Guidelines for Identifying and Controlling Alkali Aggregate Reactions

Larry Sutter Ph.D., P.E., F.ASTM, F.ACI Materials Science & Engineering Michigan Technological University

Michigan Technological University

ASR Distress

1

1

ASR Fundamentals

- Required ingredients <u>All are required</u>
 - Source of alkalis
 - Reactive aggregate
- Water
- Can be mitigated in most cases with SCMs (pozzolans or slag cement) or limiting the alkali loading
- Much research has been done to understand ASR

1

Michigan Technological University

- Determine aggregate reactivity
 - Field History
 - ASTM C1260 (AASHTO T 303)
 - 14-day mortar bar expansion
 - ASTM C1293
 - 1-year concrete prism expansion

Michigan Technological University

Michigan Technological Universit

•

- 14-day mortar bar expansion
- ASTM C1293
 - 1-year concrete prism expansion

Michigan Technological University

Michigan Technological University

•

Class	Consequence of ASR	Acceptability of ASR	Examples [®]
Class SC1	Safety, economic, or environmental consequences small or negligible	Some deterioration from ASR may be tolerated	Non-load-bearing elements inside buildings Concrete elements not exposed to moisture Temporary structures (service life < 5 years)
Class SC2	Some safety, economic, or environmental consequences if major deterioration	Moderate risk of ASR is acceptable	Sidewalks, curbs, and gutters Elements with service life < 40 years
Class SC3	Significant satety, economic, or environmental consequences if minor damage	Minor risk of ASR may be acceptable.	Pavements Foundations elements Retaining walts Culvets Highway barniers Rural, low-volume roads Precast elements in which economic costs a replacement are severe Service life normally 40 sto 74 years
Class SC4	Serious safety, economic, or environmental consequences il minor damage	ASR cannot be tolerated	Major bridges Power plants Dams Nuclear fractilities Water treatment facilities Wate water treatment facilities Tunnels Critical elements that are very difficult to inspact or repair Service ill enormally 275 years

F	rescri	ptive	e Req	luire	ment	S	
• Determi	ne aggre	nate rea	activity (R0 – R3)			
			5				
 Determi 	ne the Le	vel of A	SR Risk	(Level 1	- 6)		
	<i>.</i>		(0.01	C C A			
 Determi 	ne Structi	ure Clas	s (SCT –	- SC4)			
				,			
	ne Structi ne Level o			,			
	ne Level o	of Preve		/ – ZZ)			
		OF Preve TABLE 4 Dete	ention (V	/ — ZZ) of Prevention			
	ne Level of ASR Risk	OF Preve TABLE 4 Dete	ention (V rmining Level	/ — ZZ) of Prevention			
	Level of ASR Risk (Table 2) Risk Level 1	TABLE 4 Dete	ention (V ermining Level Classification of S Class SC2 V	/ — ZZ) of Prevention Structure (Table 3)		
	Level of ASR Risk (Table 2) Risk Level 1 Risk Level 1	TABLE 4 Deter	ention (V ermining Level Classification of S Class SC2	of Prevention Structure (Table 3 Class SC3)		
	Level of ASR Risk (Table 2) Risk Level 1 Risk Level 2 Risk Level 3	Class SC1	ention (V ermining Level Classification of S Class SC2 V	of Prevention Structure (Table 3 Class SC3) Class SC4 V X Y		
	Level of ASR Risk (Table 2) Risk Level 1 Risk Level 1	TABLE 4 Deter	ention (V ermining Level Classification of S Class SC2 V	of Prevention Structure (Table 3 Class SC3)		

- Select Preventative Measures
 - Based on Alkali Loading
 - Based on use of SCMs

	Summary	
•	Key Point: Alkali loading vs. alkali content	
•	Two approaches to prevention	
	Performance	
	Prescriptive	
•	All cases – need to know the aggregate reactivity	
•	Use tests as they were designed – modifications skew results	
•	Preventative measures include avoiding the aggregate but when not practicable, limit the alkali loading, use SCMs, or both	
	 Cannot test for the effect of limiting alkali loading 	
Michigan	Technological University	1

PennDOT: Implementing AASHTO R 80

PENNDOT BUREAU OF PROJECT DELIVERY CONSTRUCTION AND MATERIALS DIVISION

History:

In 1990, cores were taken from I-84.

