw	aters - Co	al Creek	COCI	JNND	F	2.50								Email			sgers	ter@pciroa	ads.com	
Slag															Agency	Contact		В	ob Willia	ims	
Other CM									Pit #	Si	ze	Class	SP.G.	ABS.	Agency	Phone		50	07-822-0	806	
Admx#1	GRT ·	Polych	em SA	GRTP	OLYSA	AEA	2-12/cy	FA#1	52007	Sa	ind		2.60	0.013	Agency	Email		bob.w	illiams@sta	ite.mn.us	
Admx#2	GRT	- Paver	Plus	AGRT	PLYPP	А	2-8/cwt	FA#2							Plant Na	ame		PCIR	oads - St	James	
Admx#3	GRT	- Dynam	on SX	FGRT	DYNSX	F	3-5/cwt	CA#1	52003	1.5" I	Minus	А	2.63	0.003	Plant #						
Admx#4								CA#2	52003	3/4"	Minus	А	2.63	0.005	Contrac	tor		P	CiRoads.	com	
Admx#5								CA#3							JMF Nu	mber			18-12	6	
Fiber												-									
Color																					
All weights are i	n Ib/cy.	Aggrega	ites are o	consider	ed to be	Oven Di	ry.					-	% Ag	gregate	Proporti	on by Vo	lume				
			t	ء					er	≥	S		40		20	40		e	۲t.	te	
Mix #	% Air	Water	Cement	Fly Ash	Slag	Other CM	% Fly Ash	% Slag	% Other CM	% Ternary	Total CM	W/C Ratio	FA#1	FA#2	CA#1	CA#2	CA#3	Volume	Unit Wt.	% Paste Volume	Slump Range
3A21-13	7.0	240	412	203			33				615	0.39	1159		586	1173		27.0	139.8	26.8	1/2-3"
3A41-14	7.0	240	412	203			33				615	0.39	1159		586	1173		27.0	139.8	26.8	2-5"
																					<u> </u>
																					<u> </u>
																					
																					──
						ļ			 		ļ										┣───
1	1	1																			
																					<u> </u>

The Concrete Engineer reviews the Contractor's concrete mix design submittal and approves the materials and mix design based on compliance with the contract. Final approval for payment is based on satisfactory field placement and performance.

MnDOT	
Approval	


Comments:




Contractor Mix Design - Job Mix Formula (JMF)

DOT 18-126 JMF FA #2 CA #2 TOTAL % WORKING JMF **TOTAL %** FA #1 CA #1 CA #3 PASSING RETAINED Agg. Size RANGE WORKING SP 1.5" Minus 3/4" Minus Sand 8309-52 Prop. % 40 20 40 100% LIMITS RANGE 2" 100.0 100.0 100.0 Mix # 100 ± 5 95 100 0 1 1/2" 100.0 100.0 100.0 100 ± 5 95 100 0 3A21-13 1" 87 8 100.0 61.0 100.0 92 ± 5 97 3A41-14 3/4" 7 100.0 25.0 100.0 85 ± 5 80 90 1/2" 100.0 3.0 69.5 ± 5 63 73 17 68 3/8" ± 5 51 12 100.0 2.0 38.0 56 61 15 41 36 #4 100.0 2.0 1.3 ± 5 46 92.0 1.0 ± 4 34 42 3 #8 2.0 38 #16 67.0 1.0 0.7 27 ± 4 23 31 11 #30 37.0 1.0 0.5 15 11 19 12 ± 4 5 ± 3 #50 12.0 0.7 0.3 2 8 10 #100 2.9 0.5 0.2 1 0 3 ±2 4 <u><</u> 1.6 #200 1.1 0.4 0.1 0.6 0.0 1.6 0

Well-Graded Aggregate Optional Incentive - % Retained Gradation Band

APPENDIX B Laboratory Mix Testing

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

June 7, 2019

Mr. Todd Callahan PCI Roads 14123 42nd St NE St. Michael, MN 55376

Re: MnDOT TH60 Paving Project in St. James MnDOT Work Task #1 – Materials Performance Test Results AET Project No. 29-20087

Dear Mr. Callahan,

Attached are the final test results for the referenced project. One mix design that you provided and identified as Mix 3A21-13 was used to cast various concrete test specimens at American Engineering Testing, Inc. (AET) on April 10, 2019 in accordance with the required test matrix identified as MnDOT Task #1. You submitted and identified all materials for the concrete mix. Six buckets labeled PCI Roads TH 60 Davenport Cement arrived at AET on August 29, 2018. The remainder of the materials arrived at AET in early April 2019.

Basic and additional required plastic properties were obtained after mixing.

The requested testing was conducted in accordance with the following standard test methods:

- ASTM C192/C192M 16a, "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory" Plastic Tests: Air Content, SAM Number, Slump, Unit Weight
- Box Test
- Vibrating V-Kelly Ball Test
- AASHTO T 22-17, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens"
- AASHTO T 97-18, "Standard Method of Test for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)"
- AASHTO T 358-19, "Standard Method of Test for Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration
- AASHTO TP 119-19, "Modified Standard Method of Test for Electrical Resistivity of a Concrete Cylinder Tested in a Uniaxial Resistance Test" (Bucket Test)
- ASTM C29/C29M 17a, "Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate

Mr. Todd Callahan AET Project No. 29-20087 June 7, 2019

- ASTM C457/C457M 16, "Standard Test Method for Microscopical Determination of Parameters of the Air Void System in Hardened Concrete"
- ASTM C136/136M 14, "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate"
- ASTM C1074 17, "Standard Practice for Estimating Concrete Strength by the Maturity Method"

Any remaining test samples will be retained for a period of 30 days from the date of this report. Unless we are informed otherwise, the specimens will then be discarded. The results represent specifically the samples tested and the methods specified.

Please contact us should you have any questions or need additional information.

American Engineering Testing, Inc.

Willin Morris

Willy Morrison Manager, Concrete Materials Laboratory Phone: 651-659-1333 wmorrison@amengtest.com

AET Project No.: 29-20087 Project: MnDOT Work Task #1 Client: PCI Roads Contact: Mr. Todd Callahan

CONSULTANTS · ENVIRONMENTA · GEOTECHNICAL · MATERIALS · FORENSICS AET Project Mgr.: W. Morrison Approved: P. Barnhouse Date: June 7, 2019
--

Mix Design (lb/yd³)

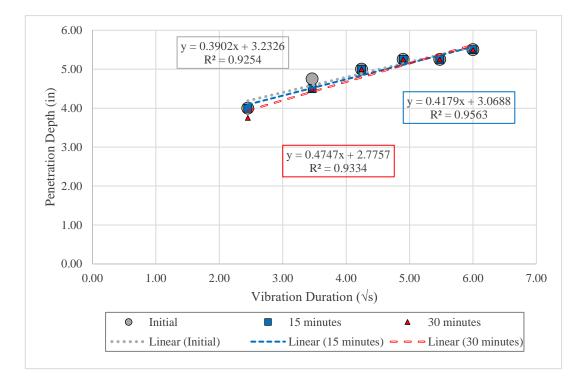
	Mix 3A21-13
Type I/II Continental Davenport Cement (lbs)	412
Boral, Headwaters Coal Creek Type F (lbs)	203
Coarse Agg., 1-1/2" Minus, Pit #52003 (lbs)	586
Coarse Agg., 3/4" Minus, Pit #52003 (lbs)	1,173
Fine Agg., Pit #52007 (lbs)	1,159
Water (lbs)	240
Air Entrainer, Mapei Polychem SA (oz/cwt)	2.0
Mid-Range Water-Reducer, Mapei Paver Plus (oz/cwt	4.0
HRWR, Dynamon SX (oz/cwt)	2.0
Water to Cement Ratio	0.39

Fresh Properties:

Unit Weight (pcf)	143.6
Slump (in)	2.8
Air Content (%)	6.3
Super Air Meter (SAM) Number	0.16
Box Test, Ratings, Edge Slump	2,2,2,1/0.0"
V-Kelly Ball Index, (in/\sqrt{s})	0.390
15 Minutes	
Unit Weight (pcf)	142.8
Slump (in)	2.50
Air Content (%)	6.0
Super Air Meter (SAM) Number	0.19
Box Test, Ratings, Edge Slump	2,2,2,1/0.0"
V-Kelly Ball Index, (in/√s)	0.418
30 Minutes	
Unit Weight (pcf)	143.2
Slump (in)	2.25
Air Content (%)	5.8
Super Air Meter (SAM) Number	0.21
Box Test, Ratings, Edge Slump	1,2,2,1/0.25"
V-Kelly Ball Index, (in/\sqrt{s})	0.475

⁽²⁾Concrete fabricated at AET on April 10, 2019.

550 Cleveland Avenue North | Saint Paul, MN 55114 Phone (651) 659-9001 | (800) 972-6364 | Fax (651) 659-1379 | www.amengtest.com | AA/EEO This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.



Project No: 29-20087 Project: MnDOT Work Task #1 Client: PCI Roads Contact: Mr. Todd Callahan CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

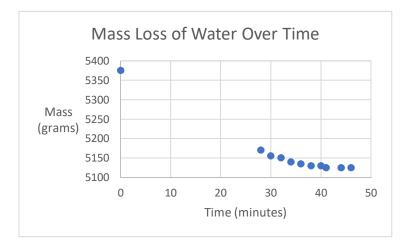
AET Project Mgr.: W. Morrison AET Engineer: P. Barnhouse Approved: W. Morrison Date: June 7, 2019

Fresh Property Data Sheet Mix ID - 3A21-13 V-Kelly Ball Test Results

	Initial			15 minutes		30 minutes		
Time (s)	Depth (in)		Time (s)	Depth (in)		Time (s)	Depth (in)	
Initial	2.25		Initial	2.00		Initial	1.75	
At Rest	2.50		At Rest	2.50		At Rest	2.25	
6	4.00		6	4.00		6	3.75	
12	4.75		12	4.50		12	4.50	
18	5.00		18	5.00		18	5.00	
24	5.25		24	5.25		24	5.25	
30	5.25		30	5.25		30	5.25	
36	5.50		36	5.50		36	5.5	
VKelly Inde	$x (in/\sqrt{s})$	0.390	VKelly Inde	$x (in/\sqrt{s})$	0.418	VKelly Inde	$x (in/\sqrt{s})$	0.475

550 Cleveland Avenue North | Saint Paul, MN 55114 Phone (651) 659-9001 | (800) 972-6364 | Fax (651) 659-1379 | www.amengtest.com | AA/EEO This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.

CONSULTANTS · ENVIRONMENTAL · GEOTECHNICAL · MATERIALS


· FORENSICS

AET Project No.:	29-20087	AET Project Mgr.: W. Morrison
Project:	MnDOT Task #1	Approved: P. Barnhouse
Client:	PCI Roads	Date: June 7, 2019
Contact:	Mr. Todd Callahan	
Specific Gravities	Absorptions	Batch Masses
Cement SG	3.15 CAI	0.3 Cement 76.3
Fly Ash SG	2.5 CAII	0.5 Fly Ash 37.6
CAI	2.63 CAIII	CAI 108.6
CAIL	2.63 FAI	1.3 CAII 218
	FAII	CAIII
AI	2.6	FAI 224.2
-All		FAII
		Water 44.4
		Batched Volume (ft^3) 5
		Batched Concrete Air Volume
Air Volume	Total Water Absorbe	Binder and Absorbed Water Cylinder
Cylinder Density (g/ft^3)	65463.9 CAI Abs	0.33 Volume Ratio 0.011545376
Total Batched Mass	709.1 CAII Abs	1.09 Cylinder Binder 1.315018286
Absolute Volume Batched (Air Free)	4.7 CAIII Abs	Cylinder Abs Water 0.049996095
Air Content (%)	6.3 FAI Abs	2.91
	FAII Abs	
	Total Absorbed Water	4.33
		Test One
bsolute Volume Batched	5.03	
atched Density	141.04	0.50
·		0.40 Measure 0.30
Vater Loss Mass (lbs)	0.55	d w/cm 0.20
· · ·		0.10
		0.00
		0.00 0.20 0.40 0.60
		Batched w/cm

CONSULTANTS · ENVIRONMENTAL · GEOTECHNICAL · MATERIALS · FORENSICS

AET Project No.:	29-20087				AET Project Mgr.: W. Morrison
Project:	MnDOT Task #1				Approved: P. Barnhouse
Client:	PCI Roads				Date: June 7, 2019
Contact:	Mr. Todd Callahan				
Phoenix Masses		lbs	Mass loss of w	ater over time	
Tare Cylinder (g)	110	0.24	Mass (g) Tin	ne (min)	
Mass Cylinder Filled (g)	3920	8.64	5375	0	
Mass Cylinder Emptied (g)	120	0.26	5170	28	
Volume Cylinder (ft^3)	0.06		5155	30	
			5150	32	
Mass of Pan Fresh Concrete (g)	5375		5140	34	
Mass of Pan Dried Concrete (g)	5125		5135	36	
			5130	38	
Cylinder Volume Tested (g/ft^3)	0.06 (lbs/ft^3)	0.06	5130	40	
			5125	41	
			5125	44	
w/cm Calculations			5125	46	
Measure w/cm	0.38				
Batched w/cm	0.39				

AET Project No: 29-20087

• GEOTECHNICAL • MATERIALS • FORENSICS AET Project Mgr.: W. Morrison AET Engineer: P. Barnhouse

Approved: W. Morrison

Report Date: June 7, 2019

CONSULTANTS

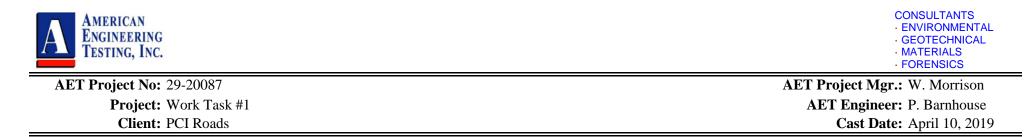
ENVIRONMENTAL

Project: MnDOT Work Task #1 Client: PCI Roads Contact: Mr. Todd Callahan

Test Result Summary of Hardened Properties

Concrete Mix 3A21-13

Cast Date:	April 10, 201	9			Specification
ASTM C78, Flexural Strength, psi	Specimen 1	Specimen 2	Specimen 3	Average	
2 days, psi	730	665	710	700	
3 days, psi	710	675	805	730	
7 days, psi	750	650	785	730	
14 days, psi	750	810	780	780	
28 days, psi	1040	945	930	970	
ASTM C39, Compressive Strength, psi	Specimen 1	Specimen 2	Specimen 3	Average	
2 days, psi	2,290	2,080	2,190	2,190	
3 days, psi	2,700	2,780	2,800	2,760	
7 days, psi	3,120	3,620	3,460	3,400	
14 days, psi	4,350	3,890	4,150	4,130	
28 days, psi	5,200	4,980	4,960	5,050	

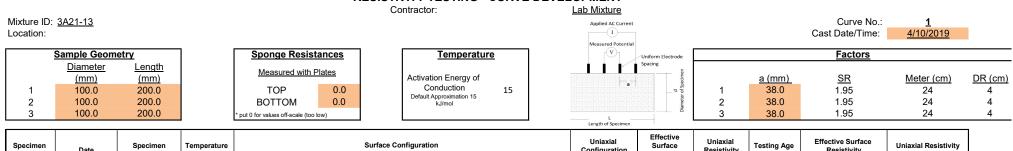

ASTM C457, Air Void Analysis

	Total Air Voids, %	Specific Surface, in ² /in ³	Spacing Factor, in	
Mix 3A21-13	5.7	1310	0.003	

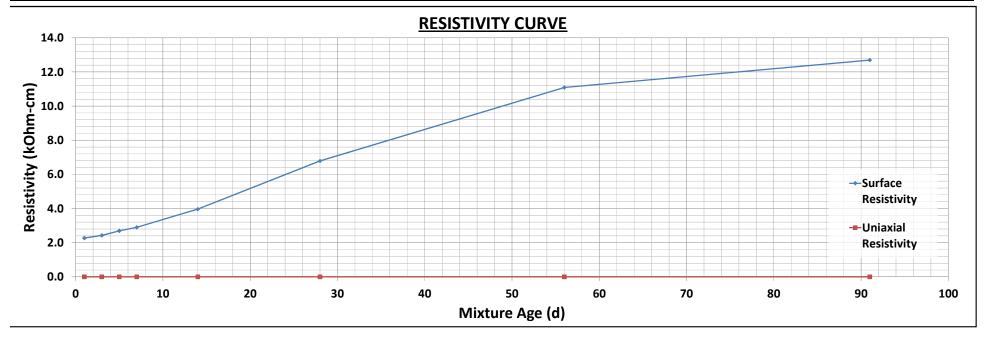
Notes:

1. The test results represent the specimens tested and the methods specified.

2. The test specimens could not be demolded at 24 hours due to incomplete hydration. The test specimens were demoded after 48 h One day test results were requested, however 2 days tests were conducted instead.



AASHTO T 358 Wenner Probe Surface Resistivity Results 3A21-3


Day 28	5/8/19							
				Sealed 1	Sealed 2			
			Mass (g)	3,803.1	3,790.2			
Sealed	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	26.7	25.4	25.6	29.4	25.7	24.5	24.9	29.6
Sample 2	23.3	23.8	23.2	23.6	22.6	24.7	23.0	23.2

	Average Surface Resistivity (kΩ-cm)
Sample 1	26.5
Sample 2	23.4
Average	25.0

RESISTIVITY TESTING - CURVE DEVELOPMENT

Specimen Number	Date	Specimen Temperature (C)	Temperature Factor				Surface Co (kOhi	nfiguration n-cm)				Uniaxial Configuration (kOhm-cm)	Surface Resistivity (kOhm-cm)	Uniaxial Resistivity (kOhm-cm)	Testing Age (d)	Effective Surface Resistivity (kOhm-cm)	Uniaxial Resistivity (kOhm-cm)
		22.0	0.98	4.00	4.60	4.50	5.30	4.50	4.60	4.50	5.30		2.39				
	4/11/2019	22.0	0.98	3.90	4.30	4.40	4.20	4.10	4.30	4.20	4.30		2.16		1	2.28	
		22.0	0.98	4.50	4.80	5.10	4.90	4.70	4.90	5.10	4.90		2.49				
	4/13/2019	22.0	0.98	4.40	4.50	4.70	4.90	4.50	4.50	4.70	4.60		2.36		3	2.43	
		22.0	0.98	5.00	5.50	5.50	5.40	5.30	5.60	5.50	5.50		2.78				
	4/15/2019	22.0	0.98	4.90	4.90	5.40	5.00	5.20	5.00	5.30	5.10		2.62		5	2.70	
		22.0	0.98	5.50	5.70	5.90	5.70	5.90	6.00	6.00	5.70		2.97				
	4/17/2019	22.0	0.98	5.00	5.30	5.80	5.60	5.60	5.10	5.70	5.80		2.81		7	2.89	
		22.0	0.98	7.50	9.10	8.00	7.70	8.60	8.30	8.50	8.20		4.14				
	4/24/2019	22.0	0.98	7.00	7.40	7.60	7.80	7.80	7.40	7.90	7.50		3.79		14	3.97	
		22.0	0.98	14.60	14.80	15.30	15.10	15.10	15.10	11.30	15.60		7.34				
	5/8/2019	22.0	0.98	10.20	10.40	12.20	12.80	12.20	12.90	14.00	14.60		6.24		28	6.79	
		22.0	0.98	25.40	25.40	26.40	27.80	20.60	25.00	24.80	23.90		12.52				
	6/5/2019	22.0	0.98	17.50	17.90	19.50	20.40	18.70	19.20	21.50	19.10		9.66		56	11.09	
		22.0	0.98	37.50	33.20	22.60	26.20	28.00	27.70	31.90	33.60		15.12				
	7/10/2019	22.0	0.98	18.30	19.10	18.60	21.20	19.50	22.80	22.40	21.70		10.27		91	12.70	

AIR VOID ANALYSIS

PROJECT:

REPORTED TO:

	NG PROJECT IN ST. JAMES MATERIALS PERFORMANCE	PCI ROADS LLC 14123 – 42 ND STREET NE ST. MICHAEL, MN 55376-9564 ATTN: TODD CALLAHAN			
AET PROJECT N	D: 29-20087	D	ATE:	MAY 8, 2019	
Sample ID: Conformance:	Mix 3A21-13 The concrete contains an air void system which is consistent with current American Concrete Institute (ACI) recommendations for freeze- thaw resistance.		450 400 350 250 250 200 ≇ 150 100 50 0		
Sample Data Description: Dimensions:	Hardened Concrete Cylinder 102 mm (4") diameter x 203 mm		τι ν Cl	9 ~ 끄 드 디 성 왕 왕 동 두 북 북 북 양 당 급 HORD LENGTH (1x0.0006666667'')	

102 mm(4)	diameter x 205 mm
(8	") length
By ASTM (C457, Procedure A
nt %	5.7
0.040"(1mm)	4.6
0.040"(1mm)	1.1
	18.5
e, in^2/in^3	1310
inches	0.003
% estimated	22
	75x
n, inches	90
	5/8/2019
By	W. Reely
-	•
	(8 By ASTM (0.040"(1mm) 0.040"(1mm) e, in ² /in ³ inches % estimated h, inches

American Engineering Testing, Inc.

n 11

Blake M. Lemcke, PG Geologist/Petrographer MN License #50337

Magnification: 15x Description: Hardened air void system.

