Concrete Pavement Management and Preservation

Larry Scofield, IGGA/ACPA

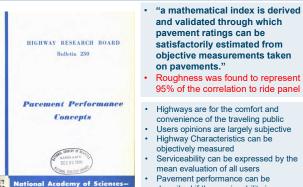
Presentation Outline

- Defining Pavement Performance
- Beginning of Pavement Management
- Concrete Pavements Outlast the Generation That Builds Them
- Portrayal of Pavement Performance
- So What is Different Today
- ACPA Survey of State PMS Practices (Sept 2016)
- FHWA P2 ETG Survey of PMS Practices (March 2017)
- Data Rich Environment

Concrete Preservation Activities

- Ö Diamond Grinding or Diamond Grooving
- Partial Depth or Full Depth Patching
- bowel Bar Retrofit
- X Joint Sealing or Resealing
- Slab Jacking/Stabilization
- Slab Replacement
- Longitudinal Crack Stitching
- A Buried Treasure

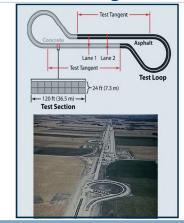
Defining Pavement Performance (AASHO Road Test)



Pavement Performance: Serviceability Concept

William N. Carev

Paul Irick

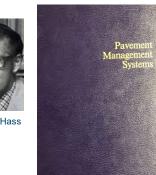



National Research Council

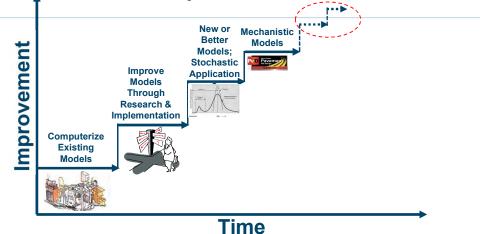
and validated through which pavement ratings can be satisfactorily estimated from objective measurements taken on pavements."

- Roughness was found to represent 95% of the correlation to ride panel
- Highways are for the comfort and convenience of the traveling public Users opinions are largely subjective
- Highway Characteristics can be objectively measured
- Serviceability can be expressed by the mean evaluation of all users Pavement performance can be described if the serviceability is monitored from cradle to a given point in time

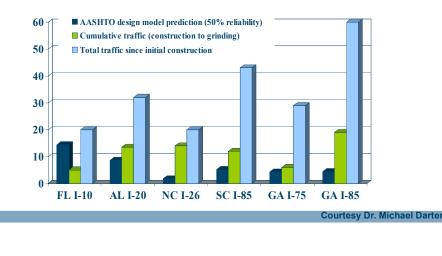
Consumer Acceptability Vs Present Serviceability Rating AASHO Road Test (1958-60)

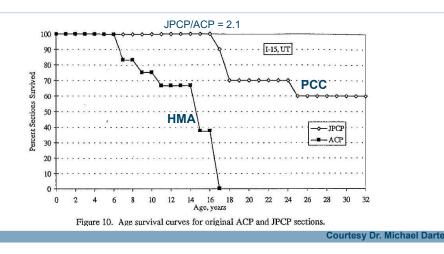


Beginning of Pavement Management



Dr Ralph Hass Dr. Ron Hudson


- Original Edition 1978
- Reprinted in 1982
- Pavement Asset Management 2015
- PMS Concepts Began in 1960s
- At Time of Reprint Publication (1982), only One State Included Concrete in their PMS. PMS was generally developed around AC pavements.
- First State PMS was WSDOT in 1974
- First National PMS Conference was 1980; Only five states; AZ, CA, ID, UT, and WA had network level PMS used for project selection



Design Life Vs Actual Performance

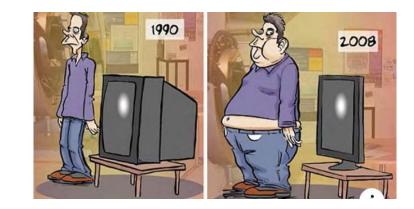
Utah I-15 Survival Analysis Results

A Different Way to Think About Concrete **Portrayal of Pavement Performance** Performance Base Type: PATB/DGAB Preservation Restoration Resurfacing Original Preserved Structural / Functional **Pavement** Pavement What About Early Repair of Construction Defects? 0.5 Reconstruction 0.0 2 4 6 8 10 Pavement Age (Years) 12 Condition CPP Manage Individual Distresses/performance um Acceptable Rating factors Age or Traffic **Terminal Condition Additional Life** Age or Traffic

