INTRODUCTION TO CONCRETE OVERLAYS

Who is supporting this webinar?

Introductions

- Gordon Smith, glsmith@iastate.edu
- Dr. Peter Taylor, ptaylor@iastate.edu
- Dan King, dking@concretestate.org

- Questions are encouraged since we are practicing physical distancing!

The Concrete Overlay Webinar Series

I. Introduction to Concrete Overlays
II. Overview of Concrete Overlays / Existing Pavement Evaluation and Overlay Selection
III. Concrete Overlay Design
IV. Plans, Maintenance of Traffic and Construction
V. Maintenance of Concrete Overlays and Resources Available to you.

And throughout - examples of how concrete overlays are performing around the country

THE CP TECH CENTER

The National Concrete Pavement Technology Center (CP Tech Center) at Iowa State University is a national hub for concrete pavement research and TECHNOLOGY TRANSFER.

MISSION:
- Help street and road agencies find answers to their concrete pavement-related questions.
- Identify critical concrete pavement research needs and discover sustainable solutions.
- Help agencies, industry, and businesses incorporate advanced, sustainable solutions and new technologies into their day-to-day practices.
Today’s Challenge: Fix now or pay more later

- Our roads are getting old. We can:
 - Toss them out and start again
 - A long term solution
 - Creates a disposal headache
 - Takes energy to move them out of the way
 - Takes time = traffic delays

What’s This All About and Why Bother?

• Our roads are getting old. We can:
 - Patch them – buy a few years
 - Limited materials usage, energy and traffic impact
 - Short term solution
 - Unreliable
 - Smoothness is poor

Why Bother?

• Another tool to consider

System of Concrete Overlays on Asphalt or Concrete

- Banded Overlay Family
 - Old pavement is part of the structure
 - Existing pavement has to be in good/fair condition
 - Existing surface must be clean, rough and hard

- Unbanded Overlay Family
 - Old pavement is base
 - Existing pavement can be in poor condition
 - Asphalt or geotextile separation layer required

- Thinner
- Thicker
Bonded and Unbonded Concrete Overlays

- **Unbonded**
 - Must not bond to concrete
 - Some bonding to asphalt is OK
- **Bonded**
 - Must bond to concrete
 - Existing asphalt must be
 - Thick enough
 - Fair condition

Expected Service Life

- 2 to 6 in. thick — 15 to 25 years
- > 6 in. thick — >20 years

Assuming:
- Sound structural design
- Good construction practices

How, in simple terms?

- Evaluate the pavement in place
- Design the overlay
- If needed — grind & repair damage
- Prepare interface
- Pave
- Cure and cut joints

Thickness Design

- ME Design includes option for overlays on asphalt based on BCOA method (Vandenbossche@Pitt)
- PavementDesigner.org
- AASHTO 93
- OptiPave

Manholes, Inlets and Other In-Pavement Structures

- Telescoping rings
- Boxout for slip form paving
Treatment of Existing Curb

- Leave the existing curb in place
- Remove the curb
- Remove the curb and gutter
- Overlay the curb

Concrete Overlay Details

Pre-overlay Repair & Surface Preparation

- Full-depth repair of deteriorated joints
- Partial-depth repair of severely spalled areas
- Load transfer restoration or full-depth repair of working cracks
- Surface preparation
 - Mechanical preparation
 - Clean the surface

Separation Layer

Options for a Separation Layer

- 1" asphalt
 - A stress relief layer
 - Can help prevent keying of the overlay in faulted concrete pavements
 - Stripping of the asphalt binder can occur due to poor drainage and heavy truck traffic.
The Mixture

- Conventional requirements:
 - w/cm
 - Air
 - SCM dose
 - Combined aggregate gradation
 - Paste content

Joints

- Panel sizes depend on type and thickness of overlay
 - Bonded:
 - Smaller panels
 - Bonded on concrete: match existing
 - Cut full depth
 - Unbonded:
 - Thinner overlay = smaller panels
 - Saw depth: T/3

Dowel Basket Anchorage

- If dowels are needed then fasteners are required to prevent tipping

Constructing Overlays Under Traffic

- Safety
- Traffic Flow
- Work Zone Space
- Impact to shoulder

Two Lane Paving With Detour

- Faster
- Safer
- Traffic control is simpler
- More effort needed on public relations

Stringless Paving

- GPS and Total station
- Increases clearances
- Improved smoothness
Curing

• Not Optional

Research: A Joint-Free Test Section

• Unbonded concrete overlay in Worth County, IA
• Typical Section:
 • 6 in with 12 x 12 ft panels
 • Geotextile interlayer
 • 4 lb/cy structural synthetic fibers
• 600 ft test section:
 • 7.5 lb/cy structural synthetic fibers
 • Increased cementitious content from 570 lbs to 640 lbs for workability
 • No transverse sawed joints – pavement allowed to crack on its own

Joint-Free Test Section

• Initial crack pattern:
 • 7 transverse cracks in 600 ft after 11 days (6 after 72 hours)

Internal Curing and Warping

• Two overlays built in 2018 in IA
• Both with ¼ mile IC test sections
• Both showing reduced movements with changing weather

Do they work?