DETERMINING CONCRETE STRENGTH USING THE MATURITY METHOD

Below are the results of maturity calculations conducted on the concrete mixture identified as 3A21-13. Compressive and flexural strength specimens were cast at the AET laboratory on April 10, 2019, and stored at our laboratory in St. Paul, MN, for strength testing. At the same time, a companion compressive and companion flexural specimen were cast and were used to monitor and record concrete temperature and maturity. All specimens were stored in a 100% relative humidity curing room at 23 °C until testing in accordance with ASTM C39 and ASTM C78. The temperature-time factor (i.e., maturity) was determined from the companion specimens in accordance with the method in ASTM C1074.

- Table 1 presents the temperature-time factor and compressive strengths at various ages for the given mix design.
- Figure 1 illustrates the relationship between estimated maturity and compressive strength through 28 days of curing in our laboratory.
- Table 2 presents the temperature-time factor and flexural strengths at various ages for the given mix design.
- Figure 2 illustrates the relationship between estimated maturity and flexural strength through 28 days of curing in our laboratory.

Table 1. Maturity and compressive strength results from laboratory-cured cylinders(3A21-13)

Age, days	Maturity (°C-Hours)	Compressive Strength (psi)
2	1,048	2,190
3	1,554	2,760
7	3,580	3,400
14	7,012	4,130
28	14,018	5,050

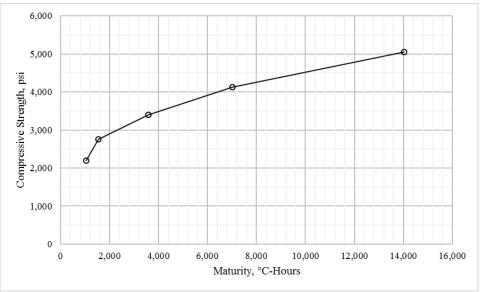


Figure 1. Compressive strength-maturity relationship (3A21-13)

Table 2. Maturity and flexural strength results from laboratory-cured cylinders (3A21-13) Age days Maturity (°C-Hours) Flexural Strength (nsi)

	Age, days	Maturity (C-Hours)	Flexural Strength (psi)
	2	1,006	700
	3	1,509	730
	7	3,515	730
	14	6,922	780
-	28	13,850	970

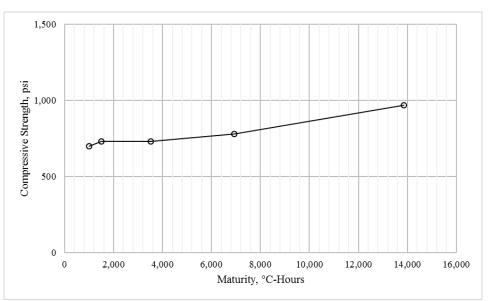
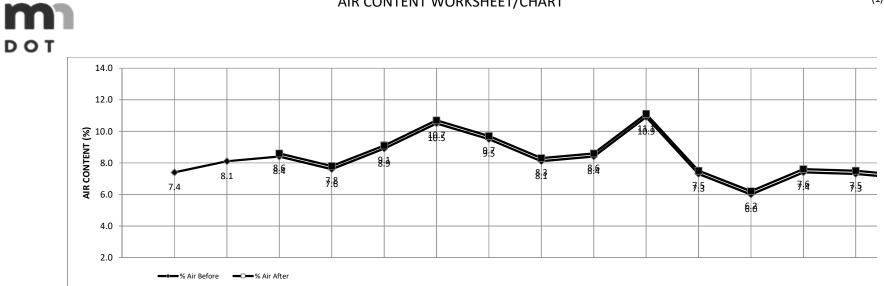


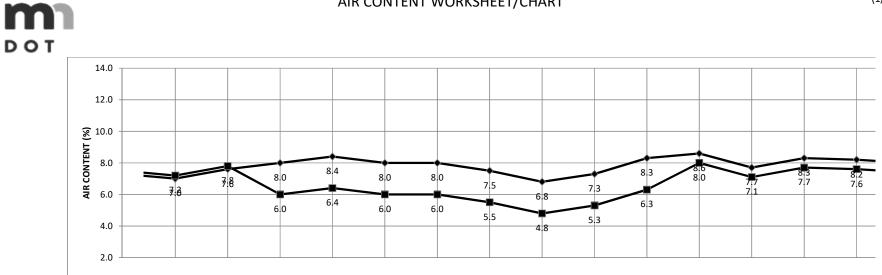
Figure 2. Flexural strength-maturity relationship (3A21-13)

					Super A	ir Meter	
Date	Test No.	Station	Before/ After	Regular Air Pot	SAM	Air	Concrete Temp
6/13/2019	1	1654+00	Before	8.8%	0.23	11.10	73
6/13/2019	2	1654+00	After	8.2%	0.33	10.00	73
6/14/2019	3	1619+50	Before	N/A	0.23	8.70	68
6/14/2019	4	1619+50	After	N/A	0.04	7.70	68
6/14/2019	5	1600+15	Before	7.2%	0.27	8.80	70
6/14/2019	6	1600+15	After	6.5%	0.74	8.20	70
6/17/2019	7	1555+90	Before	6.5%	Error	8.20	73
6/17/2019	7.1	1555+90	Before	6.5%	0.19	8.00	73
6/17/2019	8	1537+32	Before	7.5%	Error	10.80	70
6/17/2019	8.1	1537+32	Before	7.5%	0.07	12.80	70
6/17/2019	9	1537+32	After	8.0%	0.07	8.70	70
6/19/2019	10	1239+56	Before	7.2%	Error	9.80	68
6/19/2019	10.1	1239+56	Before	7.2%	0.18	8.70	68
6/19/2019	11	1265+17	Before	6.8%	0.17	9.10	71
6/19/2019	12	1265+17	After	6.2%	Error	7.40	71
6/19/2019	12.1	1265+17	After	6.2%	0.08	8.40	71
6/24/2019	13	1303+87	Before	7.5%	0.24	8.50	73
6/24/2019	14	1303+87	After	7.2%	Error	10.30	73
6/24/2019	14.1	1303+87	After	7.2%	Error	9.70	73
6/24/2019	15	1323+18	Before	8.0%	0.23	8.90	70
6/24/2019	16	1323+18	After	8.1%	0.19	8.40	70
6/26/2019	17	1358+62	Before	8.0%	0.17	9.80	67
6/26/2019	18	1385+36	Before	7.0%	Error	8.40	70
6/26/2019	18.1	1385+36	Before	7.0%	0.18	9.30	70
6/26/2019	19	1385+36	After	6.9%	Error	7.10	70
6/26/2019	19.1	1385+36	After	6.9%	0.23	7.10	70
6/28/2019	20	1440+18	Before	6.0%	0.27	8.20	76
6/28/2019	21	1468+50	Before	8.2%	0.19	12.10	74
6/28/2019	22	1468+50	After	7.5%	0.29	10.40	74
6/29/2019	23	1499+25	Before	7.8%	0.34	9.60	75
6/29/2019	24	1499+25	After	7.0%	0.23	8.30	75
6/29/2019	25	1512+75	Before	8.8%	0.05	10.30	75
7/1/2019	26	1275+17	Before	7.6%	0.18	10.20	76
7/1/2019	27	1275+17	After	7.0%	0.28	8.10	76
7/2/2019	28	1296+55	Before	8.8%	Error	9.20	76
7/2/2019	28.1	1296+55	Before	8.8%	0.16	10.40	76
7/2/2019	29	1296+55	After	7.8%	0.25	8.40	76
7/3/2019	30	1518+88	Before	7.6%	0.19	8.40	78
7/3/2019	31	1518+88	After	6.8%	0.18	7.00	78
7/8/2019	32	1508+08	Before	8.8%	0.23	10.90	75
7/8/2019	33	1418+73	Before	8.4%	0.17	9.20	77
7/8/2019	34	1418+73	After	7.5%	0.13	7.60	77
7/9/2019	35	1878+08	Before	7.8%	0.31	9.30	76
7/9/2019	36	1878+08	After	6.5%	0.19	7.30	76

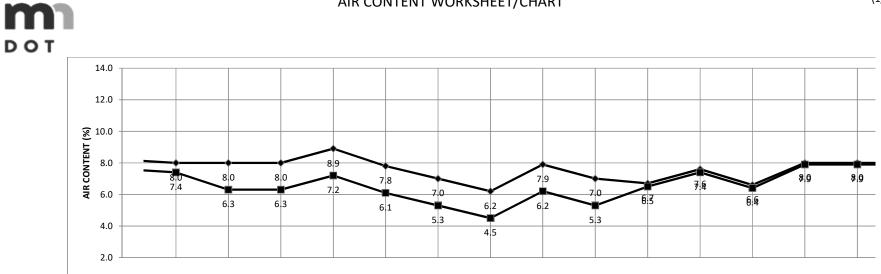
Date	Test No.	Station	Before/ After	Regular Air Pot	Super A	ir Meter	Concrete Temp
Date	Test NO.	Station	Before/ After	Regular All Pol	SAM	Air	Concrete Temp
7/10/2019	37	1721+37	Before	7.0%	0.3	7.70	75
7/10/2019	38	1721+37	After	5.5%	0.36	6.90	75
7/11/2019	39	1595+65	Before	7.2%	0.12	8.10	77
7/11/2019	40	1595+65	After	6.0%	0.24	6.70	77
8/1/2019	41	1408+50	Before	6.80%	0.19	6.7	7.9
8/1/2019	42	1408+50	After	6.80%	0.25	6.9	7.9

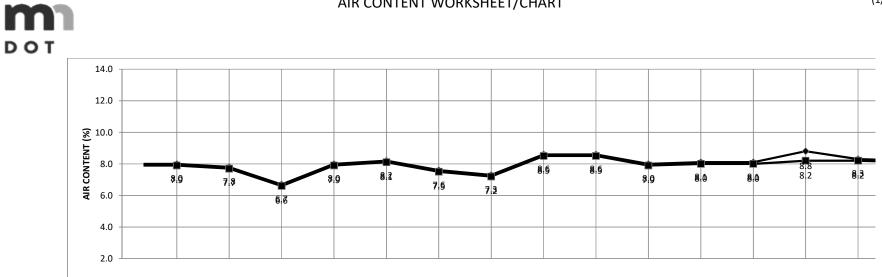

	Date	6/13/2019	6/13/2019	6/14/2019	6/14/2019	6/14/2019	6/14/2019	6/17/2019	6/17/2019	6/17/2019	6/17/2019	6/17/2019	19-Jun
Lo	ocation	1654+00	1654+00	1619+50	1619+50	1600+15	1600+15	1555+90	1555+90	1537+32	1537+32	1537+32	1239+56
Те	est No.	1	2	3	4	5	6	7	7.1	8	8.1	9	10
First	14.5 psi	4.85	5.21	5.66	6.08	5.61	5.84	5.83	5.94	4.92	4.40	5.62	5.25
Run	30 psi	13.51	14.29	15.02	16.08	15.77	15.90	15.55	15.52	14.14	13.64	14.62	14.57
Kun	45 psi	24.18	25.36	26.31	27.65	27.71	27.98	27.18	27.04	25.32	24.74	25.65	25.80
Second	14.5 psi	4.97	5.38	5.67	6.12	5.67	5.75	5.76	6.04	4.86	4.43	5.71	5.26
Run	30 psi	13.69	14.56	15.15	15.95	15.96	16.25	15.43	15.63	14.03	13.68	14.71	14.58
Kun	45 psi	24.41	25.69	26.54	27.68	27.98	28.71	27.00	27.21	25.13	24.80	25.72	25.82
Air Co	ontent (%)	11.10	10.00	8.70	7.70	8.80	8.20	8.20	8.00	10.80	12.80	8.70	9.80
	@ 14.5 psi	0.12	0.17	0.01	0.04	0.06	-0.09	-0.07	0.10	-0.06	0.03	0.09	0.01
SAM	@ 30 psi	0.18	0.27	0.13	-0.13	0.19	0.35	-0.12	0.11	-0.11	0.04	0.09	0.01
SAM	@ 45 psi	0.23	0.33	0.23	0.03	0.27	0.73	-0.18	0.17	-0.19	0.06	0.07	0.02
SAM	's Chance	0.73	0.80	0.95	0.96	0.91	1.00	0.09	0.75	0.05	0.52	0.23	0.45
р	esult:	Likely	Likely	Likely	Ran	Likely	Ran	Ran	Likely	Ran	Likely	Ran	Ran
к	esuit:	Correct	Correct	Correct	Incorrect	Correct	Incorrect	Incorrect	Correct	Incorrect	Correct	Incorrect	Incorrect
	slump [in]												
Fresh	temp. [F]	73.00	73.0	68.00	68.0	70.0	70	73	73	70	70	70	68
Prop.	Unit Weight [pcf]	135.90	135.90	135.40	135.40	135.40	135.40	138.8	138.8	138.8	138.8	138.8	137.7
	w/c ratio	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.38	0.38	0.38	0.38	0.36
	Coarse 1	595	595	595	595	595	595	595	595	595	595	595	595
	Coarse 2	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198
	Fine	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185
Mix	Cement	400	400	400	400	400	400	400	400	400	400	400	400
Design	Fly Ash	200	200	200	200	200	200	200	200	200	200	200	200
[lb/yd ³]	Water	228	228	228	228	228	228	228	228	228	228	228	228
	AEA												
	WR												
	SP												
	s done to the efore the test?												
How long	was it mixed?												
How wa	as it mixed?												
	ave a stable air I system?												
Did you sa same locat	ample from the ion at the same time?												
,	eak check the fore running?												
Cor	mments	3A21-2											

]	Date	6/19/2019	6/19/2019	6/19/2019	6/19/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/24/2019	6/26/2019	6/26/2019	6/26/2019
Lo	cation	1239+56	1265+17	1265+17	1265+17	1303+87	1303+87	1303+87	1323+18	1323+18	1358+62	1385+36	1385+36
Те	st No.	10.1	11	12	12.1	13	14	14.1	15	16	17	18	18.1
First	14.5 psi	5.61	5.48	6.20	5.84	5.72	5.07	5.26	5.55	5.75	5.22	5.77	5.30
Run	30 psi	14.74	15.15	16.19	15.90	18.05	14.69	14.91	14.57	15.06	14.13	15.31	15.15
Kull	45 psi	25.88	26.67	28.14	27.84	26.34	26.32	26.43	25.61	26.32	25.05	26.75	26.69
Second	14.5 psi	5.77	5.55	6.13	5.84	5.81	5.81	5.28	5.59	5.80	5.27	5.69	5.44
Run	30 psi	14.92	15.28	16.16	16.16	15.23	15.23	14.90	14.72	15.18	14.25	15.10	15.28
Kun	45 psi	26.07	26.84	28.00	27.91	26.59	26.59	26.44	25.84	26.51	25.22	26.46	26.98
Air Co	ontent (%)	8.70	9.10	7.40	8.40	8.50	10.30	9.70	8.90	8.40	9.80	8.40	9.30
	@ 14.5 psi	0.16	0.07	-0.07	0.00	0.09	0.74	0.02	0.04	0.05	0.05	-0.08	0.14
SAM	@ 30 psi	0.18	0.13	-0.03	0.26	-2.82	0.54	-0.01	0.15	0.12	0.12	-0.21	0.13
SAM	@ 45 psi	0.19	0.17	-0.14	0.07	0.25	0.27	0.01	0.23	0.19	0.17	-0.29	0.29
SAM'	's Chance	0.40	0.69	0.04	0.01	1.00	0.00	0.48	0.90	0.85	0.77	0.04	0.98
		Ran	Likely	Ran	Ran	Ran	Ran	Ran	Likely	Likely	Likely	Ran	Likely
R	esult:	Incorrect	Correct	Incorrect	Incorrect	Incorrect	Incorrect	Incorrect	Correct	Correct	Correct	Incorrect	Correct
		meorreer	Contect	meonreet	incorrect	incorrect	incorrect	meonreer	Contect	Contect	Contect	incorrect	contact
	slump [in]												
Fresh	temp. [F]	68	71	71	71	73	73	73	70	70	67	70	70
	Unit Weight												
Prop.	[pcf]	137.7	137.7	137.7	137.7	134.3	134.3	134.3	134.3	134.3	135.8	135.8	135.8
	w/c ratio	0.36	0.36	0.36	0.36	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
	Coarse 1	595	595	595	595	595	595	595	595	595	595	595	595
	Coarse 2	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198
	Fine	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185
Mix	Cement	400	400	400	400	400	400	400	400	400	400	400	400
Design	Fly Ash	200	200	200	200	200	200	200	200	200	200	200	200
[lb/yd ³]	Water	228	228	228	228	228	228	228	228	228	228	228	228
[-~,] ~]	AEA												
	WR												
	SP												
What was	s done to the												
concrete b	efore the test?												
How long	was it mixed?												
How wa	as it mixed?												
Does it ha	ive a stable air												
void	system?												
	imple from the												
	ion at the same												
	ime?												
-	eak check the												
meter be	fore running?												
Cor	nments	3A21-2											