Things to Remember About PMS and Concrete Pavement

PMS

- Pavement Management is a Lagging System--- That is, damage to the pavement must occur prior to any ability to prevent or mitigate its occurrence
- Typically PMS Do Not Respond to Concrete Pavement Performance Until it Reaches A Specified Intervention Level
- Individual Performance Factors are Not Managed Separately- Composite Index
- Preservation is Often Not Included



Concrete Pavement

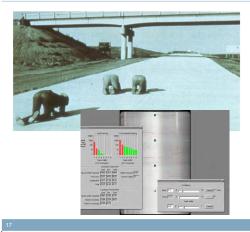

- Cracking in Concrete May Not Become
 Visible for Up to 2
 Years
- Curl and Warp and Joint Opening Widths can Change After Construction
- Construction Defects May not Show Up for Many Years
- Treatment Life Versus
 Pavement Life

Photo Courtesy Amarjeet Benipal -- Caltrans

So What is Different Today

Then and Now Distress Identification

TxDOT 3D Automated Measurement System

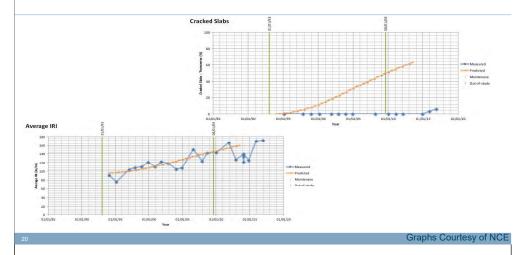
Paveme

Then and Now Distress Identification

Then

- Discrete Test Locations (Sampling)
- · Manual Data Collection & Analysis
- Limited Computing Capacity
- Field Reviews Only
- · Guestimates of Climate Data
- Little to No Ability to Evaluate Products or Test Sections
- Linear MP Location Data
- 2D Profile Measurements
- Limited to No Maintenance Data
- Questionable Traffic Data

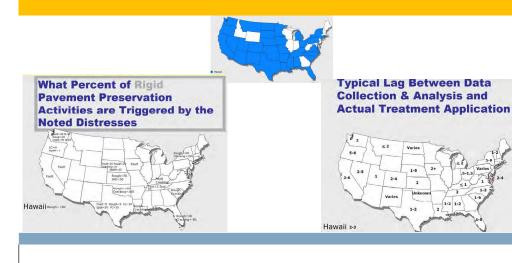
Now

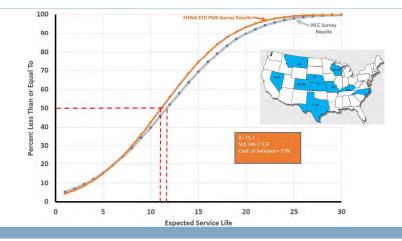

- 100% Roadway Coverage
- Automated Data Collection & Analysis
- Almost Unlimited Computing Capacity
- In-Office Visual Review of Roadways
- Accurate Environmental Data
- · Ability for PMS to Test Sections and Products
- GPS Coordinates
- 3D Profile Measurements
- Exact Maintenance Locations and Costs
- Better Traffic Data?

