

Performance vs. Climatic Conditions

Quality Curing?

 Depending on the project circumstances and limitations \rightarrow Different curing requirements

Pavement ME Cracking Model

```
CRK=\frac{1}{1+C FD CNS C}
where,
$,
Mop-cown cracking
National ca
```



```
c4=1
The total predicted percent cracking is caluluted as follows:
%Cracking =CRK
    Log}(\mp@subsup{N}{f}{})=\mp@subsup{C}{1}{}(\frac{1}{r}\mp@subsup{)}{}{\mp@subsup{C}{2}{}
```


Curing (ASTM C 156/C309)

>Limitations of ASTM C 156:

-Focus on water retention
-Have several limitations
\& Limited to fixed test conditions \& application rate
\& Difficult to interpret for field application
>Challenges:
New curing technologies: lithium, post treatments
-Timing of multiple applications
-What constitutes quality curing?
Is water loss early a bad thing or not?

ACI 305R: Potential Evaporation (PE)

- Curing cabinet:
- Temperature: $100 \pm 2^{\circ} \mathrm{F}$
- RH
$32 \pm 2 \%$
The PE for ASTM C 156 is 0.066 $\mathrm{lb} / \mathrm{ft}^{2} / \mathrm{hr}$.
PE og $0.20 \mathrm{lb} / \mathrm{ft}^{2} / \mathrm{hr}$ is critical but in Texas can go up to $0.600 \mathrm{lb} / \mathrm{ft}^{2} / \mathrm{hr}$

ACI 305 R

Petra Base Station

Thornthwaite Climatic Regions for TMI

Supply (precipitation) vs. Demand for Water

[^0]
Evaluation Index (EI)

- El is defined as:
$E I=\frac{t_{f}-t_{a}}{t_{s}-t_{a}}$
where
$t_{f}=$ the equivalent age of the filtered curing condition
$\mathrm{t}_{5}=$ the equivalent age of the sealed curing condition $t_{a}=$ the equivalent age of the ambient curing condition

Base Station: Lab or Field

Base Station: Installation

Curing Effectiveness Output Data

Curing Effectiveness Output Data

Chicago, Illinois

GSSI Pavement Scan 2.0 (GPR)

GSSI Pavement Scan 2.0 (GPR)

GSSI Pavement Scan 2.0 (GPR)

Contoured Results: Hourly

Effectiveness Index (EI)

Curing Table

Table 1 Cart speed for low and high set curing conditions ($\mathrm{ft} / \mathrm{min}$).