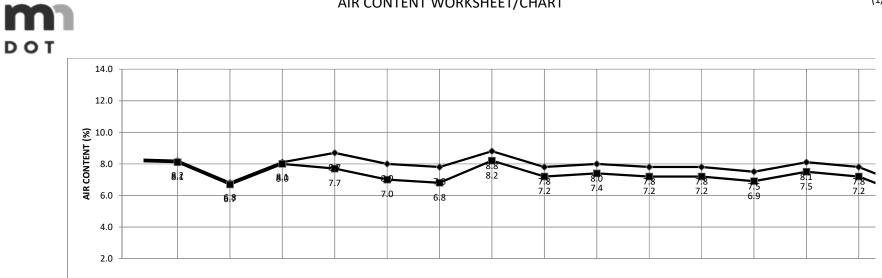

]	Date	6/26/2019	6/26/2019	6/28/2019	6/28/2019	6/28/2019	6/29/2019	6/29/2019	6/29/2019	7/1/2019	7/1/2019	7/2/2019	7/2/2019
Lo	cation	1385+36	1385+36	1440+18	1468+50	1468+50	1499+25	1499+25	1512+75	1275+17	1275+17	1296+55	1296+55
Те	st No.	19	19.1	20	21	22	23	24	25	26	27	28	28.1
First	14.5 psi	6.33	6.33	5.83	4.53	5.04	5.28	5.78	5.06	5.11	5.87	5.46	5.05
Run	30 psi	19.91	16.28	16.05	13.87	14.49	14.58	15.43	13.52	14.76	15.94	14.29	14.19
Kun	45 psi	28.87	28.14	28.05	25.10	26.03	25.80	26.99	23.99	26.26	27.84	25.15	25.29
Second	14.5 psi	6.21	6.45	5.95	4.62	5.18	5.45	5.90	5.02	5.16	5.97	5.44	5.12
Run	30 psi	16.12	16.46	16.26	14.03	14.82	14.82	15.59	13.51	14.87	16.14	14.29	14.30
Kun	45 psi	27.89	28.37	28.32	25.29	26.32	26.14	27.22	24.04	26.44	28.12	25.17	25.45
Air Co	ntent (%)	7.10	7.10	8.20	12.10	10.40	9.60	8.30	10.30	10.20	8.10	9.20	10.40
	@ 14.5 psi	-0.12	0.12	0.12	0.09	0.14	0.17	0.12	-0.04	0.05	0.10	-0.02	0.07
SAM	@ 30 psi	-3.79	0.18	0.21	0.16	0.33	0.24	0.16	-0.01	0.11	0.20	0.00	0.11
SAM	@ 45 psi	-0.98	0.23	0.27	0.19	0.29	0.34	0.23	0.05	0.18	0.28	0.02	0.16
SAM'	s Chance	1.00	0.73	0.81	0.63	0.28	0.91	0.81	0.81	0.85	0.89	0.56	0.73
	Т	Ran	Likely	Likely	Likely	Ran	Likely	Likely	Ran	Likely	Likely	Ran	Likely
R	esult:	Incorrect	Correct	Correct	Correct	Incorrect	Correct	Correct	Incorrect	Correct	Correct	Incorrect	Correct
		meonreer	conteet	conteet	contect	incorrect	conteet	conteet	incorrect	contect	contect	medireer	contee
	slump [in]												
Frech	temp. [F]	70	70	76	74	74	75	75	75	76	76	76	76
Fresh	Unit Weight												
Prop.	[pcf]	135.8	135.8	136	136	136	137	137	137	134.5	134.5	134.5	134.5
	w/c ratio	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.38	0.38	0.37	0.37
	Coarse 1	595	595	595	595	595	595	595	595	595	595	595	595
	Coarse 2	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198
	Fine	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185
Mix	Cement	400	400	400	400	400	400	400	400	400	400	400	400
Design	Fly Ash	200	200	200	200	200	200	200	200	200	200	200	200
[lb/yd ³]	Water	228	228	228	228	228	228	228	228	228	228	228	228
[-~,] ~]	AEA												
	WR												
	SP												
	s done to the												
concrete b	efore the test?												
How long	was it mixed?												
How wa	as it mixed?												
	ve a stable air												
	system?												
	mple from the												
	on at the same												
	ime?												
-	eak check the												
meter be	fore running?												
Cor	nments	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2							

J	Date	7/2/2019	7/3/2019	7/3/2019	7/8/2019	7/8/2019	7/8/2019	7/9/2019	7/9/2019	7/10/2019	7/10/2019	7/11/2019	7/11/2019
	cation	1296+55	1518+88	1518+88	1508+08	1418+73	1418+73	1878+08	1878+08	1721+37	1721+37	1595+65	1595+65
Те	st No.	29	30	31	32	33	34	35	36	37	38	39	40
First	14.5 psi	5.27	5.64	6.39	4.87	5.45	6.09	5.39	6.25	6.06	6.42	5.88	6.55
Run	30 psi	15.29	14.92	16.29	13.38	14.49	15.71	14.16	16.07	15.62	16.69	15.27	16.94
Kull	45 psi	26.73	26.20	28.07	23.89	25.51	27.28	24.96	27.80	27.13	28.77	26.62	29.11
Second	14.5 psi	5.88	5.67	6.41	4.98	5.48	6.12	5.49	6.32	6.19	6.57	5.88	6.64
Run	30 psi	15.47	15.06	16.40	13.54	14.59	15.81	14.37	16.21	15.85	16.95	15.34	17.12
	45 psi	26.98	26.39	28.25	24.12	25.68	27.41	25.26	27.98	27.43	29.13	26.74	29.36
	ontent (%)	8.40	8.40	7.00	10.90	9.20	7.60	9.30	7.30	7.70	6.90	8.10	6.70
	@ 14.5 psi	0.61	0.03	0.02	0.11	0.03	0.03	0.10	0.07	0.13	0.15	0.00	0.09
	@ 30 psi	0.18	0.14	0.11	0.16	0.10	0.10	0.21	0.14	0.23	0.26	0.07	0.18
SAM	@ 45 psi	0.25	0.19	0.18	0.23	0.17	0.13	0.30	0.18	0.30	0.36	0.12	0.25
SAM	's Chance	0.15	0.81	0.87	0.82	0.86	0.66	0.92	0.70	0.85	0.93	0.78	0.85
		Ran	Likely	Likely	Likely	Likely							
R	esult:	Incorrect	Correct	Correct	Correct	Correct							
			contect	contect	conteet	contect	conteet	conteet	conteet	contect	contect	conteet	conteet
	slump [in]												
Fresh	temp. [F]	76	78	78	75	77	77	76	76	75	75	77	77
	Unit Weight												
Prop.	[pcf]	134.5	136.6	136.6	131.7	131.7	131.7	138.6	138.6	137.9	137.9	136.6	136.6
	w/c ratio	0.37	0.38	0.38	0.36	0.36	0.36	0.38	0.38	0.38	0.38	0.38	0.38
	Coarse 1	595	595	595	595	595	595	595	595	595	595	595	595
	Coarse 2	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198	1198
	Fine	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185	1185
Mix	Cement	400	400	400	400	400	400	400	400	400	400	400	400
Design	Fly Ash	200	200	200	200	200	200	200	200	200	200	200	200
[lb/yd ³]	Water	228	228	228	228	228	228	228	228	228	228	228	228
[-~,] ~]	AEA												
	WR												
	SP												
	s done to the												
concrete b	efore the test?												
How long	was it mixed?												
How wa	as it mixed?												
	ive a stable air												
	system?												
	imple from the ion at the same												
	ime?												
,	eak check the fore running?												
	5												
Cor	nments	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2	3A21-2

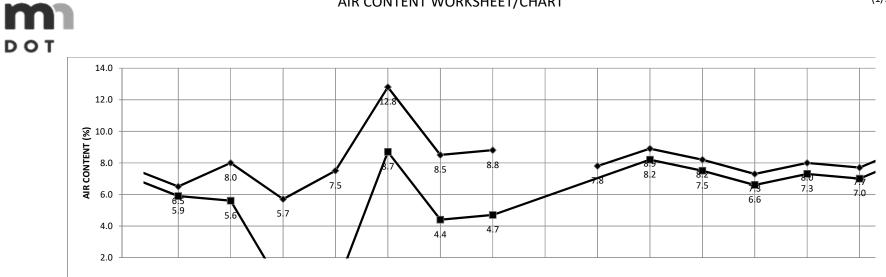

1	Date	8/1/2019	8/1/2019]
	cation	8/1/2019 1408+50	1408+50										
	est No.	41	42										
	14.5 psi	6.55	6.45										
First	30 psi	16.78	16.34										
Run	45 psi	28.83	28.12										
G 1	14.5 psi	6.61	6.53										
Second Run	30 psi	16.92	16.51										
	45 psi	29.01	28.37										
	ontent (%)	6.70	6.90										
	@ 14.5 psi	0.06	0.08										
	@ 30 psi	0.14	0.17										
	@ 45 psi	0.18	0.25										
SAM	's Chance	0.72	0.89										
		Likely	Likely	Insert									
К	esult:	Correct	Correct	Pressure									
				Steps Above									
	slump [in]												
Fresh	temp. [F]	NA	NA										
Prop.	Unit Weight												
TTOP.	[pcf]	NA	NA										
	w/c ratio	NA	NA										
	Coarse 1	595	595										
	Coarse 2	1198	1198										
	Fine	1185	1185										
Mix	Cement	400	400										
Design	Fly Ash	200	200										
[lb/yd ³]	Water	228	228										
	AEA WR												
	SP SP												
What wa	s done to the												
	efore the test?												
How long	was it mixed?												
How w	as it mixed?												
	ave a stable air												
	system?												
	ample from the ion at the same												
	time?												
	eak check the												
	fore running?												
Cor	nments	3A21-2	3A21-2										


Pr	oject Number:					Engi	neer:				Contr	actor:			
Da	ite	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19	6/7/19
	Time	6:32 AM	7:15 AM	8:40 AM	9:49 AM	10:25 AM	11:55 AM	12:10 PM	12:20 PM	1:10 PM	1:40 PM	2:15 PM	3:15 PM	4:10 PM	4:21 PM
ation	Station	1908+63	1907+07	1902+50	1898+23	1895+45	1886+85	1886+25	1884+95	1880+60	1877+85	1875+50	1870+60	1865+95	1865+95
Consolidation	Concrete Temperature	75	76	74	73	73	75	75	75	75	75	75	75	75	75
e Cor	% Air Content [a]	7.4	8.1	8.4	7.6	8.9	10.5	9.5	8.1	8.4	10.9	7.3	6.0	7.4	7.3
Before	Agency Correlation % Air Content	6.5	8.1	8.2											
	SAM Number**														
	Time			9:00 AM											
_	Concrete Temperature			74											
Consolidation	% Air Content [b]			8.6											
onsol	Air Loss Correction Factor [a- b]			-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2	-0.2
After C	% Air Content or Adjusted % Air Content			8.6	7.8	9.1	10.7	9.7	8.3	8.6	11.1	7.5	6.2	7.6	7.5
Å	Agency Correlation % Air Content			8.2											
	SAM Number**														
	Additional Information or Comments														
	Additional Information or Comments														

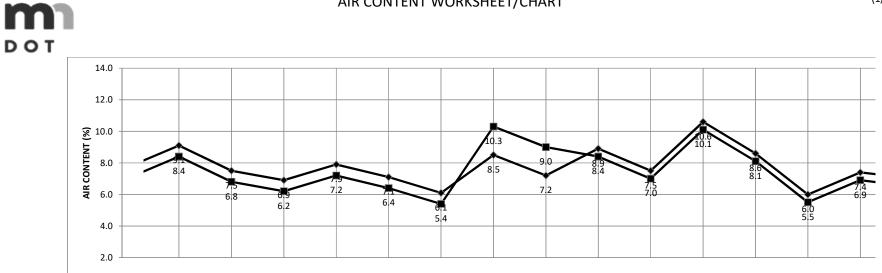
Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/7/19	6/7/19	6/8/19	6/8/19	6/8/19	6/8/19	6/8/19	6/8/19	6/8/19	6/8/19	6/8/19	6/8/19	6/9/19	6/9/19
	Time	5:15 PM	6:32 PM	6:40 AM	8:00 AM	9:00 AM	10:00 AM	11:10 AM	12:25 PM	1:35 PM	2:30 PM	3:35 PM	4:26 PM	6:30 AM	7:04 AM
ation	Station	1860+00	1853+00	1852+09	1852+09	1840+10	1834+25	1830+75	1826+10	1819+30	1813+95	1807+75	1802+65	1800+40	1798+68
Consolidation	Concrete Temperature	75	75	70	68	70	69	72	73	73	72	73	74	67	66
	% Air Content [a]	7.0	7.6	8.0	8.4	8.0	8.0	7.5	6.8	7.3	8.3	8.6	7.7	8.3	8.2
Before	Agency Correlation % Air Content			7.8										8.0	
	SAM Number**														
	Time			7:00 AM								3:40 PM			
<u>-</u>	Concrete Temperature			69								73			
After Consolidation	% Air Content [b]			6.0								8.0			
onsoli	Air Loss Correction Factor [a- b]	-0.2	-0.2	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	0.6	0.6	0.6	0.6
fter C	% Air Content or Adjusted % Air Content	7.2	7.8	6.0	6.4	6.0	6.0	5.5	4.8	5.3	6.3	8.0	7.1	7.7	7.6
¥	Agency Correlation % Air Content			6.0											
	SAM Number**														
	Additional Information or Comments														
	Additional Information or Comments														

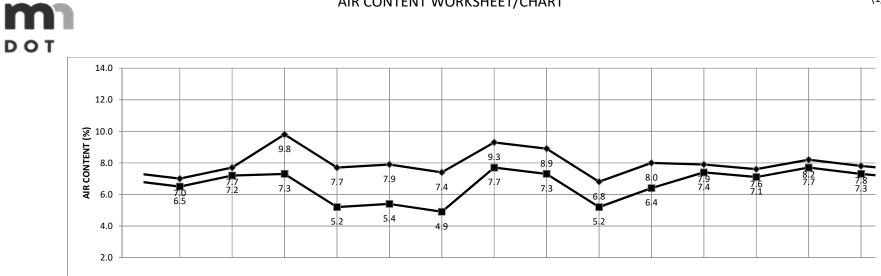


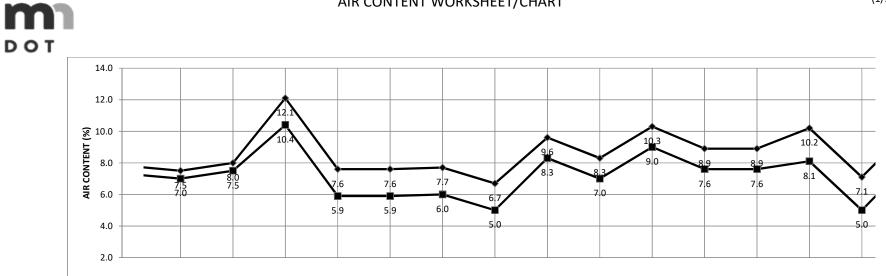
Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/9/19	6/9/19	6/9/19	6/9/19	6/9/19	6/9/19	6/9/19	6/9/19	6/10/19	6/11/19	6/11/19	6/12/19	6/12/19	6/12/19
	Time	7:20 AM	8:20 AM	9:45 AM	11:10 AM	12:15 PM	12:30 PM	1:35 PM	2:35 PM	3:35 PM	4:35 PM	5:27 PM	6:30 AM	8:15 AM	9:25 AM
ation	Station	1798+50	1793+25	1785+00	1779+25	1773+50	1772+10	1776+00	1760+35	1753+55	1746+48	1742+63	1741+30	1734+75	1728+50
Consolidation	Concrete Temperature	66	66	68	72	73	73	72	72	73	71	71	68	66	66
e Co	% Air Content [a]	8.0	8.0	8.0	8.9	7.8	7.0	6.2	7.9	7.0	6.7	7.6	6.6	8.0	8.0
Before	Agency Correlation % Air Content		7.2										6.5		
	SAM Number**														
	Time		8:27 AM								4:41 PM			8:19 AM	
_	Concrete Temperature		66								71			66	
After Consolidation	% Air Content [b]		6.3								6.5			7.9	
onsol	Air Loss Correction Factor [a- b]	0.6	1.7	1.7	1.7	1.7	1.7	1.7	1.7	1.7	0.2	0.2	0.2	0.1	0.1
fter C	% Air Content or Adjusted % Air Content	7.4	6.3	6.3	7.2	6.1	5.3	4.5	6.2	5.3	6.5	7.4	6.4	7.9	7.9
¥	Agency Correlation % Air Content		6.5												
	SAM Number**														
	Additional Information or Comments														
	Additional Information or Comments														

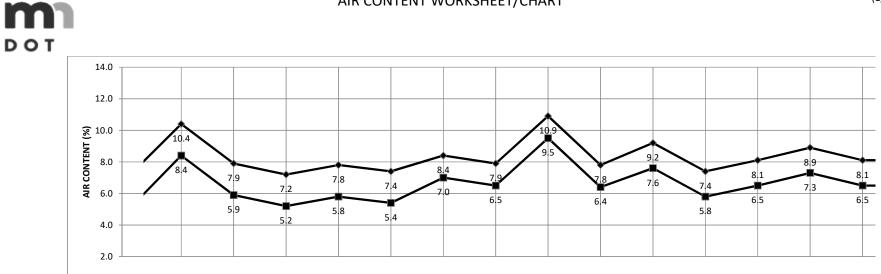


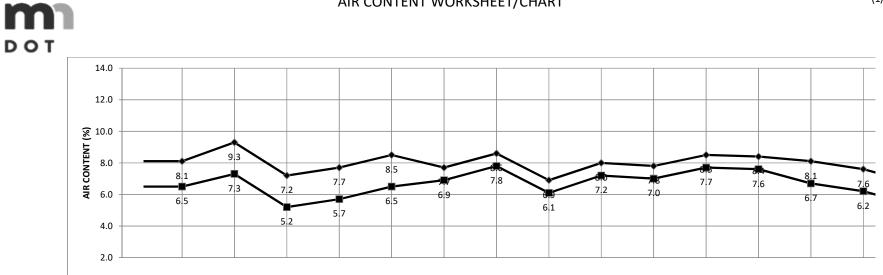
Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/12/19	6/12/19	6/12/19	6/12/19	6/13/19	6/13/19	6/13/19	6/13/19	6/13/19	6/13/19	6/13/19	6/13/19	6/13/19	6/13/19
	Time	12:35 AM	1:35 AM	2:45 AM	4:00 AM	6:30 AM	7:36 AM	8:21 AM	9:20 AM	9:45 AM	10:20 AM	11:20 AM	12:20 AM	1:50 AM	3:09 PM
ation	Station	1710+85	1707+55	1700+75	1693+25	1683+10	1678+95	1675+30	1670+10	1667+70	1666+00	1661+75	1658+00	1654+00	1643+65
Consolidation	Concrete Temperature	70	70	70	70	63	61	59	66	66	69	70	72	73	71
	% Air Content [a]	8.0	7.8	6.7	8.0	8.2	7.6	7.3	8.6	8.6	8.0	8.1	8.1	8.8	8.3
Before	Agency Correlation % Air Content					7.6								8.8	
	SAM Number**													0.23	
	Time													2:03 PM	3:15 PM
_	Concrete Temperature													73	71
Consolidation	% Air Content [b]													8.2	8.2
onsol	Air Loss Correction Factor [a- b]	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.6	0.1
After C	% Air Content or Adjusted % Air Content	7.9	7.7	6.6	7.9	8.1	7.5	7.2	8.5	8.5	7.9	8.0	8.0	8.2	8.2
Å	Agency Correlation % Air Content													8.2	
	SAM Number**													0.33	
	Additional Information or Comments														
	Additional Information or Comments														

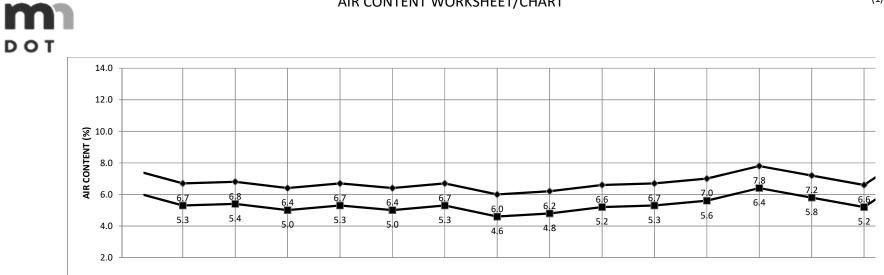

(1/2018)

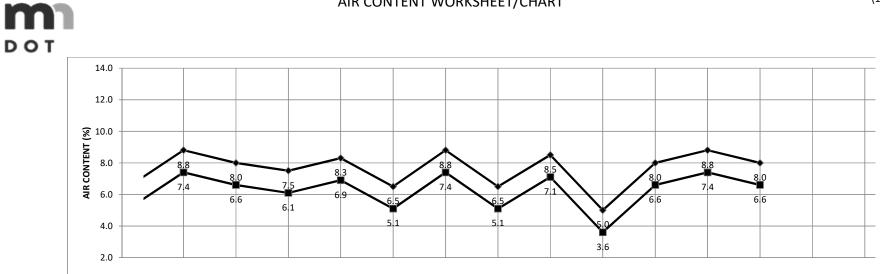

Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/13/19	6/13/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/14/19	6/17/19
	Time	4:55 PM	6:38 PM	6:55 AM	8:25 AM	9:15 AM	10:30 AM	11:45 AM	1:17 PM	2:55 PM	3:45 PM	4:45 PM	5:55 PM	6:45 PM	6:38 AM
Before Consolidation	Station	1636+25	1627+00	1626+74	1619+50	1614+65	1608+75	1600+15	1591+19	1887+35	1583+00	1577+20	1570+25	1566+17	1565+38
solid	Concrete Temperature	72	70	66	68	71	70	70	72	74	75	74	73	74	71
le Col	% Air Content [a]	8.2	6.8	8.1	8.7	8.0	7.8	8.8	7.8	8.0	7.8	7.8	7.5	8.1	7.8
Befo	Agency Correlation % Air Content			7.8											7.0
	SAM Number**				0.23			0.27							
	Time				8:37 AM			11:58 AM							
c	Concrete Temperature				68			70							
After Consolidation	% Air Content [b]				7.7			8.2							
onsol	Air Loss Correction Factor [a- b]	0.1	0.1	0.1	1.0	1.0	1.0	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
fter C	% Air Content or Adjusted % Air Content	8.1	6.7	8.0	7.7	7.0	6.8	8.2	7.2	7.4	7.2	7.2	6.9	7.5	7.2
A	Agency Correlation % Air Content														
	SAM Number**				0.04			0.74							
	Additional Information or Comments														
	Additional Information or Comments														