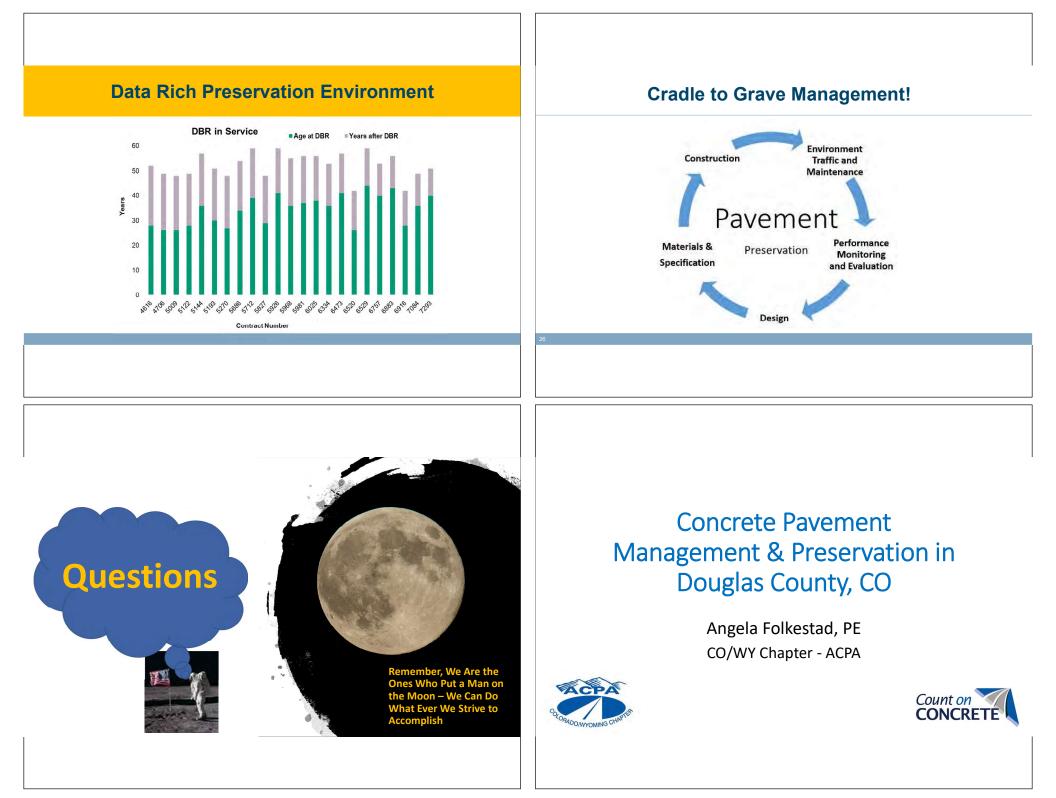
So What is Different Today

- We Can Now Predict Distress Over Time: Transverse Cracking, Faulting, Spalling, and Roughness
- We Can Compare Predicted to Observed Distresses and Begin Addressing Design, Materials, Specification, Construction, Maintenance Improvements
- Construction Properties Used to Do Cradle to Grave PMS

Comparing Observed to Predicted

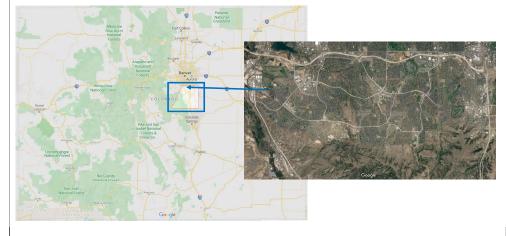

ACPA Survey of State PMS Practices (Sept 2016)


So What did ACPA Learn From Survey


- Lots of Ways of Doing PMS (Triggers)
- □About 60% of States Appear to be Managing Concrete Preservation with Triggers (i.e. 40% not Managing)
- □No Consistent Methodology
- Most States Use Composite Statistics

FHWA Pavement Preservation ETG (March 2017)

Partial Depth Repair Survival Analysis



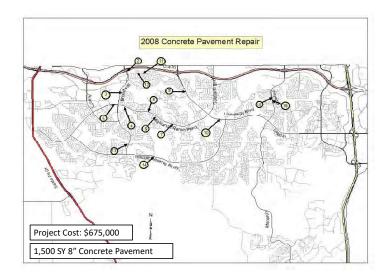
Special Thanks to...

Where is Douglas County?

Douglas County Overview

- 2019 population estimate: 358,000
- 91% lives in urban areas which is 17.5% of the County land area
- Estimated populations of incorporated towns and cities:
 - Castle Pines: 11,340
 - Castle Rock: 69,000
 - Larkspur: 195
 - Lone Tree: 15,150
 - Parker: 57,405
- Estimated population of Unincorporated Douglas County: 202,400 (includes Highlands Ranch)

Douglas County Overview

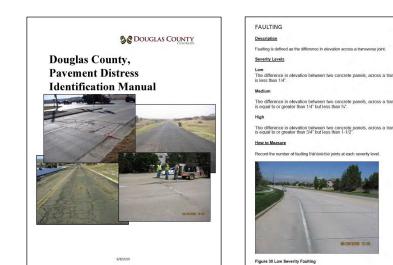

Public Works Engineering manages 834 centerline miles of paved roads totaling 2,410 lane miles

