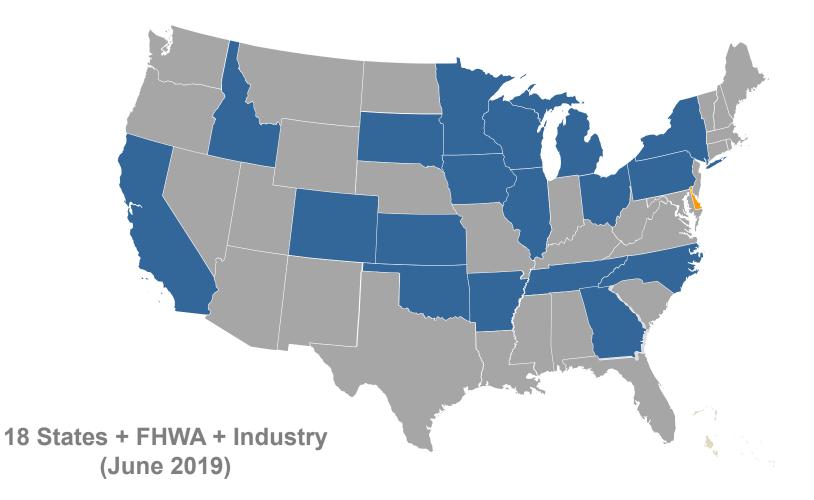
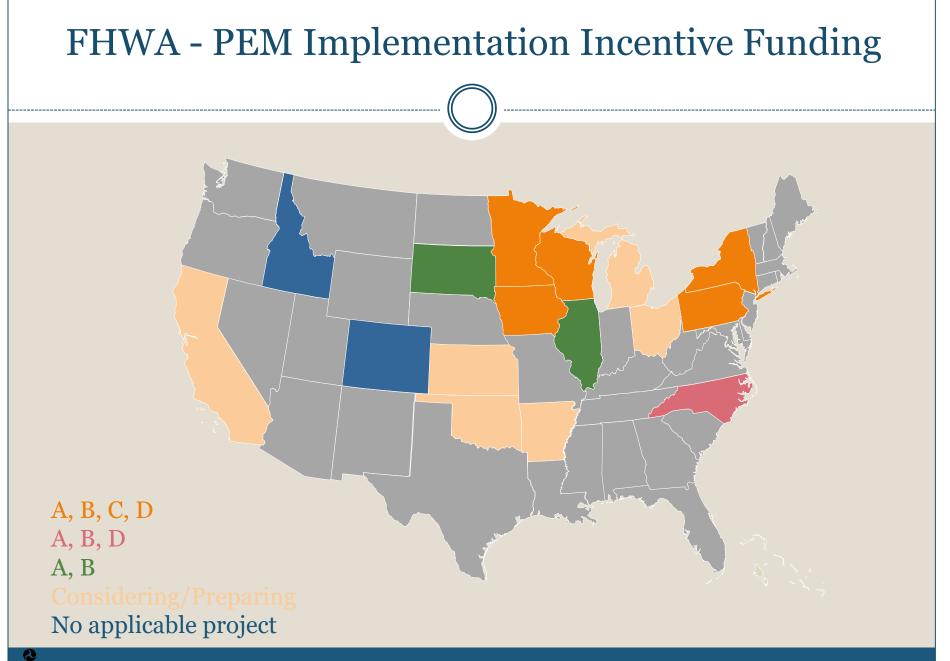
PERFORMANCE ENGINEERED MIXTURES (PEM) FOR CONCRETE PAVEMENTS

DELIVERING CONCRETE TO SURVIVE THE ENVIRONMENT

NC2 in Kalispell, MT - 2019

Gordon L. Smith, PE


IOWA STATE UNIVERSITY


Institute for Transportation

National Concrete Pavement Technology Center

lech Cente

PEM POOLED FUND PARTICIPANTS TPF-5(368)

PEM ACTIVITY 2019

- One-day engineering level PEM Workshop
- Specification review and SHA assistance in establishing their PEM implementation strategy
- Technician training
- Shadow testing data collection/analysis
- Test refinements and new tests (AASHTO Task Force)
- PP-84-20 revision
- Construction specification development
- Monitoring FHWA Incentive/Shadow Testing Projects
- MCT/PEM Open House/Demos in NC,CA (2), NV, KS, and IL
- Working with the states at various levels of PEM implementation

PEM ONE DAY WORKSHOP AGENDA

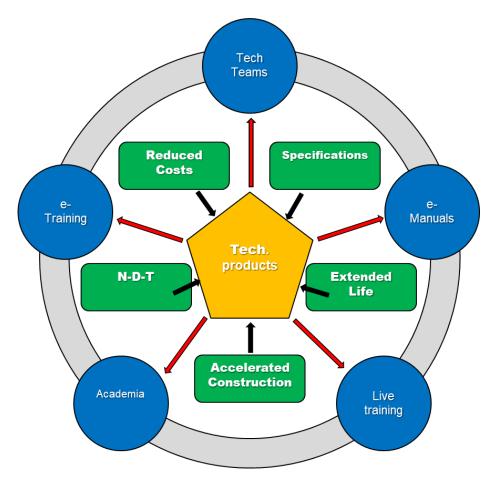
- 8:30 Road to PEM Why change things?
- 9:00 Group discussion What makes a good specification?
- 9:30 AASHTO PP-84, philosophy and goals
- 10:00 Break
- 10:30 Group discussion Barriers to performance evaluation
- 11:00 Science and tests for PEM (Property-Test-Remedy)
- 12:00 Lunch
- 1:30 Science and tests for PEM (Property-Test-Remedy)

continued...

