Construction Considerations in Concrete Pavement Recycling

Gary Fick Trinity Construction Management Services

U.S. Department of Transportation

Federal Highway Administration

Institute for Transportation

Construction Considerations in Concrete Pavement Recycling

- Webinar Outline
 - √ RCA basics
 - ✓ Equipment
 - ✓ Materials
 - ✓ Process
 - √ Constraints
 - ✓ Design considerations
 - ✓ Example project scenarios

Recycling Basics

- Commercial recycle yard
- Mobilization of a crusher to a project
 - ✓ Haul materials to a crusher site
 - ✓ On-grade processing

11

Commercial Recycle Yard

- Mixture of source materials
 - √ Concrete
 - ✓ Masonry
 - ✓ Asphalt
- RCA specifications (gradation and deleterious materials) impact the potential use of this type of material

On-Site Crusher

- Crushing, screening and stockpiling at a central location
 - ✓ Interchange ramps within the R.O.W. or similar areas are ideal
- Broken concrete is hauled to the crusher site
- RCA is hauled back to the grade

13

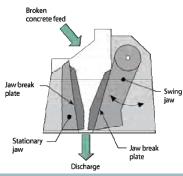
Typical RCA Site

On-Grade Crusher

- Mobile crusher processes the broken concrete on the grade
- No haul-off or haul back of RCA

15

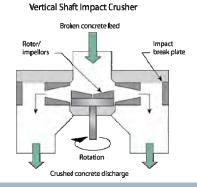
Typical On-Grade Crushing

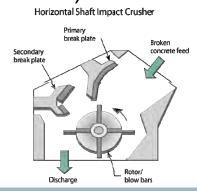


RCA Equipment

- Jaw crusher can be used as a primary crusher
 - ✓ Allows feeding of larger sized pieces of broken concrete (24")

✓ Helps to separate steel from the broken concrete


Jaw Crusher



17

RCA Equipment

- Impact crusher is the most common for RCA applications
- Most steel (dowels, crcp and mesh) should be removed prior to crushing
- Smaller feed size (approx. 12" minus)

- In almost all cases, a screen is used to properly size the material
 - ✓ Allows for increased production by returning oversized material to the crusher
 - ✓ Can be used to split material on a midsized sieve (e.g. 3/8") when specifications require

19

RCA Process

- Equipment used to produce RCA is identical to that used in a quarry producing virgin aggregates
 - √ Similar QC results for gradation

- What about existing sealant?
- What about existing bituminous patch materials?
 - ✓ Unnecessary to remove prior to crushing
 - ➤ Volume of these materials is negligible when compared to the volume of concrete being recycled
 - ✓ ... except when RCA is used as a coarse aggregate for the new concrete pavement

21

RCA Process

Breaking pavement

- Removing Steel
 - ✓ CRCP, dowels and mesh
 - ✓ Tie-bars can be left in the broken concrete
 - √ Steel is usually hauled to a salvage facility

23

RCA Process

Loading and hauling

Crushing and sizing

25

RCA Process

• Hydraulic hammer breaking over-size rubble

Excavator feeding crusher

27

RCA Process

• Crusher

Magnet

29

RCA Process

- Sizing screens
 - ✓ Oversized returns to crusher
 - √ Finished product transferred by conveyor

Oversize return

31

RCA Process

 Stockpiling – use proper techniques to minimize segregation

On-Grade Recycling

- Same equipment
- · No hauling required
 - √ Significant cost savings
 - ✓ Reduced exposure to traffic

33

On-Grade Recycling

- Typically used as granular base
 - ✓ Dense graded or semi-drainable
- Stockpile on the existing shoulder if subgrade manipulation is required

RCA Summary

- A controlled process
 - ✓ Breaking
 - √ Crushing
 - √ Sizing
 - √ Stockpiling
 - ✓ Return to project as quality aggregate for subbase, base, concrete, etc.

35

- Material applications
 - ✓ Unbound granular base
 - ✓ Bound granular base (cement treated)(plant mixed)
 - √ Granular shoulder/backfill
 - ✓ Concrete aggregate
 - ✓ Other

RCA Design/Construction Considerations

- Construction processes for RCA
 - ✓ Shaping and compacting of unbound base
 is the same as for virgin material
 - ✓ However, absorption is higher so even more water will be necessary to attain optimum

37

- Construction processes for RCA
 - ✓ Plant mixed materials are batched just like virgin materials
 - Stockpiles must be kept moist (above SSD) to avoid absorption during the batching process
 - ➤ Specific gravity of RCA is lower than virgin materials, therefore it will take less mass per CY of batched materials as compared to virgin aggregates