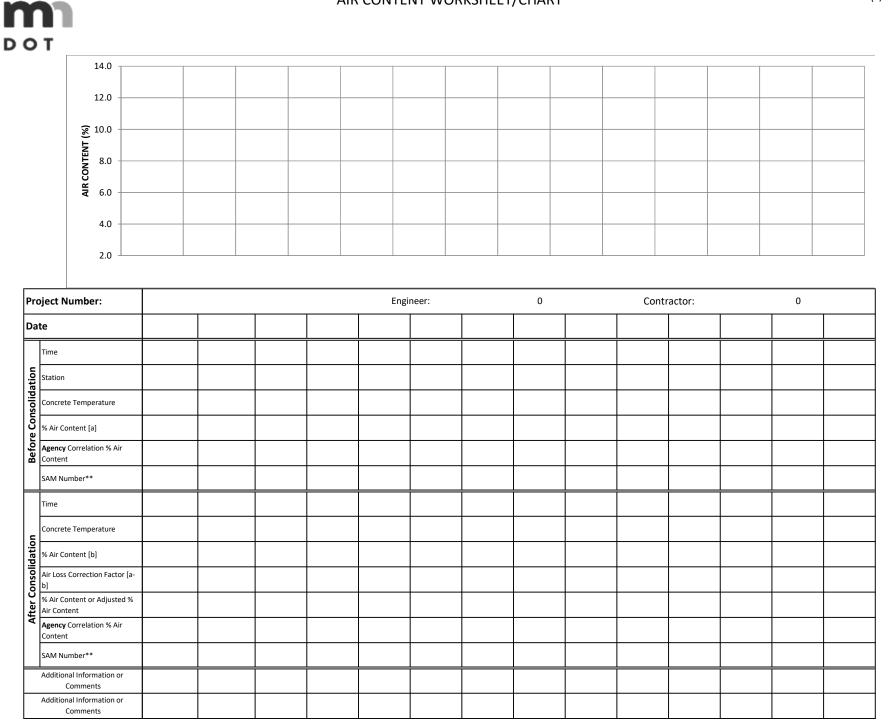

Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/17/19	6/17/19	6/17/19	6/17/19	6/17/19	6/17/19	6/17/19	6/19/19	6/19/19	6/19/19	6/19/19	6/19/19	6/19/19	6/19/19
	Time	7:50 AM	8:37 AM	9:43 AM	10:45 AM	11:42 AM	1:32 PM	2:53 PM	6:44 AM	7:07 AM	8:10 AM	10:00 AM	10:42 AM	12:14 PM	1:08 PM
ation	Station	1560+10	155+90	1549+60	1544+30	1537+32	1523+38	1517+65	1224+00	1224+67	1234+50	1239+56	1243+95	1251+63	1257+25
Consolidation	Concrete Temperature	71	73	69	70	69	70	69	70	70	69	69	70	71	73
re Cor	% Air Content [a]	6.5	8.0	5.7	7.5	12.8	8.5	8.8		7.8	8.9	8.2	7.3	8.0	7.7
Before	Agency Correlation % Air Content					7.5			7.0			7.2			
	SAM Number**		0.19			0.07						0.18			
	Time			9:47 AM		11:58 AM					9:14 AM				
<u>-</u>	Concrete Temperature			73		69					69				
After Consolidation	% Air Content [b]			5.6		8.7					8.2				
onsol	Air Loss Correction Factor [a- b]	0.6	2.4	#REF!	#REF!	4.1	4.1	4.1			0.7	0.7	0.7	0.7	0.7
fter C	% Air Content or Adjusted % Air Content	5.9	5.6	#REF!	#REF!	8.7	4.4	4.7			8.2	7.5	6.6	7.3	7.0
◄	Agency Correlation % Air Content					8.0									
	SAM Number**					0.07									
	Additional Information or Comments														
	Additional Information or Comments														


Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/19/19	6/19/19	6/19/19	6/19/19	6/24/19	6/24/19	6/24/19	6/24/19	6/24/19	6/24/19	6/24/19	6/24/19	6/25/19	6/26/19
	Time	2:43 PM	4:37 PM	6:12 PM	6:45 PM	8:42 AM	10:15 AM	11:12 AM	1:18 PM	3:00 PM	4:23 PM	5:20 PM	5:50 PM	10:43 AM	11:56 AM
ation	Station	1265+17	1265+17	1265+17	1265+17	1291+50	1297+85	1303+87	1311+90	1323+18	1333+64	1340+37	1343+00	1623+73	1640+99
Consolidation	Concrete Temperature	71	71	71	71	70	73	73	70	70	71	70	68	73	73
Le Col	% Air Content [a]	9.1	7.5	6.9	7.9	7.1	6.1	8.5	7.2	8.9	7.5	10.6	8.6	6.0	7.4
Before	Agency Correlation % Air Content	6.8				6.0	6.1	7.5		8.0		8.1		5.6	
	SAM Number**	0.17						0.24		0.23		0.20			
	Time	2:59 PM						11:30 AM		3:09 PM					
5	Concrete Temperature	71						73		70					
After Consolidation	% Air Content [b]	8.4						10.3		8.4					
onsol	Air Loss Correction Factor [a- b]	0.7	0.7	0.7	0.7	0.7	0.7	-1.8	-1.8	0.5	0.5	0.5	0.5	0.5	0.5
fter C	% Air Content or Adjusted % Air Content	8.4	6.8	6.2	7.2	6.4	5.4	10.3	9.0	8.4	7.0	10.1	8.1	5.5	6.9
A	Agency Correlation % Air Content	6.2						7.2		8.1					
	SAM Number**	0.08								0.19					
	Additional Information or Comments														
	Additional Information or Comments														


Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/26/19	6/26/19	6/26/19	6/26/19	6/26/19	6/26/19	6/26/19	6/26/19	6/26/19	6/28/19	6/28/19	6/28/19	6/28/19	6/28/19
	Time	6:28 AM	7:42 AM	9:02 AM	10:49 AM	11:52 AM	12:56 PM	2:02 PM	4:30 PM	5:40 PM	6:23 AM	7:53 AM	9:07 AM	10:55 AM	11:56 AM
ation	Station	1344+22	1350+08	1358+62	1370+38	1377+88	1385+36	1393+75	1049+10	1415+95	1490+91	1427+54	1434+12	1440+18	1445+15
Before Consolidation	Concrete Temperature	61	66	67	70	70	70	70	73	73	74	72	73	76	75
le Col	% Air Content [a]	7.0	7.7	9.8	7.7	7.9	7.4	9.3	8.9	6.8	8.0	7.9	7.6	8.2	7.8
Befo	Agency Correlation % Air Content	7.0		8.0				7.0			7.5			6.0	
	SAM Number**			0.17										0.27	
	Time			9:02 AM				2:20 PM				7:57 AM			
	Concrete Temperature			8.2				70				72			
idatio	% Air Content [b]			7.3				7.7				7.4			
After Consolidation	Air Loss Correction Factor [a- b]	0.5	0.5	2.5	2.5	2.5	2.5	1.6	1.6	1.6	1.6	0.5	0.5	0.5	0.5
fter C	% Air Content or Adjusted % Air Content	6.5	7.2	7.3	5.2	5.4	4.9	7.7	7.3	5.2	6.4	7.4	7.1	7.7	7.3
A	Agency Correlation % Air Content							7.6							
	SAM Number**														
	Additional Information or Comments														
	Additional Information or Comments														


Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	6/28/19	6/28/19	6/28/19	6/28/19	6/28/19	6/28/19	6/29/19	6/29/19	6/29/19	6/29/19	6/29/19	7/1/19	7/1/19	7/2/19
	Time	1:02 PM	2:08 PM	2:57 PM	4:45 PM	5:47 PM	6:29 PM	6:15 AM	7:15 AM	9:09 AM	9:55 AM	10:35 AM	8:53 AM	11:17 AM	6:47 AM
ation	Station	1453+22	1462+55	1468+50	1468+50	1468+50	1468+50	1493+58	1499+25	1508+62	1512+68	1516+15	1266+10	1275+17	1285+34
solid	Concrete Temperature	76	74	77	73	75	75	75	75	74	75	73	79	77	75
Before Consolidation	% Air Content [a]	7.5	8.0	12.1	7.6	7.6	7.7	6.7	9.6	8.3	10.3	8.9	8.9	10.2	7.1
Befoi	Agency Correlation % Air Content			8.2				6.5	7.8		8.8		8.8	7.6	6.8
	SAM Number**			0.19					0.34		0.05			0.18	
	Time			3:04 PM					7:30 AM					11:21 AM	
<u>-</u>	Concrete Temperature			77					75					77	
idatio	% Air Content [b]			10.4					8.3					8.1	
Consolidation	Air Loss Correction Factor [a- b]	0.5	0.5	1.7	1.7	1.7	1.7	1.7	1.3	1.3	1.3	1.3	1.3	2.1	2.1
After C	% Air Content or Adjusted % Air Content	7.0	7.5	10.4	5.9	5.9	6.0	5.0	8.3	7.0	9.0	7.6	7.6	8.1	5.0
Å	Agency Correlation % Air Content			7.5					7.0					7.0	
	SAM Number**			0.29					0.23					0.28	
	Additional Information or Comments														
	Additional Information or Comments														


Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	7/2/19	7/2/19	7/2/19	7/3/19	7/3/19	7/3/19	7/8/19	7/8/19	7/8/19	7/8/19	7/9/19	7/9/19	7/9/19	7/9/19
	Time	9:16 AM	12:00 PM	12:49 PM	6:42 AM	7:17 AM	10:40 AM	6:28 AM	8:15 AM	12:30 PM	2:14 PM	6:16 AM	9:14 AM	10:00 AM	1:34 PM
ation	Station	1296+55	1247+64	1244+04	1260+63	1257+55	1518+88	1515+40	1508+08	1427+70	1418+73	1716+21	1897+95	1902+67	1882+64
Consolidation	Concrete Temperature	74	76	79	75	75	78	75	75	77	77	74	75	75	76
Le Co	% Air Content [a]	10.4	7.9	7.2	7.8	7.4	8.4	7.9	10.9	7.8	9.2	7.4	8.1	8.9	8.1
Before	Agency Correlation % Air Content	8.8			7.7		7.6	7.0	8.8		8.4	7.4			
	SAM Number**	0.16					0.19		0.23		0.17				
	Time	9:22 AM					10:47 AM				2:20 PM				
5	Concrete Temperature	74					78				77				
After Consolidation	% Air Content [b]	8.4					7.0				7.6				
onsol	Air Loss Correction Factor [a- b]	2.0	2.0	2.0	2.0	2.0	1.4	1.4	1.4	1.4	1.6	1.6	1.6	1.6	1.6
fter C	% Air Content or Adjusted % Air Content	8.4	5.9	5.2	5.8	5.4	7.0	6.5	9.5	6.4	7.6	5.8	6.5	7.3	6.5
A	Agency Correlation % Air Content	7.8					6.8				7.5				
	SAM Number**	0.25									0.13				
	Additional Information or Comments														
	Additional Information or Comments														


Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	7/9/19	7/9/19	7/10/19	7/10/19	7/10/19	7/10/19	7/10/19	7/10/19	7/11/19	7/11/19	7/11/19	7/11/19	7/11/19	7/15/19
	Time	2:47 PM	3:28 PM	6:28 AM	9:47 AM	10:22 AM	11:52 AM	4:57 PM	6:08 PM	6:17 AM	8:16 AM	8:38 AM	9:12 AM	9:46 AM	8:00 AM
ation	Station	1878+28	1878+08	1778+50	1283+15	1283+30	1721+37	1641+63	1273+09	1614+45	1614+88	1508+18	1591+24	1595+65	1511+40
Consolidation	Concrete Temperature	76	76	74	75	75	75	79	78	72	75	75	77	77	82
le Col	% Air Content [a]	8.1	9.3	7.2	7.7	8.5	7.7	8.6	6.9	8.0	7.8	8.5	8.4	8.1	7.6
Before	Agency Correlation % Air Content		7.8	7.2			7.0			8.0				7.2	
	SAM Number**		0.31				0.30							0.12	
	Time		3:35 PM				11:58 AM							9:52 AM	
_	Concrete Temperature		76				75							77	
idatio	% Air Content [b]		7.3				6.9							6.7	
After Consolidation	Air Loss Correction Factor [a- b]	1.6	2.0	2.0	2.0	2.0	0.8	0.8	0.8	0.8	0.8	0.8	0.8	1.4	1.4
fter C	% Air Content or Adjusted % Air Content	6.5	7.3	5.2	5.7	6.5	6.9	7.8	6.1	7.2	7.0	7.7	7.6	6.7	6.2
A	Agency Correlation % Air Content		6.5				5.5							6.0	
	SAM Number**		0.19				0.36							0.24	
	Additional Information or Comments														
	Additional Information or Comments														

Pro	ject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	7/15/19	7/15/19	7/15/19	7/15/19	7/16/19	7/16/19	7/16/19	7/16/19	7/16/19	7/16/19	7/26/19	7/26/19	7/26/19	7/29/19
	Time	11:14 AM	1:04 PM	2:58 PM	3:52 PM	7:09 AM	8:42 AM	10:28 AM	11:36 AM	2:08 PM	3:58 PM	8:20 AM	1:05 PM	2:45 PM	7:25 AM
ation	Station	Rest Area	Median	Median	Median	Rest Area									
solid	Concrete Temperature	88	90	89	93	88	83	87	84	84	84	72	82	85	73
Before Consolidation	% Air Content [a]	6.7	6.8	6.4	6.7	6.4	6.7	6.0	6.2	6.6	6.7	7.0	7.8	7.2	6.6
Befor	Agency Correlation % Air Content					6.5						6.6			6.4
	SAM Number**														
	Time														
	Concrete Temperature														
datio	% Air Content [b]														
onsoli	Air Loss Correction Factor [a- b]	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4
After Consolidation	% Air Content or Adjusted % Air Content	5.3	5.4	5.0	5.3	5.0	5.3	4.6	4.8	5.2	5.3	5.6	6.4	5.8	5.2
₽ 	Agency Correlation % Air Content														
	SAM Number**														
	Additional Information or Comments														
	Additional Information or Comments														

Pro	oject Number:					Engi	neer:		0		Contr	actor:		0	
Da	te	7/29/19	7/29/19	7/29/19	7/29/19	7/29/19	7/29/19	7/30/19	7/30/19	7/31/19	7/31/19	7/31/19	7/31/19		
	Time	8:00 AM	8:15 AM	8:25 AM	8:45 AM	12:25 PM	2:20 PM	7:40 AM	2:35 PM	8:15 AM	8:30 AM	8:50 AM	3:10 PM		
ation	Station	Rest Area	Median	Median	Median	Median									
Before Consolidation	Concrete Temperature	75	77	77	75	75	77	70	85	75	73	72	75		
e Cor	% Air Content [a]	8.8	8.0	7.5	8.3	6.5	8.8	6.5	8.5	5.0	8.0	8.8	8.0		
Befor	Agency Correlation % Air Content														
	SAM Number**														
	Time														
	Concrete Temperature														
datio	% Air Content [b]														
onsoli	Air Loss Correction Factor [a- b]	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4		
After Consolidation	% Air Content or Adjusted % Air Content	7.4	6.6	6.1	6.9	5.1	7.4	5.1	7.1	3.6	6.6	7.4	6.6		
F	Agency Correlation % Air Content														
	SAM Number**														
	Additional Information or Comments														
	Additional Information or Comments														

Project No.:	8309-52		Tester:	Patrick	Levine		Mix No.:	3A	21
Location:	St. James	6	Contractor:	Р	CI		Probe No.:	1627	7+50
Curve #:	1		Engineer:	Bob V	Villiams	т	TF Required:		
Structur	ral Unit Location:				Mainline				
Or Pavement	Section to Open:								
	From STA:		1683+26		To STA:		1626+74		
	Apparatus Used:	Maturi	ty Meter		Maturity Meter				
			1		Weter				
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)				
	6/13/19		0.00	(0				
	6/17/19	7:33 PM	114.00		2735				

roject No.:	8309-52		Tester:	Patrick	< Levine		3A21
Location:	St. James	3	Contractor:	F	PCI	Probe No.:	1566+00
Curve #:	1		Engineer:		Villiams	TTF Required:	2400
Structura	Unit Location:				Mainline		
Or Pavement Se	ection to Open:						
						1565+52	
Aŗ	oparatus Used: .	Maturi	ty Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	6/14/19		0.00		0		
	6/18/19	13:02	90.00		2166		
	6/19/19	8:31 AM	109.00		2627		

Project No.:	8309-52		Tester:	Patrick	Levine		3A21
Location:	St. James		Contractor:	F	CI	Probe No.:	1518+00
Curve #:	1		Engineer:		Villiams	TTF Required:	2400
Structure	al Unit Location:				Mainline		
Or Pavement S	ection to Open:						
	From STA:		1565+52		To STA:	1517+30	
A	pparatus Used: _	Matu	ity Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	6/17/19		0.00		0		
	6/19/19	8:41	41.00		1107		
	6/20/19	7:15	64.00		1681		
	6/21/19	5:30	86.00		2135		

roject No.:	8309-52		Tester:	Patrick	Levine	Mix No.:	
Location:	St. James	3	Contractor:	PCI		Probe No.:	1343+00
Curve #:	1		Engineer:	Bob V	Villiams	TTF Required:	2400
Structura	al Unit Location:				Mainline		
	ection to Open:						
			1291+35		To STA:	1344+08	
A	pparatus Used: _	Maturi	ty Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	6/24/19		0.00		0		
	6/26/19	17:06	47.00		1066		
	6/27/19	9:03 AM	52.00		1430		
	6/28/19	6:38 PM	83.00		1863		
	6/28/19	8:56 PM	98.00		2254		
	6/29/19	5:34 AM	107.00		2455		
					┨───┤─		
					├		
					┨───┤─		
					┨───┤─		
					┨───┤─		
					<u>├</u>		

Project No.:	8309-52		Tester:	Patrick	Levine	Mix No.:	3A21
Location:	St. James	6	Contractor:	PCI		Probe No.:	1418+50
Curve #:						TTF Required:	2400
Structura	I Unit Location:				Mainline		
Or Pavement S							
			1344+08			1419+91	
A	pparatus Used: .	Maturi	ty Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	6/26/19		0.00		0		
	6/28/19	8:43	50.00		1166		
	6/29/19	5:26 AM	59.00		1371		
	7/1/19	7:23 AM	108.00		2753		
					┨────┤─		
					-		
					┠────┠		
					┟──┼		

Project No.:	8309-52		Tester:	Patrick	Levine	Mix No.:	3A21
Location:	St. James	6	Contractor:	P	PCI	Probe No.:	1492+90
Curve #:						TTF Required:	2400
Structure	al Unit Location:				Mainline		
Or Pavement S							
			1419+91		To STA:	1493+58	
A	pparatus Used: .	Maturi	ity Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	6/28/19		0.00		0		
	7/1/19	7:32	36.00		1816		
	7/2/19	7:44	84.00		2374		
	7/3/19	7:65 am	109.00		3001		
					-		
					┨────┨		
					┨────┤		
					┨────┤		
					┨────┤		
					┨────┤		