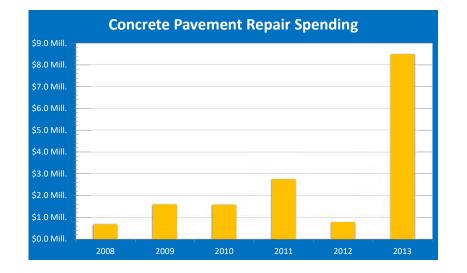
- 2,040 lane miles of asphalt
- 370 lane miles of concrete

Prior to 2009 – Contracted Maintenance

- County was in a fast-paced growth
- Major infrastructure construction
- Limited funding
- Limited staff
- Slab replacement (worst first approach)

1st Concrete Grinding Project was in 2008 SB Broadway: Salford to Gateway



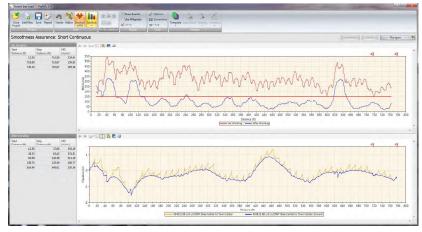

05/16/2008 16:02

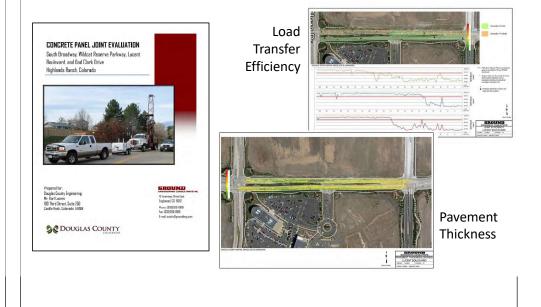
2009 – Changes to Contracted Maintenance Program

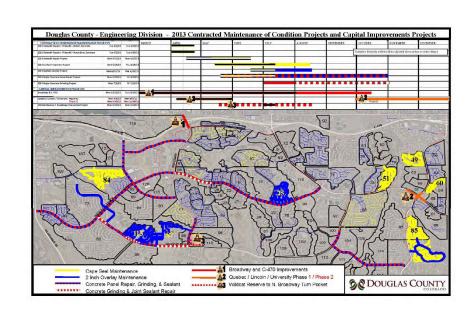
- Reduced Infrastructure Budget Increased budget for Contracted Maintenance Projects
- Increased staff size
- Started to Developed a Pavement Distress Identification Manual
- Started evaluating existing pavements in-house
- Used a pavement management program to maximize funding efficiency for the greatest benefit to the network
- Change from individual area repairs to larger segments based on a Pavement Condition Index

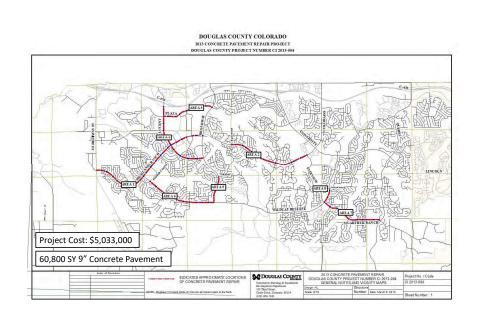
2013 Concrete Pavement Repair Program

- Determined that faulting and settlement of the concrete pavement needed to be evaluated in more detail
- Conferences with ACPA & IGGA to determine what options were available to correct deficiencies
- On site meeting with a CDOT representative who specialized in concrete pavement repair
- Determine how concrete pavement smoothness quantified
- What is a reasonable IRI threshold?