- The pavement was 12 years old and exhibited cracking and centerline deterioration.
- Earliest discovery of ASR on a Department owned pavement.
- In 1991 Department tested several aggregates Results showed a potential for highly reactive aggregates A testing program was discussed with the aggregate industry Started testing all aggregates in 1992 Tested aggregate using AASHTO T 303

Results:

464 aggregates - 75% had expansion test results over 0.10% linear expansion

Background of situation that prompted the recent change:

Significant ASR deterioration identified in pavement structures

- Districts 4, 6 and 8 (to date)
- Mix designs contained aggregates which were not identified as 'reactive', concrete placed after 1992.
- One Example (AASHTO T-303 expansion values) FA Type A: 0.08% CA #57: 0.01%

Other Districts have reported preventive maintenance; overlays on concrete pavements less than 10 years old where distress likely was attributable to ASR however no forensic investigation was performed prior to repair and reconstruction.

What we did:

Who's been involved in the process - Pro-team

Short Term solution - Standard Special Provision

Long Term solution

- AASHTO R 80
- · Review of the prescriptive approach Basis for future specification developments

Stop Gap Measure - What was considered?

Most of our aggregates are already considered reactive and when used, remediation required. Inability to identify aggregates solely via petrographic examination as 'reactive' or 'non-reactive' Impacts to industry (SCM availability)

Decision – Mitigate all mixtures

Consider all aggregates as reactive until the latest research and remediation strategies can be implemented

- Stop Gap Measure
- Will require more SCM's for use by industry
- Survey conducted of flyash and GGBFS producers
- Industry indicated they have sufficient SCM's available for this interim measure.

This was short term while all aggregate sources were tested.

Aggregate Evaluation

Letter drafted for Type A aggregate sources

Will allow for their choice of four independent labs

- National Ready Mix Concrete Association
- Concrete Testing Laboratory
- American Engineering Technology
- Bowser-Morner

Coordination with independent labs to make sure everyone was testing the same.

Provided guidance on sample sizes, coordination with District and sample custody

Sources advised that failure to perform testing would result in loss of use in cement concrete when further specification revisions made

Aggregate Evaluation(continued)

Conduct concrete prism testing (ASTM C1293) on aggregates.

- Industry and PennDOT to perform testing initially on aggregate sources with T-303 expansions less than
 or equal to 0.15% a first phase of implementation.
- The rest of the sources were tested the following year.

The Department purchased a warm room to begin evaluation of aggregates. We took random samples of aggregates sent to the private labs to conduct in house evaluations also.

The testing went well with the independent labs.

AASHTO R 80:

Protocol for Alkali Aggregate Reactivity

- ASR and ACR
- Selecting preventive measures for ASR reactive aggregates
- Two approaches for ASR prevention:

 <u>Prescriptive approach</u> – Involves a number of factors and decision-based methods. This was used for our specification.

- <u>Performance approach</u> Based on laboratory testing of the aggregates, SCM's or lithium nitrates used to determine the amount required to control deleterious expansion.
- Involves a 2-year duration concrete prism test
- Several sources have opted to do this after getting their initial test results (ASTM C 1293)
- Looking at field performance as possible approach to how an aggregate performs

PennDOT Specification:

All fine and coarse aggregates for use in concrete were tested according to ASTM C 1293

New sources that want to be used in concrete will be tested according to AASHTO T 303 and ASTM C 1293.

- $^\circ\,$ The Department has purchased an additional warm rooms. We have the capacity to test 100 samples.
- The AASHTOT 303 test result will be used for mitigation requirements until the ASTM C 1293 is finished
 Any new source with an expansion that indicates the aggregate is non-reactive (R0) will initially be listed with an expansion of 0.11% (R1) requiring ASR mitigation until ASTM C 1293 is completed.

A source may opt to do mixture qualification to determine the amount of pozzolan, metakaolin or lithium needed to mitigate.

- This is a two year test (ASTM C 1293).
- If the expansion of the concrete prism is less than 0.04% after two years, the preventive measure will be deemed effective with the reactive aggregate(s)

PennDOT Specification:

Prescriptive Approach: The Pro-Team made some minor changes to the tables in R 80

1. Classification of Aggregate Reactivity :

Aggregate Reactivity	Description of Aggregate		
Class	Reactivity	ASTM C-1293 (percent)	AASHTO T-303
			(percent)
R0	Non-reactive	≤ 0.04	≤ 0.10
R1	Moderately reactive	>0.04, ≤ 0.12	>0.10, ≤ 0.30
R2	Highly Reactive	>0.12, ≤0.24	>0.30, ≤0.45
R3	Very Highly Reactive	>0.24	>0.45