- 2:00 Group Discussion What next?
- 2:30 Break
- 3:00 PEM in practice, Quality, Implementation, Training
- 4:00 Wrap up

	•	•			Mixture		Selection	
Section	Property	Specified Test	Specified	Value	Qualification	Acceptance	Details	Special Notes
	• •			oncrete Streng	th	•	•	•
6.3.1	Flexural Strength	T 97	4.1 MPa	600 psi	Yes	Yes	Choose either	·
6.3.2	Compressive Strength	T 22	24 MPa	3500 psi	Yes	Yes	or both	_
		6.4 Reducing Unwanted	Slab Warping and	Cracking Due	to Shrinkage (it	f cracking is a	concern)	
6.4.1.1	Volume of Paste	_	25%		Yes	No	Choose only	·
6.4.1.2	Unrestrained Volume Change	ASTM C157	420 με	At 28 days	Yes	No	one	Curing conditions
6.4.2.1	Unrestrained Volume Change	ASTM C157	360, 420, 480 µe	At 91 days	Yes	No		_
6.4.2.2	Restrained Shrinkage	Т 334	Crack free	At 180 days	Yes	No		_
6.4.2.3	Restrained Shrinkage	TP XXX	$\Sigma \leq 60\% \; f'r$	At 7 days	Yes	No		Dual ring test is currently under consideration as an AASHTO Provisiona Test Method
6.4.2.4	Probability of Cracking	Appendix X1		As specified	Yes	No		_
Commentary	Quality Control Check	—	—	_	No	Yes		Variation controlled with mixture proportion observation or F factor and porosity measures
		6.5 Durabil	ity of Hydrated Ce	ement Paste fo	r Freeze–Thaw I	Durability	•	•
6.5.1.1	Water to Cementitious Ratio	_	0.45	_	Yes	Yes	а	_
6.5.1.2	Fresh Air Content	T 152, T 196, TP 118	5 to 8	%	Yes	Yes	Choose only	_
6.5.1.3	Fresh Air Content/SAM	T 152, T 196, TP 118	≥4% air; ≤0.2	%, psi	Yes	Yes	one	_
6.5.2.1	Time of Critical Saturation	"Bucket Test" Specification	30	yr	Yes	No	a, b	Variation controlled with mixture proportion observation or F factor and porosity measures
6.5.3.1	Deicing Salt Damage	_	35%	SCM	Yes	Yes	Choose only	Are calcium or magnesium chloride used
6.5.3.2	Deicing Salt Damage	M 224	—	Topical treatment	Yes	Yes	one	Are calcium or magnesium chloride used use specified sealers
6.5.4.1	Calcium Oxychloride Limit	Test sent to AASHTO	<0.15 g CaOX	Y/g paste	Yes	No		Are calcium or magnesium chloride used
	-		6.6 Tra	ansport Proper	ties		•	•
6.6.1.1	Water to Cementitious Ratio	_	≤0.45 or ≤0.50	_	Yes	Yes	Choose only one	The required maximum water to cementitious ratio is selected based on freeze-thaw conditions
6.6.1.2	Formation Factor	Table 1	≥500 or ≥1000	—	Yes	Yes		Based on freeze-thaw conditions; other criteria could be selected
6.6.2.1	Ionic Penetration, F Factor	Appendix X2	25 mm at 1	30 yr	Yes, F	Through ρ		Determined using guidance provided in Appendix X2
			6.7 Aş	ggregate Stabil	ity			
6.7.1	D Cracking	T 161, ASTM C1646	_ `	_	Yes	No		·
6.7.2	Alkali Aggregate Reactivity	R 80	_	_	Yes	No		_
	· · · · ·		6.8	8 Workability			•	
6.8.1	Box Test	Appendix X3	<6.25 mm, <30% surface void			No		
6.8.2	Modified VKelly Test	Appendix X4	15-30 mm/root s			No		_
Notes:	,			•			•	•

Table 3—Specification Worksheet


Notes: ^a Choose either 6.5.1.1 or 6.5.2.1.

^b Choose either 6.5.1.2, 6.5.1.3, or 6.5.2.1.

_

ADVANCING CONCRETE PAVEMENT TECHNOLOGY SOLUTIONS

(FHWA Cooperative Agreement)

Design criteria and specifications

PEM

- QC for PEM
- Precision & Bias for PEM Tests
- Proficiency training
- **E-Construction**

LOOKING AHEAD

F CUS

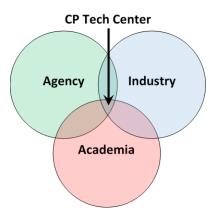
- Continued collaboration with SHAs, FHWA and Industry along the road toward PEM implementation for concrete pavements – (Specs/Training/Questions)
- Emphasis on a PEM QC guide/control charts
- Shadow testing-shadow testing-shadow testing
- Data gathering/analysis/sharing for PEM test verification and long term pavement performance records
- Precision and Bias for PEM tests
- Training/Certification(?) for PEM technicians (Who, when, where and how)
- A PEM model construction specification
- Pilot projects

PEM POOLED FUND TAC MEETING

November 18-19, 2019

Embassy Suites by Hilton Minneapolis Airport

7901 34th Avenue South Bloomington, MN 55425



Thank you for your support of the PEM Pooled Fund Initiative

Please let us know how we can help

National Concrete Pavement Technology Center

IOWA STATE UNIVERSITY

www.cptechcenter.org