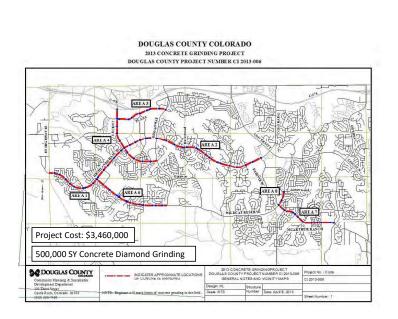

Summary from Discussions


- Collect IRI data per lane and per segment for all concrete pavement
- Evaluate load transfer efficiency of the pavement
- Determine pavement thickness
- Perform subsurface evaluations


IRI Results for Concrete Pavement



ProVal to Predict Grinding Improvements



Diamond Grinding Specs

Focused on Improvement of Ride

- HRI ≤ 80 & max. grinding depth of 0.5" When initial HRI ≤ 150
- HRI ≤ 150 & max. grinding depth of 0.5"
 50% improvement over initial HRI if ≤ 150 wasn't achievable

Pavement Management System Rebuild 2018-2019

- Assets redefined
 - "paving sector" for local streets
 - "supersegment" for arterial streets
- Automated data collection performed, shifting from manual collection of data
- Indexes and curves redefined based on current data
- Analysis was simplified

Reformatted Inventory Tables

Original Inventory Table

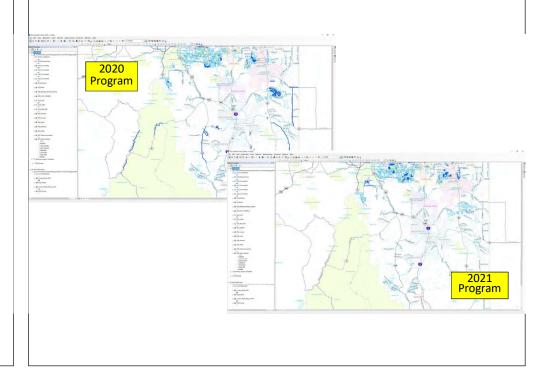
•							_			
ROAD	FROM_DESCRIPTION	FROM	TO_DESCRIPTION	то	Length	ElementID	PCI	PMP_Sector	Sector_From	Sector_TO
CREEKSIDE LN	CREEKSIDE WAY	0	TOWN CENTER DR	539.659	539.659	037380-000000	63	LS007	0	539.659
CREEKSIDE PT		0	CREEKSIDE WAY	261.344	261.344	003365-000000	46	LS007	539.659	801.003
CREEKSIDE WAY	PLAZA DR	0	EDINBURGH LN	580.193	580.193	023150-000000	69	LS007	801.003	1381.196
CREEKSIDE WAY	LOINBURGH LN	580.193	EDINBURGH LN	627.038	46.845	023150-000580	75	LS007	1381.196	1428.041
CREEKSIDE WAY	EDINBURGH LN	627.038	OLD TOM MORRIS CIR	1252.633	625.595	023150-000627	75	LS007	1428.041	2053.636
CREEKSIDE WAY	OLD TOM MORRIS CIR	1252.633	OLD TOM MORRIS CIR	1300.678	48.045	023150-001253	87	LS007	2053.636	2101.681
CREEKSIDE WAY	OLD TOM MORRIS CIR	1300.678	CREEKSIDE LN	1635.607	334.929	023150-001301	82	LS007	2101.681	2436.61
CREEKSIDE WAY	CREEKSIDE LN	1635.607	CREEKSIDE PT	1906.837	271.23	023150-001636	73	LS007	2436.61	2707.84
CREEKSIDE WAY	CREEKSIDE PT	1906.837	S HUNTERS WAY	2176.047	269.21	023150-001907	83	LS007	2707.84	2977.05
GREENSBOROUGH CIR	GREENSBOROUGH DR	0	GREENSBOROUGH DR	920.883	920.883	026340-000000	-70	LS007	2977.05	3897.933