Project No.:	8309-52		Tester:	Patrick	Levine		3A21
Location:	St. James	3	Contractor:	F	CI	Probe No.:	1516+50
Curve #:	1		Engineer:		Villiams	TTF Required:	2400
Structura	I Unit Location:				Mainline		
Or Pavement S	ection to Open:						
	From STA:		1493+58		To STA:	1517+30	
A	pparatus Used: _	Maturi	ty Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	6/29/19		0.00		0		
	7/2/19	7:44	68.00		2063		
	7/3/19	8:04 AM	93.00		2724		
					<u> </u>		
					┥───┤		
					┥───┤		
					┨────┤		
					┨────┤		
					┨────┤		
					┨────┤		

Project No.:	8309-52		Tester:	Patrick	Levine	_	Mix No.:		21
Project No.:	St. James	5	Contractor:	P	CI	_	Probe No.:	1516	i+50
Curve #:	1		Engineer:	Engineer: Bob W		т	TTF Required:		
					Ramp				
Or Pavement Sec									
	From STA:		1523+40		To STA:		1515+57		
Apparatus Used: Maturit			ity Meter		Maturity Meter				
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)				
	7/3/19		0.00		0				
	7/8/19	5:38	116.00		3311				
					-				

Project No.:	8309-52		Tester:	Patrick	<pre>c Levine</pre>	Mix No.	:3A21
Location:	St. James	8	Contractor:	F	PCI	Probe No.	: 1413+50
	1					TTF Required	: 2400
Structur	al Unit Logation:				Turn Lanes		
	al Unit Location:				Turri Laries		
Or Pavement S	Section to Open:				T 074	1407.00	
	From STA:		1515+57		- 10 STA:	1487+83	
ŀ	Apparatus Used:	Maturi	ty Meter		Maturity Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
	7/8/19		0.00		0		
	7/10/19	14:38	46.00		1280		
	7/11/19	6:04 AM	61.00		1651		
							├ ┃
							∔
							┼ ───┨
							↓

roject No.:	8309-52		Tester:	Patrick	Levine	Mix No.:	3A21
Location:	St. James		Contractor:	F	CI	Probe No.:	1412+50
		1 Engineer: Bob \		Bob V	Villiams	TTF Required:	2400
			_				
Structu	ral Unit Location:				Turn Lanes		
	Section to Open:						
					To STA:		
	_						
	Apparatus Used:	Matu	rity Meter		Maturity		
					Meter		
				Air Temp	TTF		
	Date	Time	Age (hours)	(deg F)	(deg C-hr)		
	7/9/19	7.07	0.00		0		
	7/15/19	7:37	132.00		3688		
			_				
					<u>├</u>		
			1				

Comments:

oject No.:	8309-52		Tester:	Patrick	Levine	Mix No.:	3A21	
	St. James			Р	CI	Probe No.:	1825+50	
		1 Engineer: Bob V			TTF Required:	2400		
Structu	ral Unit Location:				Turn Lanes			
	Section to Open:							
					To STA:			
	Apparatus Used:	Matu	rity Meter		Maturity Meter			
	Dit	-		Air Temp	TTF			
	Date 7/10/19	Time	Age (hours)	(deg F)	(deg C-hr)			
	7/15/19	7:18	0.00		0 3071			
	7/15/19	7.10	108.00		3071			
					łł-			
					łł-			
					II-			
					↓ ↓			
			_					

Comments:

			artment of		ortation		9/2
т	Matur	rity -	Field D)ata			
ject No.:	8309-52		Tester:	Patricl	(Levine	Mix No.:	
.ocation:	St. James	\$	Contractor:	F	PCI	Probe No.:	
Curve #:	1		Engineer:	Bob V	Villiams	TTF Required:	
Struc	tural Unit Location:						
Or Pavemei	tural Unit Location:						
	From STA:				To STA:		
	Apparatus Used:	Motu	rity Motor		Maturity		
	Apparatus Osed.	Watu			Meter		
	Date	Time	Age (hours)	Air Temp (deg F)	TTF (deg C-hr)		
			0.00		0		
					┠───┤		
					┟──┤		

	TH 60 WB									
Sheet	Total Pay Adjustment	ALR Dedcution	Total Pay Adjustment + ALR Dedcution							
Concrete	\$11,351.95	\$0.00	\$11,351.95							
Concrete 2	\$17,172.55	\$0.00	\$17,172.55							
Concrete 3	\$20,447.75	\$0.00	\$20,447.75							
Concrete 4	\$744.31	\$0.00	\$744.31							
Concrete 5	\$4,254.20	\$0.00	\$4,254.20							
Concrete 6	\$15,997.75	\$0.00	\$15,997.75							
Concrete 7	\$13,701.55	\$0.00	\$13,701.55							
Concrete 8	\$10,573.20	\$0.00	\$10,573.20							
Concrete 9	\$10,573.20	\$0.00	\$10,573.20							
Concrete 10	\$11,129.45	\$0.00	\$11,129.45							
Concrete 11	\$11,151.70	\$0.00	\$11,151.70							
Concrete 12	\$6,761.56	\$0.00	\$6,761.56							
Concrete 13	\$1,602.00	\$0.00	\$1,602.00							
Concrete 14	\$9,358.35	\$0.00	\$9,358.35							
Concrete 15	\$19,508.80	-\$300.00	\$19,208.80							
Concrete 16	\$8,824.35	\$0.00	\$8,824.35							
Concrete 17	\$8,619.65	\$0.00	\$8,619.65							
Concrete 18	\$15,748.55	\$0.00	\$15,748.55							
			\$197,220.87							

2019 Concrete Profile Summary

File Name(s)	190620-TH-60-D-1-1276+81-1223+84 190620-TH-60-D-2-1276+81-		
	1223+84		
Date Measured	20-Jun-2019		
S.P./S.A.P.			
T.H./CSAH			
Lane Description	Mainline: lane 1		

Stationing	Section 1	Section 2	Section 3
Beginning	1276+81	1276+81	
End	1224+01	1224+01	

PCC-A	
> 45 mph	
Yes	
Yes	

Areas of Localized Roughness (ALR)			
175.0 ≤ ALR < 225.0 (linear ft) 0			
ALR ≥ 225.0 (linear ft)	0		

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1276+81	1271+53	528	56.5	\$378.25
1271+53	1266+25	528	75.1	-\$449.45
1266+25	1260+97	528	74.7	-\$431.65
1260+97	1255+69	528	58.8	\$275.90
1255+69	1250+41	528	50.6	\$640.80
1250+41	1245+13	528	52.3	\$565.15
1245+13	1239+85	528	50.4	\$649.70
1239+85	1234+57	528	49.2	\$703.10
1234+57	1229+29	528	52.3	\$565.15
1229+29	1224+01	528	55.5	\$422.75
1276+81	1271+53	528	39.7	\$890.00
1271+53	1266+25	528	53.3	\$520.65
1266+25	1260+97	528	54.3	\$476.15
1260+97	1255+69	528	43.2	\$890.00
1255+69	1250+41	528	36.1	\$890.00
1250+41	1245+13	528	37.2	\$890.00
1245+13	1239+85	528	33.4	\$890.00
1239+85	1234+57	528	34.5	\$890.00
1234+57	1229+29	528	34.9	\$890.00
1229+29	1224+01	528	46.9	\$805.45
otal Pay Adjustment reas of Localized Roug		oughness Deduction		51.95 .00

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190625-TH-60-D-1-1340+16-1276+81 190625-TH-60-D-2-1340+16-		
	1276+81		
Date Measured	25-Jun-2019		
S.P./S.A.P.			
T.H./CSAH			
Lane Description	Mainline: lane 1		

Stationing	Section 1	Section 2	Section 3
Beginning	1340+16	1340+16	
End	1276+80	1276+80	

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information		

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft)	0			

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1340+16	1334+88	528	40.2	\$890.00
1334+88	1329+60	528	48.9	\$716.45
1329+60	1324+32	528	43.9	\$890.00
1324+32	1319+04	528	48.0	\$756.50
1319+04	1313+76	528	52.6	\$551.80
1313+76	1308+48	528	50.4	\$649.70
1308+48	1303+20	528	47.1	\$796.55
1303+20	1297+92	528	53.4	\$516.20
1297+92	1292+64	528	55.6	\$418.30
1292+64	1287+36	528	56.3	\$387.15
1287+36	1282+08	528	48.1	\$752.05
1282+08	1276+80	528	60.5	\$200.25
1340+16	1334+88	528	36.5	\$890.00
1334+88	1329+60	528	44.7	\$890.00
1329+60	1324+32	528	38.5	\$890.00
1324+32	1319+04	528	40.0	\$890.00
1319+04	1313+76	528	49.7	\$680.85
1313+76	1308+48	528	47.5	\$778.75
1308+48	1303+20	528	45.5	\$867.75
1303+20	1297+92	528	47.4	\$783.20
1297+92	1292+64	528	51.1	\$618.55
1292+64	1287+36	528	50.5	\$645.25
1287+36	1282+08	528	40.6	\$890.00
1282+08	1276+80	528	46.5	\$823.25
tal Pay Adjustment				72.55
eas of Localized Roug				.00
otal Pay Adjustment + Areas of Localized Roughness Deduction			\$17,1	72.55

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190628-TH-60-D-1-1403+45-1340+16 190628-TH-60-D-2-1403+45-
	1340+16
Date Measured	28-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1403+45	1403+45	
End	1340+09	1340+09	

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	

Areas of Localized Roughness (ALR)			
175.0 ≤ ALR < 225.0 (linear ft) 0			
ALR ≥ 225.0 (linear ft)	0		

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1403+45	1398+17	528	47.6	\$774.30
1398+17	1392+89	528	43.4	\$890.00
1392+89	1387+61	528	528 44.3	
1387+61	1382+33	528	45.0	\$890.00
1382+33	1377+05	528	42.7	\$890.00
1377+05	1371+77	528	41.3	\$890.00
1371+77	1366+49	528	46.1	\$841.05
1366+49	1361+21	528	37.9	\$890.00
1361+21	1355+93	528	30.8	\$890.00
1355+93	1350+65	528	34.9	\$890.00
1350+65	1345+37	528	37.5	\$890.00
1345+37	1340+09	528	44.8	\$890.00
1403+45	1398+17	528	51.6	\$596.30
1398+17	1392+89	528	44.7	\$890.00
1392+89	1387+61	528	49.9	\$671.95
1387+61	1382+33	528	44.7	\$890.00
1382+33	1377+05	528	42.6	\$890.00
1377+05	1371+77	528	44.1	\$890.00
1371+77	1366+49	528	50.3	\$654.15
1366+49	1361+21	528	36.3	\$890.00
1361+21	1355+93	528	31.1	\$890.00
1355+93	1350+65	528	38.2	\$890.00
1350+65	1345+37	528	39.8	\$890.00
1345+37	1340+09	528	43.2	\$890.00
otal Pay Adjustment				47.75
reas of Localized Roug			-	.00
otal Pay Adjustment +	Areas of Localized R	oughness Deduction	\$20,4	47.75

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190910-TH-60-D-1-1435+00-1429+72 After CW 190910-TH-60-D-1-1408+60-1403+41 After CW 190910-TH-60-D-2-1408+60-1403+41 After CW
Date Measured	10-Sep-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	tationing Section 1		Section 3
Beginning	1435+00	1408+60	1408+60
End	1429+72	1403+41	1403+41

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information	AFTER GRINDING	

Areas of Localized Roughness (ALR)			
175.0 ≤ ALR < 225.0 (linear ft) 0			
ALR ≥ 225.0 (linear ft)	0		

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1435+00	1429+72	528	58.3	\$298.15
1408+60	1403+41	519	55.2	\$428.67
1408+60	1403+41	519	64.6	\$17.50
				4.24
Total Pay Adjustment Areas of Localized Roughness Deduction				4.31 .00
Total Pay Adjustment + Areas of Localized Roughness Deduction				4.31

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190810-TH-60-D-1-1429+72-1408+60 190810-TH-60-D-2-1435+00-		
	1408+60		
Date Measured	10-Aug-2019		
S.P./S.A.P.			
T.H./CSAH			
Lane Description	Mainline: lane 1		

Stationing Section 1		Section 2	Section 3
Beginning	1429+72	1435+00	
End	1408+60	1408+60	

Smoothness Equation	PCC-A		
Posted Vehicle Speed	> 45 mph		
Certified Inertial Profiler	Yes		
Certified Operator	Yes		
Additional Information	ORIGINAL FILE, CW TENTHS EXLUDED		

Areas of Localized Roughness (ALR)			
175.0 ≤ ALR < 225.0 (linear ft) 0			
ALR ≥ 225.0 (linear ft)	0		

Beginning Station	End Station Segment Length (ft)		Final Smoothness (in/mi)	Segment Pay Adjustment
1429+72	1424+44	528	47.1	\$796.55
1424+44	1419+16	528	57.0	\$356.00
1419+16	1413+88	528	58.2	\$302.60
1413+88	1408+60	528	51.6	\$596.30
1435+00	1429+72	528	69.3	-\$191.35
1429+72	1424+44	528	43.9	\$890.00
1424+44	1419+16	528	51.8	\$587.40
1419+16	1413+88	528	56.8	\$364.90
1413+88	1408+60	528	52.6	\$551.80
Fotal Pay Adjustment			-	54.20
Areas of Localized Roug				.00 54.20

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190629-TH-60-D-1-1487+78-1435+00 190629-TH-60-D-2-1487+78-1435+00
Date Measured	29-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1487+78	1487+78	
End	1434+98	1434+98	

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information	PPF FILE LABLED WRONG SHOULD BE 1487+78 NOT 1497+78	

Areas of Localized Roughness (ALR)			
175.0 ≤ ALR < 225.0 (linear ft) 0			
ALR ≥ 225.0 (linear ft)	0		

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1487+78	1482+50	528	40.1	\$890.00
1482+50	1477+22	528	42.8	\$890.00
1477+22	1471+94	528	50.2	\$658.60
1471+94	1466+66	528	51.1	\$618.55
1466+66	1461+38	528	48.7	\$725.35
1461+38	1456+10	528	46.2	\$836.60
1456+10	1450+82	528	47.3	\$787.65
1450+82	1445+54	528	43.8	\$890.00
1445+54	1440+26	528	42.0	\$890.00
1440+26	1434+98	528	51.0	\$623.00
1487+78	1482+50	528	39.9	\$890.00
1482+50	1477+22	528	39.5	\$890.00
1477+22	1471+94	528	46.2	\$836.60
1471+94	1466+66	528	40.2	\$890.00
1466+66	1461+38	528	39.5	\$890.00
1461+38	1456+10	528	40.3	\$890.00
1456+10	1450+82	528	39.1	\$890.00
1450+82	1445+54	528	41.5	\$890.00
1445+54	1440+26	528	47.5	\$778.75
1440+26	1434+98	528	57.3	\$342.65
otal Pay Adjustment reas of Localized Ro	ughness Deduction + Areas of Localized R		\$0	97.75 .00 97.75

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190619-TH-60-D-1-1572+48-1521+09 190719-TH-60-D-1-1530+24-1524+96
	190619-TH-60-D-2-1572+48-1521+01
Date Measured	19-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3	
Beginning	1572+48	1530+24	1572+48	
End	1530+24	1524+96	1524+96	

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information	AFTER GRINDING EQUATION IN THE RUN	

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft) 0				

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1572+48	1567+20	528	40.5	\$890.00
1567+20	1561+92	528	51.2	\$614.10
1561+92	1556+64	528	48.0	\$756.50
1556+64	1551+36	528	42.9	\$890.00
1551+36	1546+08	528	48.5	\$734.25
1546+08	1540+80	528	42.5	\$890.00
1540+80	1535+52	528	48.7	\$725.35
1535+52	1530+24	528	49.7	\$680.85
1530+24	1524+96	528	52.5	\$556.25
1572+48	1567+20	528	41.9	\$890.00
1567+20	1561+92	528	49.4	\$694.20
1561+92	1556+64	528	46.7	\$814.35
1556+64	1551+36	528	39.0	\$890.00
1551+36	1546+08	528	42.9	\$890.00
1546+08	1540+80	528	38.5	\$890.00
1540+80	1535+52	528	49.1	\$707.55
1535+52	1530+24	528	49.1	\$707.55
1530+24	1524+96	528	54.2	\$480.60
otal Pay Adjustment	ubroos Doduction			01.55
reas of Localized Roug			-	.00 '01.55

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

s

2019 Concrete Profile Summary

File Name(s)	190617-TH-60-D-1-1635+80-1572+48
Date Measured	17-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 2

Stationing	Section 1	Section 2	Section 3
Beginning	1635+80		
End	1572+44		

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information		

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft)	0			

Beginning Station	End Station Segment Length (ft)		Final Smoothness (in/mi)	Segment Pay Adjustment
1635+80	1630+52	528	39.6	\$890.00
1630+52	1625+24	528	44.2	\$890.00
1625+24	1619+96	528	44.7	\$890.00
1619+96	1614+68	528	42.2	\$890.00
1614+68	1609+40	528	41.0	\$890.00
1609+40	1604+12	528	39.0	\$890.00
1604+12	1598+84	528	44.9	\$890.00
1598+84	1593+56	528	44.4	\$890.00
1593+56	1588+28	528	47.4	\$783.20
1588+28	1583+00	528	40.7	\$890.00
1583+00	1577+72	528	40.7	\$890.00
1577+72	1572+44	528	40.4	\$890.00
				72.20
tal Pay Adjustment eas of Localized Roug			\$0	.00
tal Pay Adjustment +	Areas of Localized F	oughness Deduction	\$10,5	573.20

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190617-TH-60-D-1-1635+80-1625+24
	190626-TH-60-D-1-1625+24-1619+96
	190617-TH-60-D-1-1619+96-
Date Measured	17-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1635+80	1625+24	1619+96
End	1625+24	1619+96	1572+44

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft)	0			

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1635+80	1630+52	528	35.9	\$890.00
1630+52	1625+24	528	46.4	\$827.70
1625+24	1619+96	528	40.9	\$890.00
1619+96	1614+68	528	51.6	\$596.30
1614+68	1609+40	528	38.3	\$890.00
1609+40	1604+12	528	39.0	\$890.00
1604+12	1598+84	528	36.8	\$890.00
1598+84	1593+56	528	41.9	\$890.00
1593+56	1588+28	528	46.0	\$845.50
1588+28	1583+00	528	39.0	\$890.00
1583+00	1577+72	528	35.5	\$890.00
1577+72	1572+44	528	39.9	\$890.00
Total Pay Adjustment Areas of Localized Roug			\$0	.00
Total Pay Adjustment +		Roughness Deduction		279.50

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

↓ ↓

2019 Concrete Profile Summary

File Name(s)	190626-TH-60-D-1-1646+36-1635+80 190626-TH-60-D-2-1646+36-1635+80
Date Measured	26-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1683+26	1683+26	
End	1646+30	1646+30	

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft)	0			

Beginning Station	End Station Segment Length (ft)		Final Smoothness (in/mi)	Segment Pay Adjustment	
1683+26	1677+98	528	52.1	\$574.05	
1677+98	1672+70	528	47.3	\$787.65	
1672+70	1667+42	528	48.2	\$747.60	
1667+42	1662+14	528	44.9	\$890.00	
1662+14	1656+86	528	41.1	\$890.00	
1656+86	1651+58	528	32.0	\$890.00	
1651+58	1646+30	528	43.5	\$890.00	
1683+26	1677+98	528	50.6	\$640.80	
1677+98	1672+70	528	50.7	\$636.35	
1672+70	1667+42	528	51.0	\$623.00	
1667+42	1662+14	528	42.4	\$890.00	
1662+14	1656+86	528	41.6	\$890.00	
1656+86	1651+58	528	35.0	\$890.00	
1651+58	1646+30	528	42.1	\$890.00	
Fotal Pay Adjustment			29.45		
reas of Localized Roug				.00 29.45	

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190614-TH-60-D-1-1683+26-1646+36 190614-TH-60-D-2-1683+26-1646+36
Date Measured	14-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1683+26	1683+26	
End	1646+30	1646+30	