	DOT Speci				
EVEL OF ASI	Risk: PennDOT Specifi	cation			
R	0 R1	R2	R	3	
Risk L	evel 1 Risk Level 2	Risk Level 3	Risk L	rvel 4	
	Risk: R 80 Table 2. De	termining the lev	vel of ASR ri Aggregate-Ro		•
					85 R3
Size	Table 2. De		Aggregate-R	eactivity Clas	
Size Non envi Mas	Table 2. De and exposure conditions i-massive ² concrete in a dry ³	R0	Aggregate-Ro R1	eactivity Clas R2	R3
Size Non envi Max envi All	Table 2. Det and exposure conditions n-massive ² concrete in a dry ³ ironment ssive ² elements in a dry ⁵	R0 Level 1	Aggregate-Ro R1 Level 1	R2 Level 2	R3 Level 3

Г

PennDOT Specificati	on:				
3. Determining the Level of Prevention: PennD	OT Specification				
Classification of Structu	re s3				
Risk Level 1 V V Bisk Level 2 V W	V X				
Risk Level 2 V W Risk Level 3 W X Risk Level 4 X Y	X Y Z				
Determining the Level of Prevention: R 80					
Determining the Level of Prevention: R 80	Table 3. I		; the level of S	•	
Determining the Level of Prevention: R 80	Table 3. I Level of ASR Risk (Table 2)		the level of S2	•	
Determining the Level of Prevention: R 80	Level of ASR	Classi	lication of S	fructure (I	able 4)
Determining the Level of Prevention: R 80	Level of ASR Risk (Table 2)	Classi \$1	fication of S	tructure (T S3	able 4) 54
Determining the Level of Prevention: R 80	Level of ASR Risk (Table 2) Risk Level 1	Classi \$1 V	S2 V	tructure (T S3 V	able 4) S4 V
Determining the Level of Prevention: R 80	Level of ASR Risk (Table 2) Risk Level 1 Risk Level 2	Classi S1 V V	S2 V V	tructure (I S3 V W	able 4) 54 V X
Determining the Level of Prevention: R 80	Level of ASR Risk (Table 2) Risk Level 1 Risk Level 2 Risk Level 3	Classi S1 V V V	ication of S S2 V V W	tructure (I S3 V W X	able 4) S4 V X Y

Г

PennDOT	Structure Class	Consequences	Acceptability of ASR	Structure/Asset type	Publication 4 Sections
	S1	Safety and future maintenance consequences	Some deterioration from ASR may be	Temporary structures. Inside	627, 620, 62 624, 627, 62
Specification:		small or negligible	tolerated	buildings. Structures	643, 644, 85
Specification:				or assets that will never be exposed to	874, 930, 93 934, 952, 95
-				never be exposed to water	934, 952, 95 1005
	S2	Some minor safety, future	Moderate risk of	Sidewalks, curbs and	303, 501, 50
Structure classification:		maintenance consequences	ASR acceptable	gutters, inlet tops,	506, 516, 51
		if major deterioration were		concrete barrier and	523, 524, 52 528, 540, 54
Deven DOT Constituention		to occur		parapet. Typically structures with	528, 540, 54 605,607, 61
PennDOT Specification				service lives of less	618, 622, 62
				than 40 years	630, 633, 64
					641, 658, 66
					673, 674, 67
					676, 678, 71
					875, 852, 87
					910, 948, 95 1025, 1001
					1025, 1001
					1040, 1042
					1201, 1210
					1230,
					Miscellaneo
					Precast
					Concrete
	S3	Significant safety and future maintenance or	Minimal risk of ASR acceptable	All other structures. Service lives of 40 to	530, 1001, 1006, 1031
		replacement consequences	ASR acceptable	75 years anticipated.	1006, 1031
		if major deterioration were		75 years unresponde.	1080, 1085
		to occur			1107, MSE
					walls, Concn
					Bridge
					components a
		1			Arch Structu

PennDOT Specification:

5. Minimum Levels of Supplementary Cementitious Materials: PennDOT Specification

Table G:	
----------	--

Type of SCM (1)	Alkali Level of SCM (%Na2Oe) ⁽²⁾ (3)	Level V (4)	Level W	Level X	Level Y	Level Z (5) (11)
Class F or C flyash (6)	≤ 3.0	-	15	20	25	35
Class F or C flyash (6)	>3.0, ≤4.5	-	20	25	30	40
GGBFS	≤ 1.0	-	25	35	50	65
Silica Fume (7) (8) (9) (10)	≤ 1.0	-	1.2 LBA	1.5 x LBA	1.8 x LBA	2.4 x LBA