• ACPA.org
 ➢ Resources: Project Explorers: Concrete Overlays

Nationwide Concrete Overlay Usage

Data compiled by ACPA and/or various paving associations and other sources, including Bid Express, Oman Systems and DOT websites.
Concrete Overlay Experience Around the Country

- Interstate 70 near Grand Junction, Colorado
- A Rural Road in Mitchell County, Iowa
- Executive Airport in Charleston, S.C.

Iowa's History of Concrete Overlays
- Over 2,000 centerline miles of concrete overlays have been constructed in Iowa since the late 1970s.
- Over half constructed since 2006
- Primarily on the rural county highway system
Iowa’s History of Concrete Overlays

- Early experimentation
 - Bonded concrete overlays of concrete
 - Many BCOC projects were constructed over the years, but have fallen out of favor since the 1980s and 1990s

- “Whitetopping” projects emerge in the 1970s
 - Concrete over asphalt
 - By late 1970s and 1980s, they begin to be constructed regularly on county highways

- Prevailing early whitetopping designs: 6 inch PCC over HMA
 - The two layers will tend to bond together, but the bond was not considered in design or construction

- 1980s: Unbonded concrete overlays of concrete (UBCOC)
 - Again, predominantly on county highways
 - HMA interlayer became the standard
 - 2000s: geotextile interlayer is introduced

- 1990s: Experiments begin with “ultra-thin whitetopping”
 - Thin PCC overlay (3-6 inches)
 - Designed to bond to underlying HMA for structural support (bond is critical to the design)
 - Shorter joint spacings help reduce stresses, slab curling

Construction today:

- Many Iowa counties continue to build UBCOC projects and 6+ inch PCC overlays of asphalt (BCOA/UBCOA) with conventional joint spacing
- In some Iowa cities and counties (and with Iowa DOT), thinner BCOA designs have become popular
Performance History of Iowa’s Concrete Overlays

- Concrete overlays have been used successfully in Iowa for decades
- Despite this history, unanswered questions:
 - What kind of service life can we expect from a new PCC overlay?
 - From our existing overlays?
- 2017 CP Tech Center performance review:

Performance History of Iowa’s Concrete Overlays

- Performance data obtained through the Iowa Pavement Management Program (IPMP)
- Automated pavement condition data collected for local agencies
- Performance characterized by PCI (Pavement Condition Index)
 - IRI (smoothness)
 - Transverse Cracking
 - Joint Spalling
 - D-Cracking
 - (Faulting considered separately)

Performance History of Iowa’s Concrete Overlays

- Results (PCI):
 - All overlay types together

Performance History of Iowa’s Concrete Overlays

- Results (IRI):
 - All overlay types together

Performance History of Iowa’s Concrete Overlays

- Key findings and trends:
 - Overall performance of Iowa’s overlays has been excellent
 - Good performance from each of BCOA, UBCOA & UBCOC
 - Overlays of asphalt performed slightly better than UBCOC
 - BCOC: less successful overall, but performed well in context of design life expectations

Performance History of Iowa’s Concrete Overlays

- Key findings and trends:
 - Thickness
 - In general, thicker overlays have performed better for all overlay types (e.g. for BCOA, 6 in. > 5 in. > 4 in.)
 - Transverse joint spacing
 - Good early performance from BCOA short slab designs
 - Older designs with conventional joint spacing performed well over longer periods of time
 - Traffic – inconclusive
 - Most of these projects are low volume, <1,000 vpd
Performance History of Iowa’s Concrete Overlays

- Lessons learned from Iowa performance history:
 - Based on performance history to date, we can design concrete overlays to last 30+ years
 - Concrete overlays are very well-suited to county highways
 - Good success to date on other types of highways as well

Pottawattamie County, IA, Constructed 1993

Performance History of Iowa’s Concrete Overlays

- With proper materials, construction and design, there is still plenty of room to improve performance!

12 ft Joint Spacing, less than 20 years old

Resources

https://cptechcenter.org/concrete-overlays/

QUESTIONS?