

Introductions

- Peter Taylor, ptaylor@iastate.edu
- Gary Fick, Gary@TheTranstecGroup.com
- Brent Burwell, brentburwell@sbcglobal.net
- Questions are encouraged since we are practicing physical distancing!

The Concrete Overlay Webinar Series

- I. Introduction to Concrete Overlays
- II. Overview of Concrete Overlays / Existing Pavement Evaluation and Overlay Selection
- III. Concrete Overlay Design
- IV. Plans, Maintenance of Traffic and Construction
- V. Maintenance of Concrete Overlays and Resources Available to you.

And throughout - examples of how concrete overlays are performing around the country

Today's Learning Objectives

Upon completion of this webinar, attendees will be able to:

- Identify typical vertical constraints that require design solutions for mitigation.
- Consideration of balancing maintenance of traffic and its impact on construction cost and schedule.
- Understanding of approaches for reducing the width of the construction zone required for concrete overlays.
- Identification of key inspection items related to concrete paving.

CONCRETE OVERLAY PLANS, MAINTENANCE OF TRAFFIC (MOT) AND CONSTRUCTION

IOWA STATE UNIVERSITY

National Concrete Pavement Technology Center

Plan Development for Concrete Overlays

- For agencies that are inexperienced with the design of concrete overlays, the approach should be similar to that of designing an asphalt overlay
- The location, geometrics and maintenance of traffic requirements should dictate the level of design detail that is required in the plans

Learning Objectives

- Identify typical vertical constraints that require design solutions for mitigation.
- Consideration of balancing maintenance of traffic and its impact on construction cost and schedule.
- Understanding of approaches for reducing the width of the construction zone required for concrete overlays.
- Identification of key inspection items related to concrete paving.

Development of Concrete Overlay Construction Documents

- Contents
 - Developing a Concrete Overlay Project
 - Sample Construction Drawings
 - Guide Specification
 - Costs
 - · Design Lessons Learned

Development of Concrete Overlay
Construction Documents

STANDARD DEARWOODS

GUIDE SPECIFICATIONS

COSTS

LESSONS LEARNED

COST

https://intrans.iastate.edu/app/uploads/2018/09/ overlay construction doc dev guide w cvr.pdf

Identify and Quantify Constraints

- Vertical and horizontal constraints need to be identified during the pavement evaluation
 - Existing structures
 - Overhead clearances overpasses, signs and utilities
 - Barrier rails
 - Existing cross-slope variability and new crossslope requirements
 - Drainage structures
 - Existing foreslopes
 - Intersections, driveways and field entrances

Traffic Management- Concrete Overlays

Traffic management for concrete overlay projects is no more challenging than for any other paving project, particularly under traffic, as long as straightforward practices are followed:

Work Zone Cost Effectiveness

- Traffic strategies can significantly affect project costs
- Traffic control costs and construction costs should be balanced against the impact to the public
- Many urban intersections have been overlaid with concrete utilizing only weekend work hours
- Agency sets the criteria regarding staging, contractor proposes staging that meets criteria

Paving

- Maintenance of traffic
 - Depends on concrete overlay thickness
 - If edge drop-off criteria is exceeded, then MOT is just like full depth PCC reconstruction
 - Otherwise, similar to MOT for asphalt projects
 - Options include:
 - Construction adjacent to traffic (lane at a time)
 - Positive separation or cones
 - Pilot car operation for two lane roadways
 - · Crossovers and construct full width
 - Staged intersections or full closure with accelerated opening (48 to 72 hr)
 - · All concrete overlays are accelerated construction!

Concrete Overlays Accelerated Construction

- Eliminates exposing subgrade to the weather
- Production is typically (or should be) limited by the capacity to saw joints in a timely manner
- Lane rental and A+B bidding with incentives can be used to motivate accelerated opening

 Normal concrete mixtures can and should be used (Maturity is an answer for opening!)

Concrete Overlay Construction and Inspection

IOWA STATE UNIVERSITY
Institute for Transportation

National Concrete Pavement Technology Center

Pre-Paving

- Milling the existing pavement
 - Remove distortions of 2" or more
 - Reduce high spots to insure minimum overlay thickness
 - Match adjacent lanes
 - Enhance bond
 - Minimize vertical grade changes
 - Restore profile
- Bonded on asphalt or composite must maintain a minimum of 3" sound asphalt after milling

Pre-Paving

- Stringline
- Stringless 3D models for existing/milled surface and concrete overlay
- Profiles optimized to balance
 - Thickness
 - Volume
 - Smoothness

Placing and Spreading Concrete

- Wet the existing surface no standing water
- Distribute concrete evenly
- Avoid segregation => effects permeability, strength and shrinkage

Spreading Concrete

- Continuous supply of concrete to the paver
- Consistent head => smoothness

Spreading Concrete

- Maintain a consistent head
- too much?
- too little?

Key Inspection Items

- Existing pavement properly wetted
- Look for segregation and/or improperly mixed concrete
- Note times/locations when concrete head is at the extremes

Slipform Paver Functions

- Consolidation
- Shaping
- Surface finish
- Pavement smoothness

Consolidation

- Match vibrator frequency to workability and paver speed
- Use of a vibrator monitor

Over-Vibration

- Vibrator Trails
- Segregation

Shaping/Extrusion

- Extrusion pan trueness and cross-slope/crown
- Adjust overbuild to form neat edges

Maintain a consistent speed Slow down or stop?

Hand Finishing

Hand Finishing

- Identify bumps and dips – overlap straightedge by 1/2
- Correct bumps and dips
- Fill surface voids
- Avoid over-finishing

Visually inspect the pavement edge and surface for proper consolidation Some voids are preferable to slurry

Appropriate Actions

- Adjust vibrator frequency
- Carefully adjust paver speed
- Refine mixture proportions
- Stop paving if the edge keeps falling

Texturing • Micro texture - drag • Macro texture - tining

Curing

- Before surface evaporation occurs
- Complete coverage

Appropriate Actions

- Keep rake tines clean and straight
- Don't delay curing operations waiting for texture to be perfect
- Adjust curing operations for dry and/or windy weather conditions
- Clean/adjust nozzles for uniform coverage

Special Sawing Facts for Concrete Overlays

- Quantity of saw cuts is increased for thinner overlays
- · Longitudinal cuts are as critical as transverse
- · Increased base friction
- · Base movement issues
- Base temperature control
- Mix temperature control set times

Sawing

- Specify the saw cut depth
- Require adequate number of saws and blades
- Production rates should consider sawing requirements?
 - Example 2,500 CY per day
 - 10" thick x 24' wide with 12'x15' slabs = 8,746 If of sawcut
 - 6" thick x 24' wide with 6'x6' slabs = 39,378 If of sawcut

Key Inspection Items

- Specified sawing depth and width
- Appropriate saw blades
- Ample saw blades on-hand

Appropriate Actions

- Adjust mix to control set time
- Change saw timing to match weather conditions

Examples from Oklahoma

Simplified Plan Sheets for Concrete Overlays

US 59 Sequoyah Co

HMA Section < One Year Old Needed Quick Fix Designed Field Division Plan Set 7 Sheets 16 Pay Items

US 69 Pittsburg Co

Designed by Field Division
Simplified Plan Sheets
Inside Lane 4"
Outside Lane 6"
Widened Outside Lane to 14'
Est 25 million ESAL's so far
Constructed 2001