PE	Set	WRM 1150						WRM 1625					
		$7 \mathrm{AM}-$	$\begin{gathered} 10 \mathrm{AM}-1 \\ 3 \mathrm{PM}-1 \end{gathered}$	$\underset{\mathrm{PM}}{\mathrm{BPM}-7}$	$\begin{aligned} & 7 \mathrm{PM}- \\ & 10 \mathrm{Pm} \end{aligned}$	$\begin{gathered} 10 \mathrm{PM}- \\ 3 \mathrm{AM} \end{gathered}$	$3 \mathrm{AM}-7$	$7 \mathrm{AM} .$	${ }_{3}^{10 \mathrm{AM}-}$	$\stackrel{3 \mathrm{PM}-7}{ }$	7PM- $10 \mathrm{PM}$	$\begin{aligned} & 10 \mathrm{PM}-1 \\ & 3 \mathrm{AMM} \end{aligned}$	$\stackrel{3 \mathrm{AM}-7}{\mathrm{AM}}$
0.02-0.04	Low	10.8	${ }^{123}$	${ }^{13,6}$	13.9	14.3	11.7	13.1	15.7	16.2	16.7	173	147
	HIGH	153	17.2	19	19.6	19.8	16.6	18.4	22	22.8	23.5	${ }^{24.1}$	20.4
0.04-0.06	tow	10.4	113	12.3	13.2	13.8	10.9	12.6	14.5	15.1	15.9	16.6	${ }^{13} 8$
	Hig	${ }^{14.1}$	15.5	16.8	179	18.5	149	17	19.7	20.4	21.4	${ }^{22} 4$	18.5
0.06-0.6	Low	${ }^{10.3}$	10.9	11.8	12.8	${ }^{13,3}$	11.1	12.2	13.9	${ }^{14.1}$	15	15.9	${ }^{133}$
	HIGH	13.5	${ }^{143}$	15.3	16.7	${ }^{17.1}$	13.5	16	183	18.4	19.6	20.7	16.8
0.08.0.10	Low	103	10.6	11.5	123	${ }^{13,3}$	10.5	12.4	${ }_{13.4}$	${ }^{13.8}$	14.8	${ }_{15} 7$	${ }^{13.1}$
	HIGH	${ }^{13.1}$	135	14.4	15.7	16.6	13	15.5	16.8	17.4	18.7	19.7	16.2
0.10-0.12	tow	10.2	10.3	11.2	12	${ }^{13.2}$	10.1	12.4	12.8	${ }^{3} 5$	${ }^{14,4}$	${ }_{15} 3$	12.7
	HIGH	12.5	125	135	14.5	${ }^{15} 2$	${ }_{12} .6$	15.1	15.6	16.3	175	18.5	15.7
0.12-0.14	tow	10	9.9	10.6	11.2	12.6	9.7	123	${ }^{12} 3$	13	${ }^{13.7}$	14.6	12.5
	HIGH	${ }^{11.7}$	115	123	12.9	14.4	119	14.3	14.2	${ }_{15,1}$	15.7	16.8	${ }_{151}$
0.14-0.16	tow	89	9.6	10.2	10.2	11.3	9.5	11.6	119	12.2	13.2	${ }^{14,3}$	119
	HIGH	9.8	10.7	11.4	11.9	12.7	11.1	127	${ }^{13.1}$	135	14.4	15.7	${ }^{13.8}$
0.16-0	Low	8	8.7	9	9.2	10.6	8.5	11	11.3	11.7	12.4	${ }^{13.2}$	11.3
	HIGH	8.6	9.4	9.6	10.4	11.5	9.6	11.7	12.1	12.5	13.1	14.1	${ }^{13.1}$
0.18-0.20	tow	7.7	8.2	8.5	9.1	10	8.2	10	10.7	11	${ }^{11.6}$	119	10.5
	HIGH	8.5	9.1	9.4	10	${ }_{11}$	93	11.1	${ }_{118}$	${ }_{122}$	12.8	${ }^{13}$	12.6

Crack Control and Sawcutting

- Crack Control Factors
- Mixture Proportions (cement, water, etc.)
- Weather Conditions (wind, solar, etc.)
- Method of Construction
- Method of Curing
- Base Support
- Jointing Patterns

Tensile stress > 50\% of the concrete's tensile strength
Cracking

Assumed symmetry of JCP slabs

Research and Development: Long Term Impact Test Program

Questions/Comments: Submit Online

ASTM C 156

- Measurements: weight loss of mortar
- Specimen dimension:
- top 6 by 12 in.
- bottom $5^{1 / 4}$ by $11^{3 / 4}$ in.
- thickness 2 in.

- Curing cabinet:
- Temperature: $100 \pm 2^{\circ} \mathrm{F}$
- RH : $32 \pm 2 \%$

About the team

- Dr. Omar Swei is a faculty member in the Department of Civil Engineering at The University of British Columbia.
- He received his graduate training at MIT in the Department of Civil \& Environmental Engineering and Engineering Systems Division.
- His research centers on the development and implementation of operations research methods to improve the cesign, construction and maintenance of infrastructure systems.

About the team

- Dr. David Gillen is a Professor in the Sauder School of Business and Director of the Centre for Transportation Studies at The University of British Columbia
- Dr. Gillen has published over 100 books, technical reports, journal papers, conference presentations, and

About the team

- Mr. Anuar Onayev is a graduate student in the Department of Civil Engineering at The University of British Columbia.

Learning Objectives

- The importance of productivity and why FHWA, BLS, state DOTs, and others are interested in the performance of ACPA's members
- The goals of our proposed productivity survey of ACPA members
- The ways in which this work complements other initiatives (e.g., asphalt market share and prices) led by ACPA
- The data needs and outcomes of this study

BLS has revisited the measurement of aggregate productivity growth

Results suggest positive productivity growth except for highways!