Example #1 — using draft specification

Step #1:

Using a coarse aggregate with a reactivity of 0.18% and a fine aggregate with a reactivity of 0.03% $^\circ\,$ According to Table C:

Aggregate Reactivity	Description of	1-Year Expansion in	14-d Expansion in
Class	Aggregate Reactivity	ASTM C-1293	AASHTO T-303
		(percent)	(percent)
R0	Non-reactive	≤ 0.04	≤ 0.10
R1	Moderately reactive	>0.04, ≤ 0.12	>0.10, ≤ 0.30
R2	Highly Reactive	>0.12, ≤0.24	>0.30, ≤0.45
R3	Very Highly Reactive	>0.24	>0.45

• The coarse aggregate is a R2 reactivity class.

The fine aggregate is non reactive or R0.

For mix designs use the highest reactivity level of any aggregates used.

Example #1 continued Step #4: Let's say the design is for concrete pavement (RPS – section 506) • The Structure Classification would be S2 • from Table E – Determining the level of prevention Classification of Structure <u>The of of AR Rule of the two of two o</u>

Example #1 continued

Step #5:

• Let's say we are going to pozzolan to mitigate for ASR.

• See Table G for the minimum replacement levels

Type of SCM (1)	Alkali Level of SCM (% Na2Oe) (2)(3)	Level V (4)	Level W	Level X	Level Y	Level Z ⁽⁵⁾⁽¹¹⁾
Class F or C flyash ⁽⁶⁾	≤ 3.0	-	15	20	25	35
Class F or C flyash ⁽⁶⁾	$>3.0, \leq 4.5$	-	20	25	30	40
GGBFS	≤ 1.0		25	35	50	65
Silica Fume (7)(4) (9)(10)	≤ 1.0	-	1.2 LBA	1.5 x LBA	1.8 x LBA	2.4 x LBA

• The mix needs a Level X replacement so the pozzolan replacement levels would be:

20% for a Class F or C flyash with an alkali level of 3.0% or less

25% for a Class F or C flyash with an alkali level greater than 3.0% or less than or equal to 4.5%

35% for GGBFS

1.5 x LBA for Silica Fume but not less than 7%

Example #2 - using draft specification

Step #1:

Using a coarse aggregate with a reactivity of 0.10% and fine aggregate with a reactivity of 0.06%

• According to Table C:

Aggregate Reactivity Class	Description of Aggregate Reactivity	1-Year Expansion in ASTM C-1293 (percent)	14-d Expansion in AASHTO T-303 (percent)
R0	Non-reactive	≤ 0.04	≤ 0.10
Rl	Moderately reactive	>0.04, ≤ 0.12	$>0.10, \le 0.30$
R2	Highly Reactive	>0.12, ≤0.24	>0.30, ≤0.45
R3	Very Highly Reactive	>0.24	>0.45

• Both aggregates are a R1 reactivity class.

Exampl	е	#2	continued
--------	---	----	-----------

Determine Level of prevention. The structure classification needs to be know in order to determine the level of prevention.

See Table F:

Step #3:

If this mix design was for concrete paving under section 506, then the structure class would be S2.

If this mix design was for LLCP- long life concrete pavement under section 530, then the structure class would be S3.

Example #2 continued

Step #4: Let's say the design is for long life concrete pavement (section 530) • The Structure Classification would be S

• From Table E – Determining the level of prevention

	C	Classification of Structure		
Level of ASR Risk	\$1	S2	S3	
Risk Level 1	V	v	V	
Risk Level 2	v	w	х	
Risk Level 3	W	х	Y	
Risk Level 4	х	Y	Z	

· With a Risk Level of 2 and a S3 classification, this mix needs a prevention level X

Example #2 continued Step #5: · Let's say we are going to use a pozzolan to mitigate for ASR. • See Table G for the minimum replacement levels dkali Leve of SCM (% Na2Oc) (2)(3) Type of SCM [1] Level X Level Y Level Z (5) (11 Level W Class F or C flyash ⁽⁶⁾ Class F or C flyash ⁽⁶⁾ GGBFS ≤ 3.0 15 20 25 35 >3.0, ≤ 4.5 20 25 30 40 ≤ 1.0 25 50 65 Silica Fume ≤ 1.0 1.2 LBA 1.5 x LBA 1.8 x LBA 2.4 x LBA • The mix needs a Level X replacement so the pozzolan replacement levels would be: 20% for a Class F or C flyash with an alkali level of 3.0% or less 25% for a Class F or C flyash with an alkali level greater than 3.0% or less than or equal to 4.5%

- 35% for GGBFS
- 1.5 x LBA for Silica Fume but not less than 7%

ASTM C 1293

Results as of August 2017:

Currently, 36% of our aggregates are reactive compared to 75% prior to starting the ASTM C 1293 testing

Reactivity Level	Number of Aggregates	
RO	240	
R1	99	
R2	33	
R3	2	

Next Steps:

Developed a five year cycle for testing

Currently in the first year of the next cycle of testing

Department and Industry are still evaluating and looking at new test methods that are being developed.