PCC-A	
> 45 mph	
Yes	
Yes	

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft)	0			

Beginning	ng Station End Station Segment Length (ft)		Final Smoothness (in/mi)	Segment Pay Adjustment	
1683	+26	1677+98	528	52.1	\$574.05
1677	+98	1672+70	528	47.3	\$787.65
1672	+70	1667+42	528	48.2	\$747.60
1667	+42	1662+14	528	44.9	\$890.00
1662	+14	1656+86	528	41.1	\$890.00
1656		1651+58	528	32.0	\$890.00
1651	+58	1646+30	528	43.5	\$890.00
1683	+26	1677+98	528	50.1	\$663.05
1677	+98	1672+70	528	50.7	\$636.35
1672	+70	1667+42	528	51.0	\$623.00
1667	+42	1662+14	528	42.4	\$890.00
1662	+14	1656+86	528	41.6	\$890.00
1656	+86	1651+58	528	35.0	\$890.00
1651	+58	1646+30	528	42.1	\$890.00
			Image: Control of the sector of the secto		
otal Pay Ac	djustment		·	\$11,1	51.70
		ighness Deduction			.00
	calized Rou	ighness Deduction • Areas of Localized R	oughness Deduction	\$0	

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190614-TH-60-D-1-1708+61-1686+18 190614-TH-60-D-2-1708+61-1686+18
Date Measured	14-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1708+61	1708+61	
End	1686+15	1686+15	

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information		

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft)	0			

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1708+61	1703+33	528	52.1	\$574.05
1703+33	1698+05	528	47.3	\$787.65
1698+05	1692+77	528	48.2	\$747.60
1692+77	1687+49	528	44.9	\$890.00
1687+49	1686+15	134	41.1	\$225.87
1708+61	1703+33	528	34.8	\$890.00
1703+33	1698+05	528	40.5	\$890.00
1698+05	1692+77	528	41.1	\$890.00
1692+77	1687+49	528	48.5	\$734.25
1687+49	1686+15	134	53.3	\$132.13
otal Pay Adjustment		L	\$6,7	 61.56
reas of Localized Roug			\$0	.00
otal Pay Adjustment + .	Areas of Localized R	oughness Deduction	\$6,7	61.56

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

S1

S2

File Name(s)	190910-TH-60-D-1-1713+89-1708+61 After CW	
	190910-TH-60-D-2-1713+89-1708+61	
	After CW	
Date Measured	10-Sep-2019	
S.P./S.A.P.		
T.H./CSAH		
Lane Description	Mainline: lane 1	

Stationing	Section 1	Section 2	Section 3
Beginning	1713+89	1713+89	
End	1708+61	1708+61	

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	AFTER GRINDING

Areas of Localized Roughness (ALR)		
175.0 ≤ ALR < 225.0 (linear ft) 0		
ALR ≥ 225.0 (linear ft)	0	

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustmen
1713+89	1708+61	528	45.5	\$867.75
1713+89	1708+61	528	48.5	\$734.25
otal Pay Adjustment reas of Localized Roug			\$0	02.00 .00
otal Pay Adjustment + /	Areas of Localized R	loughness Deduction	\$1,60	02.00

2019 Concrete Profile Summary

File Name(s)	190614-TH-60-D-1-1745+20-1713+89 190614-TH-60-D-2-1745+20-1713+89
Date Measured	14-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1745+20	1745+20	
End	1713+52	1713+52	

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	

Areas of Localized Roughness (ALR)		
175.0 ≤ ALR < 225.0 (linear ft)	0	
ALR ≥ 225.0 (linear ft)	0	

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1745+20	1739+92	528	43.1	\$890.00
1739+92	1734+64	528	51.2	\$614.10
1734+64	1729+36	528	49.0	\$712.00
1729+36	1724+08	528	47.4	\$783.20
1724+08	1718+80	528	42.6	\$890.00
1718+80	1713+52	528	35.9	\$890.00
1745+20	1739+92	528	49.5	\$689.75
1739+92	1734+64	528	50.1	\$663.05
1734+64	1729+36	528	52.5	\$556.25
1729+36	1724+08	528	41.3	\$890.00
1724+08	1718+80	528	38.5	\$890.00
1718+80	1713+52	528	36.4	\$890.00
Fotal Pay Adjustment			\$9,3	58.35
Areas of Localized Rou	ghness Deduction Areas of Localized R	aughness Deduction	\$0	.00 58.35

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

2019 Concrete Profile Summary

File Name(s)	190612-TH-60-D-1-1803+20-1745+20 190612-TH-60-D-2-1803+20-1745+20
Date Measured	12-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1803+20	1803+20	
End	1745+12	1745+12	

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	

Areas of Localized Roughness (ALR)		
175.0 ≤ ALR < 225.0 (linear ft) 12		
ALR ≥ 225.0 (linear ft)	0	

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1803+20	1797+92	528	39.7	\$890.00
1797+92	1792+64	528	34.9	\$890.00
1792+64	1787+36	528	32.4	\$890.00
1787+36	1782+08	528	40.6	\$890.00
1782+08	1776+80	528	40.1	\$890.00
1776+80	1771+52	528	43.6	\$890.00
1771+52	1766+24	528	37.5	\$890.00
1766+24	1760+96	528	36.4	\$890.00
1760+96	1755+68	528	40.7	\$890.00
1755+68	1750+40	528	40.6	\$890.00
1750+40	1745+12	528	37.6	\$890.00
1803+20	1797+92	528	46.6	\$818.80
1797+92	1792+64	528	35.7	\$890.00
1792+64	1787+36	528	35.5	\$890.00
1787+36	1782+08	528	42.3	\$890.00
1782+08	1776+80	528	41.0	\$890.00
1776+80	1771+52	528	41.6	\$890.00
1771+52	1766+24	528	36.0	\$890.00
1766+24	1760+96	528	42.9	\$890.00
1760+96	1755+68	528	38.5	\$890.00
1755+68	1750+40	528	41.2	\$890.00
1750+40	1745+12	528	36.8	\$890.00
otal Pay Adjustment			\$19,5	i i08.80
reas of Localized Roug	hness Deduction			0.00
		oughness Deduction		.08.80

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

S

2019 Concrete Profile Summary

File Name(s)	190610TH-60-D-1-1855+86-1803+20
Date Measured	10-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1855+86		
End	1803+06		

Smoothness Equation	PCC-A
Posted Vehicle Speed	> 45 mph
Certified Inertial Profiler	Yes
Certified Operator	Yes
Additional Information	

Areas of Localized Roughness (ALR)		
175.0 ≤ ALR < 225.0 (linear ft) 0		
ALR ≥ 225.0 (linear ft)	0	

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1855+86	1850+58	528	41.8	\$890.00
1850+58	1845+30	528	30.4	\$890.00
1845+30	1840+02	528	31.0	\$890.00
1840+02	1834+74	528	28.0	\$890.00
1834+74	1829+46	528	38.0	\$890.00
1829+46	1824+18	528	36.6	\$890.00
1824+18	1818+90	528	46.7	\$814.35
1818+90	1813+62	528	36.7	\$890.00
1813+62	1808+34	528	32.9	\$890.00
1808+34	1803+06	528	31.1	\$890.00
tal Pay Adjustment			\$8,8	24.35
eas of Localized Roug	hness Deduction		\$0	.00
otal Pay Adjustment + Areas of Localized Roughness Deduction			\$8.8	24.35

Data Entered By	Jamie Hulett	Data Checked By	
Signature		Signature	

Signature

2019 Concrete Profile Summary

File Name(s)	190610-TH-60-D-2-1855+86-1834+74 190626-TH-60-D-2-1834+74-1829+46 190610-TH-60-D-2-1829+46-
Date Measured	10-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1855+86	1834+74	1829+46
End	1834+74	1829+46	1803+06

Smoothness Equation	PCC-A	
Posted Vehicle Speed	> 45 mph	
Certified Inertial Profiler	Yes	
Certified Operator	Yes	
Additional Information		

Areas of Localized Roughness (ALR)				
175.0 ≤ ALR < 225.0 (linear ft) 0				
ALR ≥ 225.0 (linear ft) 13				

Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment
1855+86	1850+58	528	46.9	\$805.45
1850+58	1845+30	528	38.1	\$890.00
1845+30 1840+02 528		528	36.2	\$890.00
1840+02	1834+74	528	32.7	\$890.00
1834+74	1829+46	528	49.4	\$694.20
1829+46 1824+18 1818+90 1813+62	1824+18 1818+90	528 528 528	35.2	\$890.00
			42.9	\$890.00
	1813+62		35.8	\$890.00
	1808+34	528	34.8	\$890.00
1808+34	1803+06	528	34.9	\$890.00
Total Pay Adjustment Areas of Localized Roughness Deduction Total Pay Adjustment + Areas of Localized Roughness Deduction				19.65
			Corrective Work Required on ALR ≥ 225.0 n	
Data Entered By	lami	e Hulett D	ata Checked By	

2019 Concrete Profile Summary

File Name(s)	190607-TH-60-D-1-1908+66-1855+86 190607-TH-60-D-2-1908+66-1855+86
Date Measured	7-Jun-2019
S.P./S.A.P.	
T.H./CSAH	
Lane Description	Mainline: lane 1

Stationing	Section 1	Section 2	Section 3
Beginning	1908+66	1908+66	
End	1855+86	1855+86	

Smoothness Equation	PCC-A		
Posted Vehicle Speed	> 45 mph		
Certified Inertial Profiler	Yes		
Certified Operator	Yes		
Additional Information			

Areas of Localized Roughness (ALR)			
175.0 ≤ ALR < 225.0 (linear ft) 19			
ALR ≥ 225.0 (linear ft)			

	Beginning Station	End Station	Segment Length (ft)	Final Smoothness (in/mi)	Segment Pay Adjustment	
F	1908+66	1903+38	528	68.2	-\$142.40	
Γ	1903+38	1898+10	528	47.4	\$783.20	
Γ	1898+10	1892+82	528	43.7	\$890.00	
Γ	1892+82	1887+54	528			
Γ	1887+54	1882+26	528	33.3	\$890.00	
Γ	1882+26	1876+98	528	32.1	\$890.00	
Γ	1876+98	1871+70	528	34.8	\$890.00	
Γ	1871+70	1866+42	528	28.8	\$890.00	
Γ	1866+42	1861+14	528	38.2	\$890.00	
Γ	1861+14	1855+86	528	42.1	\$890.00	
Γ	1908+66	1903+38	528	62.6	\$106.80	
Γ	1903+38	1898+10	528	45.7	\$858.85	
Γ	1898+10	1892+82	528	44.2	\$890.00	
Γ	1892+82	1887+54	528	35.7	\$890.00	
Γ	1887+54	1882+26	528	44.6	\$890.00	
Γ	1882+26	1876+98	528	35.1	\$890.00	
Γ	1876+98	1871+70	528	43.4	\$890.00	
ľ	1871+70	1866+42	528	40.0	\$890.00	
F	1866+42	1861+14	528	47.2	\$792.10	
F	1861+14	1855+86	528	44.7	\$890.00	
	Total Pay Adjustment Areas of Localized Rou Total Pay Adjustment +	Areas of Localized R		\$15,748.55		
	Data Entered By	Jam		ta Checked By		
1	Signature		Sig	gnature		

APPENDIX D

Phoenix Test (Unpublished Paper with Procedure)

1	Determining the Water to Cement Ratio of Fresh Concrete by Evaporation
2	Bret Robertson ^{a,1} , M. Tyler Ley ^a
3	a Department of Civil and Environmental Engineering, Oklahoma State University, Stillwater, OK 74078, USA
4	Abstract
5	The water-cement ratio (w/cm) is one of the most influential parameters to determine the quality of
6	concrete. A new test method has been developed that uses external heat to evaporate the water from
7	the concrete before it has hardened. Data are presented for 258 mixtures with 23 aggregates, 9
8	cements, 5 supplementary cementitious materials, and 15 different admixtures. For the laboratory
9	testing, the average measured w/cm is within 0.01 from the batched w/cm with a coefficient of
10	variation (COV) of 3.2%. A subset of these mixes was evaluated with the AASHTO T 318
11	microwave test and the measured w/cm is 0.05 higher than the expected value and the COV is almost
12	three times higher (8.9%). Field data is also presented from 27 mixtures and the measured w/cm
13	shows good agreement with the batched values. The method, calculation, and practical applications of
14	this new test method are presented.
15	Highlights
16	• Development of w/cm test with external heat for a 4x8 cylinder of fresh concrete.
17	• Average measured w/cm for laboratory mixtures was 0.01 from batched w/cm.
18	Keywords: water-cement ratio; w/cm; concrete fresh property testing; water-cement ratio test; w/cm
19	test; Phoenix

_

¹ Corresponding author. Email address: bret.robertson@okstate.edu

21 1. Introduction

22 Although modern concrete has been used for over a century, there is not a widely used test to evaluate 23 the water to cement ratio (w/cm) within a fresh concrete mixture. The w/cm is arguably the most 24 important parameter of concrete to determine the strength [1-3], consistency [4, 5], workability [6, 7], 25 and durability [8, 9]. As water increases in a concrete mixture, the spacing of the cement grains will also increase. This 26 27 increase in grain spacing can improve the workability for placing concrete but excessive water will decrease the performance of the concrete. If the water content is too high, hydration products will 28 have greater difficulty filling the space between the cement grains [10]. This increase in porosity will 29 also decrease the strength [11], stiffness [5], and increase the amount of shrinkage from drying [7]. 30 Each increase of 0.01 w/cm can decrease the strength by 103 kPa [12]. Service life models predict 31 32 that a 0.01 w/cm increase for typical concrete practices in Oklahoma would decrease the expected life 33 of the structure by one year [13]. If 0.02 m³ of water is added to a 6 m³ mixture with 335 kg/m³ of the binder, then this will increase the 34 w/cm by 0.01. There are many ways for excess water to be added to concrete without being recorded. 35 Some examples include leftover water or material from the previous mixture. Another possible error 36 is incorrect moisture content of the aggregate in the mixture. Water can also be added inadvertently 37 while cleaning a truck or to increase the workability at the job site. 38 39 Many attempts have been made to measure the w/cm in fresh concrete. The methods fall into the following categories: mechanical separation, absorption, electrical conductivity, and heat transfer. 40 41 The mechanical separation methods utilized either a heavy liquid [14] or flocculation [15] of the concrete to separate the water from the mixture. One mechanical flocculation method could obtain the 42 43 cement and water content from titrations [16]. These mechanical separation techniques require a 44 calibration curve produced from similar materials and the equipment used is not practical for field 45 testing. Gamma-ray backscatter and absorption [17] or ultrasonic wave transmission [18] have also been used. The gamma ray testing was not popular due to the careful training and handling required 46

47	to run the equipment and the ultrasonic technique was determined to not be accurate for fresh
48	concrete. Other methods used electrical conductivity [19, 20]. The technique uses the electrical
49	resistivity between two probes in the fresh concrete to determine the w/cm. Many variables influence
50	the reading of the probes including, aggregate size, temperature, admixtures, temperature, paste
51	content, binder chemistry, and water content.
52	There has been some success from tests that use heating of the concrete to evaporate the water. A test
53	that uses a microwave oven was developed [21] and ultimately became a standard [22]. A sample is
54	weighed and placed in the microwave. After cooking for a fixed period, the sample is removed,
55	crushed, weighed, and returned to the microwave. These steps are repeated until the sample does not
56	change mass. The difference between the mass of the wet sample and the mass of the dry sample are
57	used to calculate the total water. This information can be combined with the mass of cement in the
58	mixture to determine the w/cm. The sample size in this test is only 1500 g or about one-third of a
59	typical 4x8 cylinder. This small size makes the material inconsistent and the accuracy of the method
60	has been suggested to be +/- 0.03 to 0.05 of the actual w/cm [23]. This variability has been criticized
61	as too wide and therefore not useful.
62	For all of these reasons, these tests have not been adopted as an industry standard. Ultimately, a test
63	is needed that is efficient, rapid, and accurate. The aim of this paper is to find a way to establish a test
64	that meets these criteria. The presented method is known as the Phoenix and uses lab and field testing
65	to examine 258 mixtures with 23 aggregates, 9 cements, 5 supplementary cementitious materials
66	(SCM), and 15 different admixtures. The results are repeatable, able to be completed in the field, and
67	show great potential.
68	2. Experimental Methods

- 69 2.1. Materials
- 70 A summary of laboratory mixtures investigated are shown in Table 1 and the field mixtures can be seen in

Table 2. Testing was completed for 231 laboratory mixtures and 27 field mixtures. Multiple w/cms
from 0.36 to 0.48 are investigated for each aggregate source. These concrete mixtures used a type I
cement that met requirements of ASTM C150 [24]. The oxide and Bogue calculations for this cement
can be seen in Table 3.

Table 1. SSD Mixture Proportions.

Table 1. SSD Mixture Proportions.								
w/cm	Cement	Coarse	Fine	Water	Coarco Aggrogato Tupo	Fine Aggregate Type		
w/cm					Coarse Aggregate Type	Fille Aggregate Type		
0.20	kg/m ³	kg/m ³	kg/m ³	kg/m ³	Constitut 1			
0.36	390	1115	809	141	Granite 1	Natural Sand 1		
0.39	390 300	1098	795	152	Granite 1	Natural Sand 1		
0.42	390	1074	787	164	Granite 1	Natural Sand 1		
0.45	390	1061	768	176	Granite 1	Natural Sand 1		
0.48	390 300	1044	754	187	Granite 1	Natural Sand 1		
0.42	390	1020	736	203	Granite 2	Natural Sand 1		
0.45	390	1074	787	164	Granite 2	Natural Sand 1		
0.48	390	1061	768	176	Granite 2	Natural Sand 1		
0.39	390	1044	754	187	Granite 3	Natural Sand 1		
0.45	390	1020	736	203	Granite 3	Natural Sand 1		
0.39	362	1086	794	141	Granite 4	Natural Sand 1		
0.45	362	1061	762	163	Granite 4	Natural Sand 1		
0.42	362	1023	734	189	Limestone 1	Natural Sand 1		
0.45	362	1083	826	141	Limestone 1	Natural Sand 1		
0.48	362	1061	790	163	Limestone 1	Natural Sand 1		
0.45	362	1017	767	189	Limestone 2	Natural Sand 2		
0.36	362	1112	660	152	Limestone 3	Natural Sand 1		
0.39	362	1098	647	163	Limestone 3	Natural Sand 1		
0.42	362	1083	635	174	Limestone 3	Natural Sand 1		
0.45	362	1062	619	189	Limestone 3	Natural Sand 1		
0.48	362	1098	756	163	Limestone 3	Natural Sand 1		
0.45	362	1068	830	163	Limestone 3	Manufactured Sand		
0.45	362	1148	794	131	River Rock 1	Natural Sand 1		
0.36	362	1133	781	141	River Rock 2	Natural Sand 1		
0.45	362	1112	772	152	River Rock 2	Natural Sand 1		

Table 2. Field testing materials batched.