Industry	Direct labor	Direct and subcontractor labor
Single-family housing: regression method	1.1	1.2
Compound growth	0.4	0.7
Multifamily housing: regression method	3.7	1.9
Compound growth	3.4	2.6
Highways (compound growth)	0.0	-2.2
Industrial construction (compound growth)	5.3	5.5

[^1]\square

The BLS findings motivate us to revisit highway construction

- Are firms really becoming less efficient over time?
- Could the evolving operating context be the reason?
- Increase emphasis placed on users
- Spending on concrete vs. asphalt
- Spending on M\&R?
- Are state DOTs aware of these repercussions?
- What can be gleaned to improve productivity for firms?

Several key decision-makers are interested in measuring and improving highway construction productivity

- U.S. Federal Highway Administration
 Federal Highway Administration
- U.S. Bureau of Labor Statistics

- State DOTs

- Study provides ACPA the opportunity to engage with owners and key decision-makers at the federal and state level

Benefits to ACPA Members that Participate in Our Study

- Engagement with key decision-makers
- Report to state DOTs, FHWA, etc. detailing the implication of current practice on contractor productivity and costs of production
- Availability to participating members an internal report detailing techniques to improve their productivity

Some examples of factors that influence a firm's productivity

Firm choices

- Capital investments
- Managerial choices
- Labor and equipment utilization

Operating Environment

- Owner specifications
- Market concentration
- Expenditures on M\&R vs. capital outlays

Participants who partake in the survey will receive a report outlining....

1. Key productivity drivers for highway construction
2. Effects of utilization of capital, labor, and material inputs on productivity levels
3. Effects of various project-related factors on productivity levels

Allow contractors to identify mechanisms to improve their productivity

A bulletin report that will be published for state DOTs and partnering ACPA members listing...

1. Effects of operating environment (e.g., market share) on productivity for the industry
2. The effect of state DOT decisions on productivity rates and construction costs

Improve the operating environment and competitiveness of ACPA members

Study data requirements

Project-level data

- Cost reports for project
- Contract info for project (e.g., procurement mode) - Project location

Fiscal Year Data

- Total output (e.g., square yards, revenue)
- Ownership info (e.g., consolidation?)
- Capital investments and depreciation

This work can complement ACPA's previous initiatives

Firm-level data will enable us to quantify the mechanisms affecting productivity and costs

Why do we need to collect so much data? In order to avoid "spurious" conclusions.

Per capita consumption of mozzarella cheese
Civil engineering doctorates awarded

Why do we need so much data?

1. To identify the key factors affecting productivity rates and cost for contractors
2. Control for heterogeneity in our data since multiple factors will be changing simultaneously:

- Is the number of civil engineering PhDs really driving mozzarella consumption?
- Need to capture not just correlation but also causation

Data Security and Management

- We have worked with our IT department at UBC to set up a private, secure mechanism for members to share their information.
- No private information will be released or shared as part of this study
- High-level insights will be disclosed with ACPA and members prior to its dissemination

Example Data

Source:	Example(s):	Why are we collecting it?
	Historical firm information	Ownership; Headquarters; Operation states; Size (i.e., \# of employees);
We need to be able to control for the dispersion in sizes and geographical locations of firms. Our goal is to identify what factors affect ALL firms (small and large).		
Cost reports	\$\$\$ and Quantities of inputs (capital, labor, materials, energy); Activity/jo types; Revenues and Expenses; Duration;	To calculate a Total Factor Productivity, we need to disaggregate cost and quantity data by type of input. By tracking associated activity types, we can identify how various design features of a project change resource allocation. This helps to identify optimal allocation strategies.
Year-end fiscal statements	Capital investment; Asset depreciation;	Such information helps us to identify how managerial practices affect a firm's productivity on an aggregate level.
Contract information	Type of contract; Special value-time clauses; User costs;	This helps us understand how the demand from state DOTs) changed over time and how it affected the productivity of individual firms on individual projects.

Short-Term and Long-Term Study benefits

- Engage with key stakeholders and decision-makers
- Learn insights (confidentially) around ways to improve productivity rates and reduce production costs
- Make owners aware of the impact of their choices on contractors
- Achieve these goals at a fairly low cost (i.e. your time)

[^0]: ```
 REGON CHARACTERSTILS
 IN
 #Ny,
 REGION CHARACTERISTICS
 \(\begin{array}{ll}\text { III } & \begin{array}{l}\text { Wot, hard trecerc } \\ \text { II } \\ \text { Ory }\end{array} \\ \text { Ory, for fereze }\end{array}\)
 \(=4\)
    ```

[^1]:    Sveikauskas et al. (2018)