RCA Design/Construction Considerations

- Fines in RCA
 - ✓ Approx. 1% to 2% passing the #200 from crushing clean concrete pavement
 - ✓ Additional fines come from excavating underlying soils when loading the broken concrete
 - ✓ Gradation specifications should consider:
 - ➤ Underlying material subgrade vs. treated base
 - ➤ Modify specification as needed (reduce the low end of % passing the #200)

39

RCA Design/Construction Considerations

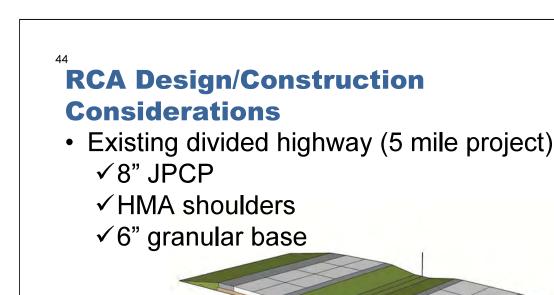
 Fines content comes predominantly from the underlying materials

RCA Design/Construction Considerations

- Residual mortar particles in RCA used as concrete aggregate
 - √#4 and larger particles composed of mortar
 - ✓ Potential for higher absorption
 - >Some projects have shown more distress
 - Further crushing can break these particles down, but leads to inefficiencies (production and by-product)

41

- Should RCA be mandated/specified, or should the market determine the most efficient means of constructing the project?
- · Where should RCA be used?
 - ✓ What are the objectives?
 - **≻**Cost
 - **>** Sustainability
 - **≻**Quality
 - **≻**Other
 - ✓ It depends ...

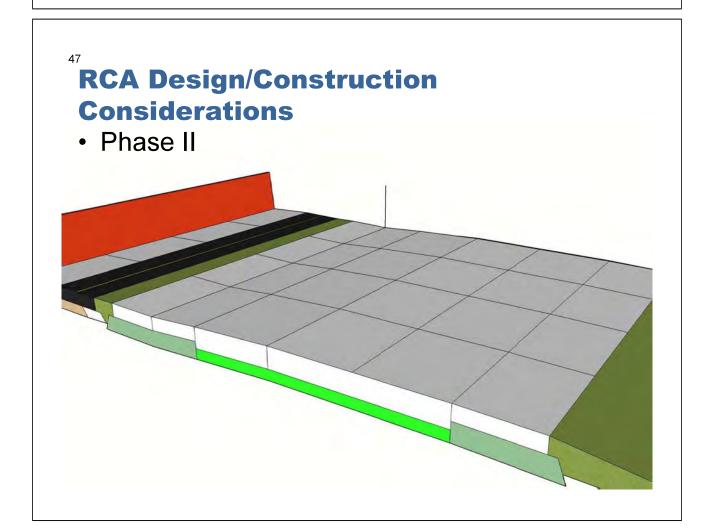

RCA Design/Construction Considerations - Constraints

- RCA use and applications is impacted by:
 - ✓ Availability of space for recycling
 - ✓ Environmental permitting restrictions
 - ✓ Cost of virgin materials

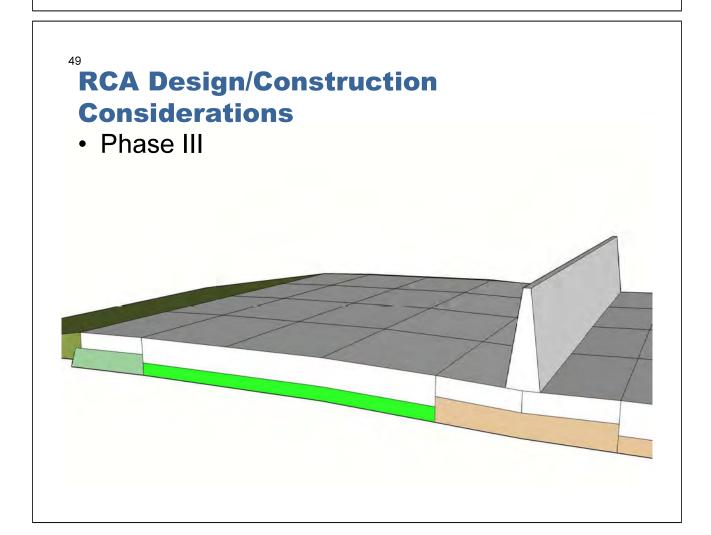
43

RCA Design/Construction Considerations - Constraints

- RCA use and applications is impacted by:
 - √ Volume of RCA available from the project
 - √ Timing of that availability (phasing)
 - ✓ Material specifications