Continue Review of on-going research (mini-concrete prism test, alternate SCM's etc.). Identify additional ASR affected assets and document using AASHTO ASR inventory tool.

Contact Information:

Patricia Baer

- PennDOT Materials and Testing Lab
- Email: patrbaer@pa.gov

Initial Industry Concerns

Aggregate and Concrete Producers of PA

- An Increase in levels of mitigation would bring:
- An Increase in Scaling
- Strength Gain Issues
- Reduction in Aggregate Availability

PennDOT / Industry Proteam

www.pacaweb.org

www.specifyconcrete.org

Pennsylvania geology

We are a Limestone State

PA Results C1293 vs C1260

Three Levels of Mitigation

SCM	Level W	Level X	Level Z
Class F Flyash	15%	25%	35%
Slag Cement	25%	50%	65%

www.pacaweb.org

www.specifyconcrete.org

www.pacaweb.org

Strength Gains / Sidewalk Scaling

www.specifyconcrete.org

Scaling

A great quote:

This is not a finisher problem. This is not a producer problem. This is not a specifier problem.

This is an industry problem!

Reducing Scaling of Concrete Surfaces A STIC Initiative **State Transportation Innovation Council Construction and Materials TAG 1.** Finisher certification: **ACI Flat Work Finisher or** NRMCA exterior concrete finisher 2. A Training Module for Construction Insp. (Concrete QIC working on a sidewalk specification)

www.pacaweb.org

www.specifyconcrete.org

www.pacaweb.org

www.specifyconcrete.org

Finisher certification: ACI Flat Work Finisher or NRMCA exterior concrete finisher Clearance Transmittal Issued – Into effect April 2022

Not just a concern on sidewalks

www.pacaweb.org

What we gained and learned

- We now mitigate smarter
 - Aggregate Availability
 - New cost of mitigation
 - Reduced side effects (scaling & strength gain)
- Mix design preparation and approval
 - It is not that hard !!
- Get everyone at the table from the beginning

www.pacaweb.org

www.specifyconcrete.org

www.pacaweb.org

State DOT's

Training and Expectations of Field Inspection Personnel

Education is the Key !

Aggregate Classification – What does it mean

www.specifyconcrete.org

Education is the Key!

Construction Personnel: Get the information to those who need it.

The Finishers

Critical need for curing to produce durable concrete Strength Gain Expectations

Limitations and Expectations

For Pennsylvania AASHTO R80 provided a timely improvement C1293 provided us benefits over C1260 but it is limited!! Our current test methods do not match most expectations

ASTM C1293

Aggregate and Concrete Producers

Mix design approval

Specification revision Assign proper service life

Adjust Acceptance time - 56 days

Mix Design

Long Term Exposure Blocks

www.pacaweb.org

www.specifyconcrete.org

Keep all at the table while ASR Knowledge Continues to Advance

- Use of Field History
 - R80 and C1778
- Advantages for Producers
 - Bridge the disconnect
 - A more complete understanding of their material
- Advantage for Specifiers /Owners
 - Reduce the cost of over mitigation in \$ and side effects
 - Improved Aggregate Availability

www.specifyconcrete.org

www.pacaweb.org

We will be glad to help

Dr. Lawrence Sutter, Ph.D., P.E. Michigan Technology University Ilsutter@mtu.edu

Patricia Baer Pennsylvania Department of Transportation patrbaer@pa.gov

James Casilio, P.E. Pennsylvania Aggregates and Concrete Association jimc@pacaweb.org

www.pacaweb.org

www.specifyconcrete.org

Keep all at the table while ASR Knowledge Continues to Advance

- Research on New Test Methods and Materials FHWA T-Fast Method
 - Terry Arnold, FHWA

Accelerated Concrete Cylinder Test

• Anol Mukhopadhyay, Texas Transportation Institute – April 2021 ASSHTO Publication

Alternative Concrete Pozzolans for Transportation Infrastructure

• Farshad Rajabipour, Penn State