New Inventory Table

		,								
Road	From	То	SiementiD	Length	121	STREET_NAME	STREET_FROM	STREET_FROM_ADD	STREET_TO	STREET_TO_ADD
LS007	0	539.659	037380-000000	539.659	63	CREEKSIDE LN	CREEKSIDE WAY	0	TOWN CENTER DR	539.659
LS007	539.659	801.003	003365-000000	261.344	46	CREEKSIDE PT		0	CREEKSIDE WAY	261.344
LS007	801.003	1381.196	023150-000000	580.193	69	CREEKSIDE WAY	PLAZA DR	0	EDINBURGH LN	580.193
LS007	1381.196	1428.041	023150-000580	46.845	75	CREEKSIDE WAY	EDINBURGH LN	580.193	EDINBURGH LN	627.038
LS007	1428.041	2053.636	023150-000627	625.595	75	CREEKSIDE WAY	EDINBURGH LN	627.038	OLD TOM MORRIS CIR	1252.633
LS007	2053.636	2101.681	023150-001253	48.045	87	CREEKSIDE WAY	OLD TOM MORRIS CIR	1252.633	OLD TOM MORRIS CIR	1300.678
LS007	2101.681	2436.61	023150-001301	334.929	82	CREEKSIDE WAY	OLD TOM MORRIS CIR	1300.678	CREEKSIDE LN	1635.607
LS007	2436.61	2707.84	023150-001636	271.23	73	CREEKSIDE WAY	CREEKSIDE LN	1635.607	CREEKSIDE PT	1906.837
LS007	2707.84	2977.05	023150-001907	269.21	83	CREEKSIDE WAY	CREEKSIDE PT	1906.837	S HUNTERS WAY	2176.047
LS007	2977.05	3897.933	026340-000000	920.883	78	GREENSBOROUGH CIR	GREENSBOROUGH DR	0	GREENSBOROUGH DR	920.883

Automated Data Collection

- **Distress**: Collected cracking, divided slabs, patches, scaling & joint spalling data in 2017
- Ride Quality: Collected MRI data in 2017 & 2018



Simplified Analysis

- Four Concrete Treatments
 - Panel Replacement
 - Grinding
 - Joint Resealing
 - Reconstruction
- All costs per square yard
- Modified Triggers
 - Panel Replacement & Reconstruction Triggered by % of Damaged Slabs
 - Grinding Triggered by Panel Replacement in Prior Year
 - Sealing Triggered by Panel Replacement in Prior Year

Concrete Rehabilitation Strategies

Concrete panel replacement is used to replace damaged sections on concrete roadways – precedes concrete grinding – includes dowel bars.

Year	Total Area (SY)	Cost	Cost/SY
2019	7,420	\$ 1,181,775.02	\$ 159.27
2018	22,460	\$ 2,547,339.86	\$ 113.42
2016	20,387	\$ 2,460,202.00	\$ 120.68
2016	48,786	\$ 4,375,225.70	\$ 89.68

Concrete Rehabilitation Strategies

Diamond Grinding is performed on roads in good condition, but with poor ride, to restore ride quality - follows concrete panel repairs and is generally followed by joint sealing.

Year	Total Area (SY)	Total Project Cost	Grinding Cost/SY
2015	389,245	\$ 2,124,049.50	\$ 3.50
2014	285,961	\$ 1,322,462.35	\$ 3.53
2013	443,342	\$ 1,953,151.46	\$ 3.63

Concrete Rehabilitation Strategies

• Joint Sawing and Resealing is used on roads in good condition and follows diamond grinding.

Year	Total Length (LF)	Cost	Cost/LF
2017	52,731	\$ 115,480.85	\$ 2.19
2016	716,013	\$ 1,453,819.96	\$ 2.03
2015	57,043	\$ 210,233.96	\$ 3.69
2014	600,573	\$ 700,993.32	\$ 1.17
2013	563,744	\$ 687,767.68	\$ 1.22

Concrete Rehabilitation Strategies

Concrete Reconstruction is utilized for complete replacement of a concrete roadway when cracked/damaged slabs > 50%.

Year	Project	Total Area (SY)	Tota	al Project Cost	Concrete Cost/SY
2019	Belford Ave.	12,855	\$	1,727,621	\$ 59.00
2018	Meridian Ph. 1	23,454	\$	3,022,900	\$ 56.51
2017	Oswego	12,634	\$	1,394,746	\$ 55.74
2017	Lansing Circle	4,065	\$	369,589	\$ 64.13

Multi-Year Pavement Preservation Program in Highlands Ranch 2013-2016

Year	Contract Amount	Lane Miles	Cost/Lane Mile
2013	\$ 8,495,392	58	\$ 146,472
2014	\$ 7,199,111	48	\$ 149,981
2015	\$ 7,081,332	29	\$ 244,184
2016	\$ 3,747,829	20	\$ 187,391
Total	\$ 26,523,664	155	\$ 171,120

Thank you!

Angela Folkestad, P.E. <u>afolkestad@pavement.com</u>