✓ Temporary HMA widening of NB

✓ Place traffic on widened NB


√ 0 CY of RCA available

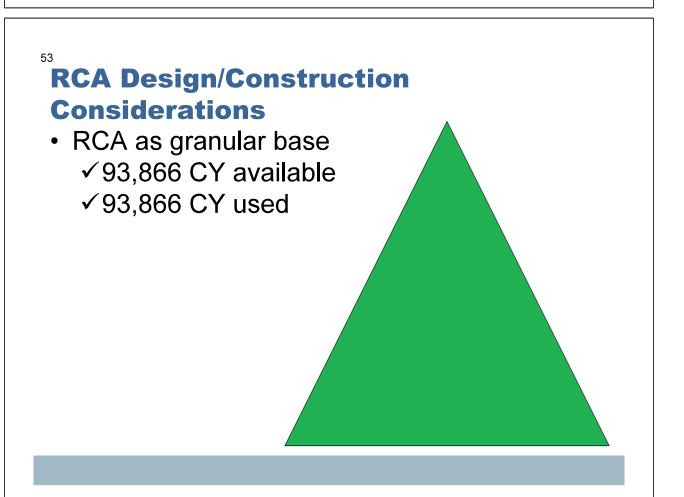
✓ 5,642 CY of virgin granular base required for widening

- Phase II
 - ✓ Reconstruct SB
 - ➤12" JPCP on 6" RCA granular base
 - RCA available = 46,933 CY
 - RCA required = 52,800 CY
 - Virgin required = 5,867 CY (≈ 11%)
 - ▶8" JPCP shoulders on salvaged granular base
 - Salvaged available = 60,133 CY
 - Salvaged required = 69,412 CY
 - Virgin required = 9,279 CY (≈ 13%)

- Phase III
 - ✓ Reconstruct NB
 - >12" JPCP on 6" RCA granular base
 - RCA available = 46,933 CY
 - RCA required = 52,800 CY
 - Virgin required = 5,867 CY (≈ 11%)
 - ▶8" JPCP shoulders on salvaged granular base
 - Salvaged available = 69,207 CY
 - Salvaged required = 28,101 CY
 - Excess salvaged granular base = 41,106 CY

RCA Design/Construction Considerations

- What about other RCA applications for the same hypothetical project?
 - √ 4" cement treated granular base
 - √ 4" cement treated drainable base
 - ✓ Incorporated as coarse aggregate in the JPCP


51

- Specified gradation impacts the amount of RCA recovered
 - ✓ Drainable base specifications have fewer fines than a granular base
 - ✓ Coarse aggregate for concrete has fewer fines than drainable bases

RCA Design/Construction Considerations

 Specified gradation impacts the amount of RCA recovered

Sieve	RCA Granular Base Percent Passing	Drainable Base Percent Passing	Concrete Stone Percent Passing
1 ½"	100	100	100
1"	95-100	95-100	95-100
3/4"	65-85	75-85	
1/2"		55-65	25-60
3∕8"	40-60	40-50	
<mark>#4</mark>	<mark>25-45</mark>	15-25	0-10
#8		0-5	0-5
#10	15-30		
#40	5-15	0-5	
#200	0-10	0-3	0-2

RCA Design/Construction Considerations

- RCA as cement treated drainable base
 - √93,866 CY available
 - √79,786 CY used
 - √ 14,080 CY screened and stockpiled
- Where can this material be incorporated in the project?

55

- RCA as coarse aggregate for concrete
 - ✓93,866 CY available
 - √65,706 CY used
 - √28,160 CY screened and stockpiled
- Where can this material be incorporated in the project?

RCA Design/Construction Considerations

- Back to the hypothetical project
 - ✓ Phase III had approx. 41,000 CY of excess salvaged granular base
 - ➤ Use as granular base under the 12" JPCP?
 - ➤ This leaves ±35,000 CY of RCA that could be used for coarse aggregate in the JPCP
 - >Approx. 20,000 CY needed for the JPCP
 - ➤This leaves ±10,000 CY of excess fines and ± 5,000 CY of excess RCA

57

- Verify that the contractor is complying with:
 - ✓ Environmental regulations (dust and runoff)
 - √ Safety regulations

RCA Design/Construction Considerations (summary)

- There are many options for the use of RCA
 - ✓ Specifications should allow RCA wherever possible
 - ➤ Modify durability requirements (LA Abrasion, sodium sulfate, C 666, etc) to allow RCA
 - ➤ Reduce the spec. for the low end of the material passing the #200
 - ➤ Gradation QC should be performed at the same frequency as for virgin aggregates
- Let the market determine how/where to incorporate RCA cost effectively