Table	2. Field te	esting mat	erials batc	hed.						
	Cement	Fly Ash C	Flv Δsh F	Slag	Coarse	Fine	Water	Coarse Aggregate		
Truck	(kg/m ³)	(kg/m ³)	(kg/m ³)	-	(kg/m ³)		(kg/m ³)	Type	Type	Admixtures
1	316	78	(Kg/111)	(Kg/111)	889	897	166	Limestone 5	Natural Sand 2	Admixtures AEA, WRA, Accelerator
2	338	78			1059	820	153	Limestone 5	Natural Sand 2	AEA, WRA, Accelerator
3	333				1055	815	155	Limestone 5	Natural Sand 2	AEA, WRA
4	333				1100	743	147	Limestone 6	Natural Sand 3	AEA, WRA
5	333				1113	739	145	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
6	334				1102	749	145	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
7	333				1095	745	140	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
8	333				1095	745	140	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
9	331				1086	742	142	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
10	267	66			1114	7 <u>8</u> 8	131	Limestone 2	Natural Sand 2	AEA, WRA, Retarder
11	269	66			1159	784	131	Limestone 2	Natural Sand 2	
12	266	66			1140	784	131	Limestone 2	Natural Sand 2	AEA, WRA, Retarder
13	332				1109	787	147	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
14	332				1106	74	145	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
15	333				1100	743	146	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
16	333				1113	739	142	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
17	334				1102	749	140	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
18	333				1102	749	143	Limestone 6	Natural Sand 3	AEA, WRA, Retarder
19	235		53	73	1056	737	130	Limestone 11	Natural Sand 4	AEA, HRWRA
20	230	59		× ·	1042	841	138	Limestone 8	Natural Sand 4	HRWRA
21	336				1038	769	161	Limestone 8	Natural Sand 4	AEA
22	235		55	73	1055	736	135	Limestone 11	Natural Sand 4	AEA, HRWRA
23	333				1054	785	147	Limestone 8	Natural Sand 4	AEA, HRWRA, accelerator
24	354	59			507	1203	208	Limestone 7	Natural Sand 4	-
25	226	60			991	878	141	Limestone 8	Natural Sand 4	AEA, HRWRA
26	283	72			1001	821	149	Limestone 9	Natural Sand 4	AEA, HRWRA
27	178			180	878	915	155	Limestone 10	Natural Sand 5	AEA, HRWRA

80 Table 3. Type I cement oxide analysis.

 Oxide (%)
 SiO₂
 Al₂O₃
 Fe₂O₃
 CaO
 MgO
 SO₃
 Na₂O
 K₂O
 TiO₂
 P₂O₅
 C₃S
 C₂S
 C₃A
 C₄AF

 Cement
 21.1
 4.7
 2.6
 62.1
 2.4
 3.2
 0.2
 0.3
 57
 18
 8.2
 7.8

82 Table 4. Tested aggregate summary.

	Aggregate Type	Size	Specific Gravity	Absorption (%)	State
	Granite		2.75	0.46	ОК
	Quartzite-Granite	Coarse	2.75	0.51	GA
	Granite	Coarse	2.59	1.06	MN
	Quartzite-Granite	Coarse	2.66	0.66	MN
	Dolomitic Limestone	Coarse	2.42	4.69	IA
	Limestone	Coarse	2.67	0.70	ОК
	Limestone	Coarse	2.67	0.64	ОК
	Limestone	Coarse	2.85	0.76	ОК
	Limestone	Coarse	2.70	0.68	ОК
	Limestone	Coarse	2.76	0.72	ОК
	Limestone	Coarse	2.62	0.40	KS
	Limestone	Coarse	2.63	1.70	KS
	Limestone	Coarse	2.67	0.30	KS
	Limestone	Coarse	2.67	1.80	KS
	Limestone	Coarse	2.69	0.70	KS
	Glacial Till	Coarse	2.67	1.52	MN
	Glacial Till	Coarse	2.68	0.81	MN
	Manufactured Sand	Fine	2.76	1.05	ОК
	Natural Sand	Fine	2.62	0.64	ОК
	Natural Sand	Fine	2.61	0.76	ОК
	Natural Sand	Fine	2.64	0.34	ОК
	Natural Sand	Fine	2.62	0.40	KS
0.2	Natural Sand	Fine	2.62	0.20	KS
83					

84	Multiple coarse and fine aggregate sources were used with a specific gravity between 2.42 and 2.85
85	and absorption between 0.20 and 4.69%. Seventeen coarse aggregates that were mainly granite,
86	limestone, and river rock were used. Six fine aggregates that were either natural or manufactured
87	sand were also investigated. A summary of the aggregate investigated is in Table 4. All aggregate
88	used met ASTM C33 [25] specification and are used in commercial concrete mixtures.
89	2.2. Concrete Mixture procedure and testing
90	Since the focus is to obtain an accurate w/cm, it was important to very accurately measure and
91	account for the moisture in the aggregates. To do this, a standard laboratory method was used to
92	prepare the samples. It has been described previously but is repeated here for the convenience of the
93	reader [26].
94	"The aggregates for each mixture were collected from outside stockpiles and brought into a
95	temperature-controlled room at 22°C for at least 24 hours before mixing. Aggregates were placed in
96	a mixing drum, spun for a period of time, and a representative sample was taken to determine the
97	moisture content to apply a moisture correction to the mixture.
98	At the time of mixing, all aggregates were loaded into the mixer along with approximately two-
99	thirds of the mixing water. This combination was mixed for three minutes to allow the aggregate
100	surface to saturate and ensure the aggregates were evenly distributed. Next, the cement, fly ash, and
101	the remaining water was added and mixed for three minutes. The resulting mixture rested for three
102	minutes while the sides of the mixing drum were scraped. After the rest period, the desired
103	admixtures were added and the mixer was turned on and mixed for two minutes."
104	The fresh properties were measured and samples were created to complete the w/cm test. For the
105	test, two samples were investigated simultaneously by the same operator for each mixture. Samples
106	obtained for the microwave oven test were run in accordance with AASHTO T 318.
107	Some mixtures were hand mixed in small batches below 0.1 cubic feet. The aggregate used for the
108	small mixtures was moisture corrected in the same way as the larger mixtures. To achieve accurate
109	batch water, water was added to a dry bowl and weighed. All the materials were then added to the

110	bowl with water and each mixed until thoroughly blended in the following order, admixture (if
111	used), cement, fine aggregate, and coarse aggregate. This material was then sampled for the testing.
112	Two samples were investigated simultaneously.
113	Field testing was completed for twenty-seven concrete mixtures from four concrete plants in
114	Oklahoma and Kansas. The majority of the samples were taken on job sites that were constructing a
115	bridge or pavement. The remaining samples were taken from ready-mix plants before the concrete
116	was transported to the job-site. The field testing batched values can be seen in the appendix in Table
117	10.
118	2.3. Sample Size Selection
119	It was important to determine a satisfactory sample volume to use within the test. If the sample size
120	investigated is too small, then the test will not give representative results. However, if the sample
121	size used is too large then the increased volume in the test will increase the time required to
122	complete the test.
123	To investigate this concrete mixture with 0.45 w/cm were sampled with a variety of volumes. The
124	unit weight and the average measured w/cm was found. The method and calculation for the
125	measured w/cm are presented in future sections of this paper. The results are presented in Table 5.
126	According to Cement and Concrete Reference Laboratory [27], the single-operator standard
127	deviation between measuring UW of concrete is 14.4 kg/m^3 . This precision and bias are based on
128	7079 cm ³ volume. If this precision could be obtained with a smaller volume, then that would
129	represent a satisfactory volume for the proposed test. Based on this testing 1648 cm ³ was used as
130	it showed a satisfactory density and was able to accurately measure the w/cm of the concrete with
131	the proposed test with a standard deviation that is similar for larger volumes. Again, it was
132	important to pick a volume that was as small as possible to minimize the time in the test but also
133	be representative of the concrete mixture. It appears that 1648 cm ³ meets this.

Number	Sample	Average	Standard	Average		
Of	Volume	Density	Deviation	Measured	Standard	
Samples	(cm³)	(kg/m³)	(kg/m³)	w/cm	Deviation	
9	694	2412.4	51.3	0.42	0.022	
9	824	2410.8	22.4	0.44	0.021	
9	1648	2428.4	4.8	0.45	0.010	
9	1852	2428.4	8.0	0.45	0.010	
9	5559	2418.8	11.2	0.44	0.011	
9	7079	2423.6	8.0			

Table 5. Multiple size volumes tested for three, 0.45 w/cm mixtures.

136 2.4. Test Device

137 The device used a heating element, an induction cooktop, pan, and a scale. The heating element

138 temperature was ≈ 700 °C. The pan had a diameter of 23 cm and a depth of 8 cm. The 1500 Watt

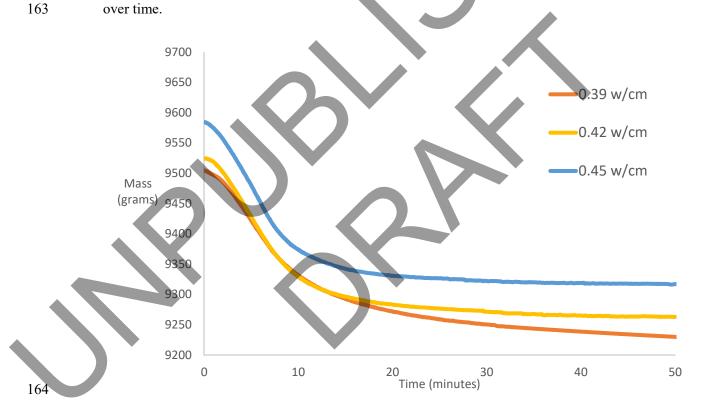
139 cooktop had a coil diameter of 20 cm. A scale with 0.01-gram accuracy and 10 kg capacity was

140 used. The device setup can be seen in Figure 1. Conventional power was used in the laboratory and

141 a generator was used in the field testing.

135

- 142
- 143 Figure 1. Overview of the testing device.


144 3. Test Method

145The first step in the method is to gather concrete mixture information. The concrete mixture146information required includes the mass of the batched materials, aggregate properties, binder specific147gravities, and the total volume of the batch. For the aggregate properties, the specific gravity and148absorption for each coarse and fine aggregate are needed.

- The air volume in the concrete should be obtained by either using ASTM C231 [28] or based on the theoretical density calculation according to ASTM C138 [29]. The ASTM C138 method to obtain air is described in the calculations section.
- 152 Next, the mass and volume of the empty mold are recorded. This testing used a plastic 4x8 cylinder
- 153 mold. Fresh concrete is sampled from the mixture in accordance with ASTM C172 [30]. All

154 samples are prepared according to ASTM C31 [31]. The mold is filled, finished, and weighed with 155 fresh concrete. The sample is then discharged into the pan and the mold is thoroughly emptied with 156 a spatula. The mass of the empty mold is compared to the mass before starting the test. The mass 157 should be within 10 g of the empty mold. This helps the operator determine that they have removed 158 enough material from the form.

The material is placed in the pan so that it has a uniform thickness. The mass of the pan full of fresh concrete is recorded and placed into the test device. The cooktop is turned to the highest setting. The heating element is preheated for 10 min to reduce the time needed to complete the test. With these conditions, the test can be completed in 30 minutes. Figure 2 shows a mass loss for three samples

166The sample can be kept under the heating element unattended and weighed at any point after 30167minutes. To check if the concrete is finished losing water, the mass change should be < 2 g from two</td>168minutes of heat exposure. The final mass of the pan and concrete are recorded. This represents the

- 169 total water evaporated, including the absorbed water in the aggregates. The concrete can then be
- 170 removed and the pan can be cleaned.
- 171 A summary of the required steps for the test is in Table 6. The variable names assigned in Table 6
- 172 will be utilized for the calculation for the test method.

Table 6. Variable definitions for recorded values during the test method.

	Description	Variable Name
	Binder specific gravities	SG _{Binder}
	Coarse aggregate absorptions	Abs _{Coarse}
	Fine aggregate absorptions	Abs _{Fine}
	Coarse aggregate specific gravities	SG _{Coarse}
	Fine aggregate specific gravities	SG _{Fine}
	Batched binder masses	M _{Binder}
	Batched coarse aggregate masses	M _{Coarse}
	Batched fine aggregate masses	M _{Fine}
	Batch water mass	M _{Water}
	Batched volume in mixer	V _{Batch}
	Batched concrete air volume (See 4.1.1) VAir
	Tare mass of cylinder	Cyl _{Tare}
	Volume of cylinder	V _{Cyl}
	Mass of cylinder filled with concrete	Cyl _{Full}
	Mass of cylinder after emptied	Cyl _{Empty}
	Mass of pan with fresh concrete	Pfresh
	Mass of pan with dried concrete	P _{Dry}
174		
175	3.1. Calculations	
176	3.1.1. Air Volume	
177	The air volume in the concrete can be for	und by using the measu
178	density can be compared with the theore	tical density from the b
179	content. This is performed according to A	ASTM C138 by using t
180	The density of the concrete in the cylind	er can be found as:
181	Cyl Density = $(Cyl_{Full} - Cyl_{Tare}) / V_{Cyl}$	
182	The theoretical density of the batched co	ncrete can be found as:

183	Theoretical Density = Total Batched Mass / Absolute Volume Batched (Air Free)
184	where
185	Total Batched Mass = $M_{Binder} + M_{Coarse} + M_{Fine} + M_{Water}$ {2}
186	and
187	Absolute Volume Batched (Air Free) = $((M_{Binder})/(SG_{Binder} * 1000)) + ((M_{Coarse})/(SG_{Coarse} * 1000))$
188	$1000)) + ((M_{Fine})/(SGFine * 1000)) + (M_{Water}/(1000) $ $\{3\}$
189	For theoretical density in lb/ft ³ mass is replaced by batched weight and each 1000 is replaced by 62.4
190	lb/ft ³ .
191	The theoretical air content can be found by finding the % difference between the theoretical density
192	and the cylinder density. This can be found mathematically as follows:
193	Air Content (%) = ((Theoretical Density–Cyl Density) / Theoretical Density) * 100 $\{4\}$
194	Or using equations, Air Content (%) = (($\{2\} - \{1\}$) / $\{2\}$) *100
195	The air content from ASTM C231 can also be used instead of this procedure.
196	3.1.2. Batched Absolute Volume Calculation
197	The absolute volume of concrete batched must be calculated for the fresh w/cm determination. This
198	can be calculated with the batched masses and air volume from the batch information. This can be
199	expressed mathematically as:
200	Absolute Volume Batched = $((M_{Binder}) / (SG_{Binder} * 1000)) + ((M_{Coarse}) / (SG_{Coarse} * 1000)) +$
201	$((M_{Fine}) / (SG_{Fine} * 1000)) + (M_{Water} / 1000) + (V_{Batch} * (V_{Air} / 100)) $ $\{5\}$
202	3.1.3. Total Water Absorbed
203	As shown in Figure 2, all the water from the sample is removed from the concrete including the
204	absorbed water in the aggregates. Concrete mixtures are adjusted and batched by assuming the
205	aggregate are saturated surface dry. Although the aggregates are not usually in this condition when
206	placed into a mixer, it is assumed that the aggregates reach a saturated condition before the concrete

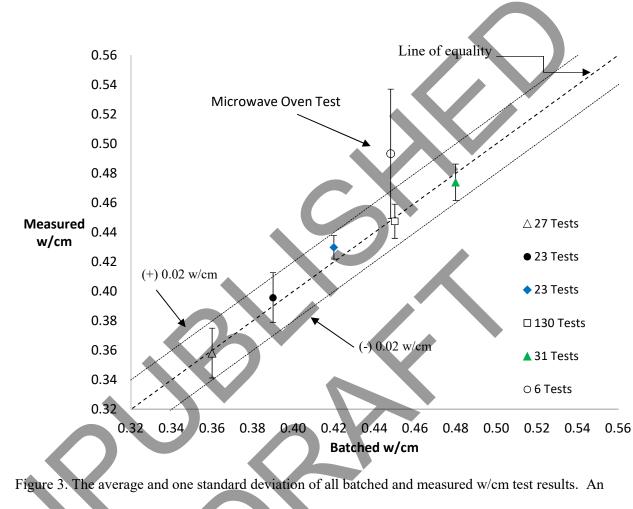
207	has set. Because the test evaporates all of the water from the concrete mixture, the aggregate	
208	absorption must be accounted for in the calculations. To account for this the absorbed water for each	h
209	aggregate in the batch is calculated as follows:	
210	Coarse Aggregate Absorbed Water = $(Abs_{Coarse} / 100) * M_{Coarse}$ {6	}
211	and	
212	Fine Aggregate Absorbed Water = $(Abs_{Fine} / 100) * M_{Fine}$ {7	}
213	where	
214	Total Absorbed Water = Coarse Aggregate Absorbed Water + Fine Aggregate Absorbed Water {8	}
215	If there are multiple coarse and fine aggregate sizes in the mixture each could be added to these	
216	values using the weight and absorption value for every additional aggregate to find the total	
217	absorbed water.	
218	3.1.4. Batched Density	
219	The batched density is calculated by taking the sum of the batched masses divided by the absolute	
220	volume of the batch. This can be shown mathematically as:	
221	Batched Density = Total Batched Mass / Absolute Volume Batched {9}	
222	Or using equations, Batched Density = $\{2\} / \{5\}$	
223	3.1.5. Cylinder and Pan Calculations	
224	As mentioned before, the mass of material remaining in the mold should be < 10 g of the empty	
225	cylinder mass. The material that was placed in the pan is used to obtain the volume in the test. This	
226	can be shown mathematically as:	
227	Cylinder Volume Tested = $((Cyl_{Full} - Cyl_{Empty}) / (Cyl_{Full} - Cyl_{Tare})) * V_{Cyl}$ {10}	
228	Next, the water lost in the test is calculated. This is found by the difference between the mass of the	3
229	pan with fresh concrete from the mass of the pan with dry concrete. This can be shown	
230	mathematically as:	
231	Water Loss Mass = $P_{fresh} - P_{Dry}$ {11	}

233	The estimated water in the concrete cylinder represents the total water in the sample including the
234	absorbed water in the aggregates. Next, the volume of the sample tested is divided by the absolute
235	volume batched. This can be seen mathematically as:
236	Volume Ratio = Cylinder Volume Tested / Absolute Volume Batched {12}
237	Or using equations, as Volume Ratio = {11} / {5}
238	The volume ratio is a scale factor to reduce the material weights from a larger volume to the volume
239	in the mold. Multiplying the volume ratio with a batch weight will represent the weight in the mold
240	for that material. This will be used to determine the weight of the binder in the cylinder.
241	The weight of the binder in the cylinder can be found by multiplying the volume ratio with M_{Binder} .
242	This can be seen mathematically as:
243	$Cyl_{Binder} = Volume Ratio * M_{Binder}$ {13}
244	where Volume Ratio is equation {12}.
245	The total absorbed water for the batch has been calculated in equation {8}. This value needs to be
246	adjusted to the water absorbed in the sample tested. The Cyl _{WaterAbs} is the volume ratio multiplied
247	by the total absorbed water. This can be seen mathematically as follows:
248	$Cyl_{WaterAbs} = Volume Ratio * Total Absorbed Water $ {14}
249	Or using equations, $Cyl_{WaterAbs} = \{12\} * \{8\}$

250	3.1.7.	W/cm	Calculations

251		At the completion of the test the water loss from the sample represents the total water in the cylinder,
252		this includes the absorbed water in the aggregate. For the w/cm calculation, the total water minus the
253		aggregate absorbed water represents the adjusted water. The w/cm is determined by dividing the
254		water loss mass minus the Cyl _{WaterAbs} by the Cyl_Binder mass. This can be seen mathematically as
255		follows:
256		Measured w/cm = (Water Loss Mass -Cyl _{WaterAbs}) / (Cyl _{Binder}) {15}
257		Or Measured w/cm = ($\{11\} - \{14\}$) / $\{13\}$
258		The measured w/cm is the result of this fresh concrete w/cm test method. The measured w/cm can be
259		compared with the batched w/cm. The batched w/cm is calculated by dividing the M_{Water} by
260		M _{Binder} .
261	4.	Results and Discussion
262		4.1. Laboratory Results
263		To determine the effectiveness of the proposed test, 231 lab mixtures with nine coarse aggregates,
264		three fine aggregates at five different w/cm were tested. Figure 3 shows the average and one
265		standard deviation for each measured w/cm versus the batched w/cm. In this graph, all of the data is
266		combined at each w/cm. A line of equality is included on the graph to show an exact match of the
267		batched and the measured w/cm. The two lines on either side represent a +/- 0.02 w/cm. This shows
268		a reasonable range for the w/cm variation. The microwave oven test result is also shown in Figure 3.

269 The microwave testing was done on one of the concrete mixtures that corresponded with the

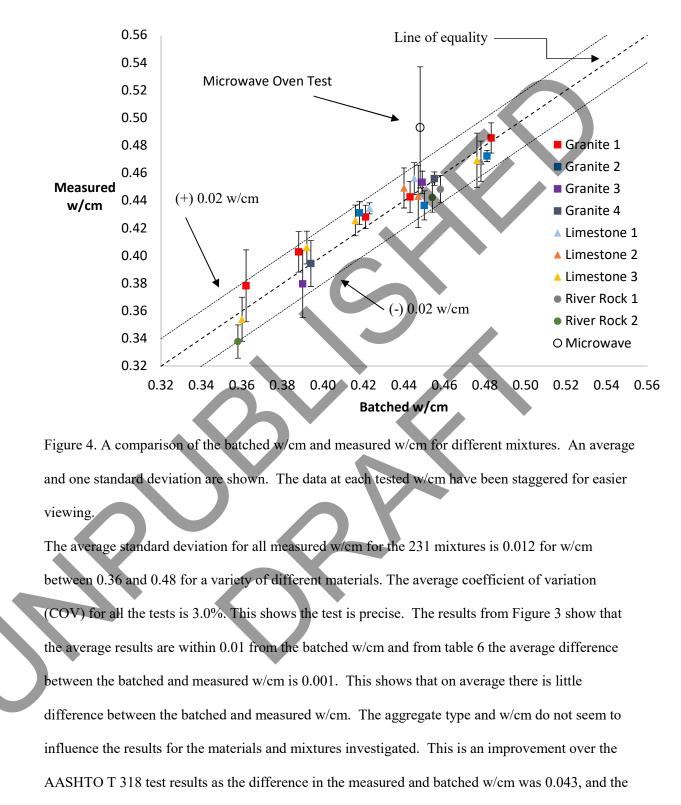


270

introduced w/cm method.

271

272

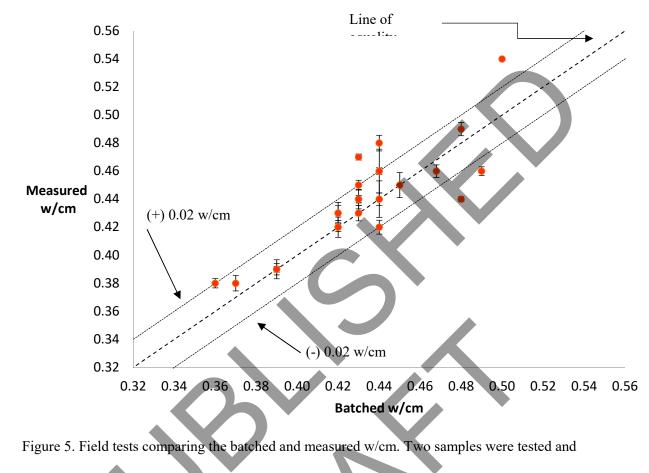


273 274 AASHTO T 318 microwave oven test at 0.45 w/cm has also been included for comparison. The microwave oven test data was from mixtures batched with 0.45 w/cm. The point has been slightly 275 offset on the x-axis to better show the error compared with the 0.45 data. 276 277 The same data from Figure 3 is plotted again in Figure 4 but for the individual mixture 278 combinations. The average and one standard deviation are shown for each data set. The data points 279 have been offset on the X-axis to the results easier to read.

Table 7. Summary of fresh w/cm test, sorted by coarse aggregate type.

	•			00	0.	1	
		Average	Difference			Coarse	Fine
	Batched	Measured	Batched and	Standard	COV	Aggregate	Aggregate
Tests	w/cm	w/cm	Measured	deviation	(%)	Туре	Туре
4	0.36	0.38	-0.020	0.026	6.9	Granite 1	Natural Sand 1
13	0.36	0.36	0.000	0.013	3.5	Limestone 3	Natural Sand 1
3	0.36	0.35	0.010	0.010	2.9	Limestone 3	Natural Sand 2
4	0.36	0.34	0.020	0.012	3.6	River Rock 2	Natural Sand 1
11	0.39	0.40	-0.010	0.015	3.6	Granite 1	Natural Sand 1
4	0.39	0.38	0.010	0.024	6.4	Granite 3	Natural Sand 1
4	0.39	0.39	0.000	0.017	4.2	Granite 4	Natural Sand 1
4	0.39	0.41	-0.020	0.012	2.9	Limestone 3	Natural Sand 1
6	0.42	0.43	-0.010	0.008	2.0	Granite 1	Natural Sand 1
6	0.42	0.43	-0.010	0.008	1.9	Granite 2	Natural Sand 1
4	0.42	0.43	-0.010	0.004	0.9	Limestone 1	Natural Sand 1
7	0.42	0.43	-0.010	0.011	2.6	Limestone 3	Natural Sand 1
8	0.45	0.44	0.010	0.011	2.5	Granite 1	Natural Sand 1
2	0.45	0.43	0.020	0.012	2.7	Granite 1	Manufactured Sand
4	0.45	0.44	0.010	0.009	2.0	Granite 1	Natural Sand 2
7	0.45	0.44	0.010	0.011	2.4	Granite 2	Natural Sand 1
6	0.45	0.45	0.000	0.008	1.8	Granite 3	Natural Sand 1
4	0.45	0.46	-0.010	0.005	1.1	Granite 4	Natural Sand 1
6	0.45	0.46	-0.010	0.012	2.5	Limestone 1	Natural Sand 1
16	0.45	0.44	0.010	0.023	5.1	Limestone 2	Natural Sand 1
65	0.45	0.45	0.000	0.015	3.2	Limestone 3	Natural Sand 1
6	0.45	0.45	0.000	0.010	2.2	River Rock 1	Natural Sand 1
6	0.45	0.44	0.010	0.011	2.4	River Rock 2	Natural Sand 1
7	0.48	0.49	-0.010	0.011	2.3	Granite 1	Natural Sand 1
4	0.48	0.47	0.010	0.004	0.9	Granite 2	Natural Sand 1
10	0.48	0.47	0.010	0.015	3.1	Limestone 1	Natural Sand 1
10	0.48	0.47	0.010	0.020	4.2	Limestone 3	Natural Sand 1
9	0.43	0.43	0.001	0.012	3.0		

Bold indicates the average for all tests


standard deviation was 0.044 w/cm with a COV of 8.9%. This variability is similar to the value

- 296 reported by Hover, Bickley, and Hooton [23]. The standard deviation of the introduced w/cm test is
- 297 roughly three times smaller than the standard deviation of the microwave oven test.
- 2984.2. Field Results
- Table 8 shows the results from 27 field concrete mixtures. Figure 5 compares the batched and
- 300 measured w/cm for the field tests graphically.

Table 8.	Field	testing	summary.
----------	-------	---------	----------

		Average	Difference		
Truck	Batched	Measured	Batched and	Standard	COV
Number	w/cm	w/cm	Measured	deviation*	(%)*
Truck 1	0.42	0.43	-0.01	0.005	1.23
Truck 2	0.45	0.45	0.00	0.009	1.99
Truck 3	0.47	0.46	0.01	0.004	0.97
Truck 4	0.44	0.44	0.00	0.013	2.99
Truck 5	0.44	0.44	0.00	0.004	1.01
Truck 6	0.43	0.47	-0.04	0.002	0.46
Truck 7	0.42	0.42	0.00	0.003	0.75
Truck 8	0.42	0.42	0.00	0.007	1.74
Truck 9	0.43	0.44	-0.01	0.003	0.61
Truck 10	0.39	0.39	0.00	0.007	1.75
Truck 11	0.39	0.39	0.00	0.002	0.55
Truck 12	0.39	0.39	0.00	0.004	1.04
Truck 13	0.44	0.46	-0.02	0.002	0.53
Truck 14	0.44	0.46	-0.02	0.016	3.38
Truck 15	0.44	0.48	-0.04	0.006	1.17
Truck 16	0.43	0.43	0.00	0.006	1.29
Truck 17	0.42	0.43	-0.01	0.008	1.78
Truck 18	0.43	0.44	-0.01	0.007	1.58
Truck 19	0.36	0.38	-0.02	0.003	0.87
Truck 20	0.48	0.49	-0.01	0.005	0.97
Truck 21	0.48	0.44	0.04	0.002	0.42
Truck 22	0.37	0.38	-0.01	0.006	1.43
Truck 23	0.44	0.42	0.02	0.005	1.18
Truck 24	0.50	0.54	-0.04	0.001	0.17
Truck 25	0.49	0.46	0.03	0.003	0.68
Truck 26	0.42	0.42	0.00	0.001	0.25
Truck 27	0.43	0.45	-0.02	0.003	0.77
	0.43	0.44	0.00	0.010	1.17

Bold values indicate average for all tests *Two samples tested per truck

307 averaged per truck.

308	From Table 7 the average standard deviation was 0.010. This is very close to the 0.012 that was
309	measured from the laboratory data. Also, the COV of the field data between the two measurements
310	was 1.17%. This is a little lower than the 3.0% COV from the laboratory testing. It should be noted
311	that the standard deviation and COV for the field measurements were based on two tests per truck.
312	While this is a low number of samples for each measurement, it was not possible to measure more.
313	Despite these low numbers for the field tests, the variance from both the lab and field are similar.
314	It was found that 15% of the field mixtures had a w/cm higher than 0.02 from batched w/cm. This
315	was obtained from trucks at the batch plant and does not reflect the additional water that could be
316	added before placement within the forms. Furthermore, these samples were not taken randomly. All
317	concrete producers knew that the concrete was being sampled and this may have an impact on the

318	quality of concrete that was provided for the testing. Despite these limitations, this test shows
319	promise in being able to detect excess water in both laboratory and field concrete mixtures.
320	An example of the usefulness of the test can be shown by comparing two mixtures used for a bridge
321	pier. The results from the testing and specifications are shown in
322	Table 9 [32]. Because there is no test method to measure w/cm of fresh concrete, the specification
323	limits the maximum slump of the concrete to 18 cm because of concerns for excess water. Both
324	trucks were rejected because the slump was above the specified value; however, the testing shows
325	that the measured w/cm for Truck 7 was within the allowable limits of the specification. This shows

326 that there are many variables that impact the slump of concrete beside the w/cm. This also shows

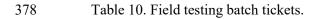
- 327 the value in more directly measuring the desired property instead of relying on indirect measurement
- 328 methods for specifications.
- 329 Table 9. Truck 6 and 7 field testing results

			Average	Measured	Air		Maximum	Specified Air	
	Truck	Batched	Measured	Slump	Content	Specified	Slump	Content	
	Number	w/cm	w/cm	(cm)	(%)	w/cm	(cm)	(%)	
	Truck 6	0.43	0.47	23	4.7	0.25-0.44	18	6±1.5	
220	Truck 7	0.42	0.42	20	8.1	0.25-0.44	18	6±1.5	

- 330
- 3314.3. Practical Significance
- The concrete industry does not have an established method to determine the w/cm of fresh concrete. This work presents a test method that has improved on previous methods and the results are accurate for a wide range of materials and mixtures. The inputs for the test can be easily determined with basic mixture design information and the unit weight of the fresh concrete. The results in the lab and field show promise. This test method can benefit owners, contractors, and producers. Owners are interested in obtaining
- 338 a durable concrete and the w/cm is helpful for determining this. Contractors want consistent
- 339 products for construction and producers need tools to help them with the quality control of their

340	materials. Being able to verify the fresh concrete w/cm in a timely manner would be of significant
341	benefit to the industry. Currently, concrete with a high w/cm would not be identified until
342	compressive strength testing or some other hardened property such as surface resistivity [33] or rapid
343	chloride permeability [34] testing is completed. Unfortunately, this would take days or weeks to
344	complete the testing. By identifying concrete mixtures that have excess water, one could better
345	control the service life, properties, and constructability of a concrete mixture before the mixture is
346	placed. This would benefit the entire concrete industry and improve the service life of our
347	structures.
348	5. Conclusion
349	A test method is presented that measures the w/cm of the fresh concrete. Testing was performed for
350	231 laboratory mixtures and 27 field mixtures. The mixtures used 17 coarse aggregates and 6 fine
351	aggregates with specific gravities between 2.42 and 2.85 and absorption between 0.20 and 4.69%.
352	The method uses information about the mass of the ingredients, aggregate properties, and the unit
353	weight of concrete. The test requires 1648 cm ³ or a 4x8 cylinder of concrete. The test can be
354	completed within 30 minutes with this volume of material. The following conclusions can be drawn:
355	• For the laboratory mixtures with w/cm between 0.36 and 0.48, the average measured w/cm
356	was within 0.01 from the batched w/cm and on average the difference was 0.001.
357	• For six mixtures with a batched 0.45 w/cm, the AASHTO T 318 microwave oven test was
358	within 0.045 w/cm while the introduced test method was within 0.015 w/cm.
359	• The average standard deviation and COV for the laboratory and field mixtures were
360	comparable (0.012 and 3.0% laboratory and 0.010 and 1.17% field).
361	• The standard deviation of the introduced w/cm was approximately three times lower than the
362	AASHTO T-318 microwave oven test (3.0% compared to 8.9%).
363	• For the field testing, 15% of the mixtures were found to have a 0.02 w/cm or higher than the
364	batched w/cm.

This shows that this proposed test method could provide a useful tool to measure the w/cm of fresh concrete in about 30 minutes with a reasonable size sample. The test also has the potential to directly measure the amount of water within concrete and not make an estimate of the value based on an indirect measurement from the slump test. The implementation of this test in the quality control of concrete has great potential to improve the quality and performance of concrete structures.

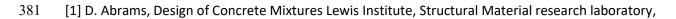

The authors would like to acknowledge funding from the Oklahoma Transportation Center, ODOT 2247.

372 Special thanks to Rusty Owings, Daniel Mayen, and Jed Banks for allowing field testing for this work.

373 We would also like to thank David Porter, Brad Woodard, Brendan Barns, Kasee Hayes, Mayra Salazar,

- 374 Jason Toney, Phillip Szeto, Matthew McCormick, Tyler Root, Nate Morris, Chad Stevenson, Levi Voss,
- and Sage Woodard.

377 7. Appendix



	Datch Siza	•							
T	Batch Size								
Truck		(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	(kg)	
1	10.5	2533	628			7140	7203	159	
2	10.5	2712				8500	6586	147	
3	10	2549				8110	6232	143	
4	10	2545				8410	5679	135	
5	10	2545				8509	5652	133	
6	10	2554					5724	133	
7	10	2549				8373	5697	129	
8	10	2549				8373	5697	129	
9	10	2533				8301	5670		
10	10	2041	508			8518	6024	120	
11	10	2057	508			8863	5996	120	
12	10	2037	508			8718	5996	120	
13	10	2538				8482	6015	134	
14	10	2538				8455	567	133	
15	10	2545			V	8410	5679	134	
16	10	2545				8509	5652	131	
17	10	2554				8428	5724	128	
18	10	2549				8423	5729	131	
19	6	1080		245	333	4844	3379	72	
20	9	1585	404			7167	5788	114	
21	8	2055				6350	4704	118	
22	8	1436		336	445	6450	4504	99	
23	7.5	1912	.		X	6046	4500	101	
24	7	1894	315			2712	6436	133	
25	6.25	1082	288			4736	4196	81	
26	3	649	166			2295	1882	41	
27	8	1091			1100	5371	5597	113	

380

379

8. References

- 382 Bullatein (1) (1918).
- 383 [2] W.A. Cordon, Properties, evaluation, and control of engineering materials, McGraw-Hill College1979.

- 384 [3] R. Feret, Etude sur la constitution intime des mortiers hydrauliques, Bulletin de la Societe
- 385 d'Encouragement pour 1'Indutrie Nationale 96 (1897) 1591-1625.
- 386 [4] C. Manual, 8th ed., US Bureau of Reclamation, pg 34-39, (1981).
- 387 [5] A.M. Neville, Properties of concrete, Longman London1995.
- 388 [6] D.G. Daniel, Factors Influencing Concrete Workability, Significance of Tests and Properties of
- 389 Concrete and Concrete-Making Materials (2006) 59-72.
- 390 [7] P.K. Mehta, P.J. Monteiro, CONCRETE Microstructure, Properties and Materials, 2017.
- 391 [8] T.C. Powers, L.E. Copeland, H. Mann, Capillary continuity or discontinuity in cement pastes, 1959.
- 392 [9] D. Whiting, Strength and Durability of Residential Concretes Controlling Fly Ash, RD099, Portland
- 393 Cement Association.–Skokie: IL (1989).
- 394 [10] T.C. Powers, T. Willis, The air requirement of frost resistant concrete, Highway Research Board
- 395 Proceedings, 1950.
- 396 [11] S.H. Kosmatka, B. Kerkhoff, W.C. Panarese, Design and control of concrete mixtures, Portland
- 397 Cement Assoc.2011.
- 398 [12] A. 211.1-91, Standard practice for selecting proportions for normal, heavyweight, and mass
- 399 concrete, American Concrete Institute Farmington Hills, Michigan, 1991.
- 400 [13] E.C. Bentz, Probabilistic modeling of service life for structures subjected to chlorides, Materials
 401 Journal 100(5) (2003) 391-397.
- 402 [14] W. Hime, R.A. Willis, A method for the determination of the cement content of plastic concrete,403 1955.
- 404 [15] R. Kelly, J. Vail, Rapid Analysis of Fresh Concrete-Part 1, Concrete (London) (1968).
- 405 [16] P.A. Howdyshell, Revised Operations Guide for a Chemical Technique to Determine Water and
- 406 Cement Concrete of Fresh Concrete, CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAIGN
- 407 ILL, 1977.

- 408 [17] D. Whiting, M. Nagi, Laboratory evaluation of nuclear gage for measurement of water and cement
- 409 content of fresh concrete, Materials Journal 96(1) (1999) 101-108.
- 410 [18] S. Popovics, J.S. Popovics, Ultrasonic testing to determine water-cement ratio for freshly mixed
- 411 concrete, Cement, concrete and aggregates 20(2) (1998) 262-268.
- 412 [19] M. Mancio, J. Moore, Z. Brooks, P.J. Monteiro, S. Glaser, W.R. Malisch, Instantaneous in-situ
- 413 determination of water-cement ratio of fresh concrete, ACI Materials Journal 108(5) (2011) 566-567.
- 414 [20] X. Wei, Z. Li, Early hydration process of Portland cement paste by electrical measurement, Journal
- 415 of materials in civil engineering 18(1) (2006) 99-105.
- 416 [21] R.T. Peterson, D. Leftwich, Determination of water content of plastic concrete using a microwave
- 417 oven, NASA STI/Recon Technical Report N 79 (1978).
- 418 [22] A.T. 318, Standard Method of Test for Water Content of Freshly Mixed Concrete Using Microwave
- 419 Oven Drying, American Association of State and Highway Transportation Officials, 2015.
- 420 [23] K.C. Hover, J. Bickley, R.D. Hooton, Phase II Report of Preparation of a Performance-Based
- 421 Specification for Cast-in-Place Concrete, Guide to Specifying Concrete Performance, NRMCA, March

422 (2008) 14-18.

- 423 [24] A.C.C. M-18, Standard Specification for Portland Cement, ASTM International, West Conshohocken,
- 424 PA, 2018, <u>www.astm.org</u>, (2018).
- 425 [25] A.C. C33M-18, Standard Specification for Concrete Aggregates, ASTM International, West
 426 Conshohocken, PA, www.astm.org (2018).
- 427 [26] M.T. Ley, D. Welchel, J. Peery, S. Khatibmasjedi, J. LeFlore, Determining the air-void distribution in
- 428 fresh concrete with the Sequential Air Method, Construction and Building Materials 150 (2017) 723-737.
- 429 [27] CCRL, Cement & Concrete Reference Laboratory, <u>www.ccrl.us</u>, West Conshohocken, PA,, (2018).
- 430 [28] A. International, ASTM C231 / C231M 17a, Standard Test Method for Air Content of Freshly Mixed
- 431 Concrete by the Pressure Method, West Conshohocken, PA, 2017.

- 432 [29] C.C.-a. ASTM, Standard Test Method for Density (Unit Weight), Yield and Air Content (Gravimetric)
- 433 of Concrete. ASTM Int (2017).
- 434 [30] A. International, ASTM C172 / C172M-17, Standard Practice for Sampling Freshly Mixed Concrete,
- 435 West Conshohocken, PA, 2017.
- 436 [31] A.C. C31M-18b, Standard Practice for Making and Curing Concrete Test Specimens in the Field,
- 437 ASTM International, West Conshohocken, PA, <u>www.astm.org</u>, (2018).
- 438 [32] ODOT, Oklahoma Department of Transportation, Standard Specifications, Oklahoma City, OK,
- 439 (2009).
- 440 [33] T. AASHTO, Standard method of test for surface resistivity indication of concrete's ability to resist
- 441 chloride ion penetration, American Association of State Highway and Transportation Officials (2011).
- 442 [34] A. International, ASTM C1202 18, Standard Test Method for Electrical Indication of Concrete's
- 443 Ability to Resist Chloride Ion Penetration, West Conshohocken, PA, 2017.
- 444