WJE

SOLUTIONS FOR THE BUILT WORLD

Polymer Resin Concrete for Bridge Deck Overlays

Paul D. Krauss, PE Wiss, Janney, Elstner Associates, Inc.

www.wje.com

WJE ENGINEERS ARCHITECTS MATERIALS SCIENTISTS Wiss, Janney, Elstner Associates, Inc. pkrauss@wje.com

Guidelines For Selection of Bridge Deck Overlays, Sealers and Treatments – NCHRP Project 20-07, Task 234

Agency Survey and GuidelinesReview Literature

<u>Results:</u>

Deck Characterization
Primary Repair Category Selection
Selection of Repair Options

Overlay Type/Use	New or Experimental	Current Common Practice	Historic Experience (Not Current Practice)	Never
Low slump concrete overlays	4	12	14	11
Asphalt concrete overlay with membrane	0	30	12	3
High performance concrete overlay	9	17	2	16
Silica-fume modified concrete overlays	8	6	6	23
Polymer concrete overlays	12	16	7	9

Types of Polymer Overlays

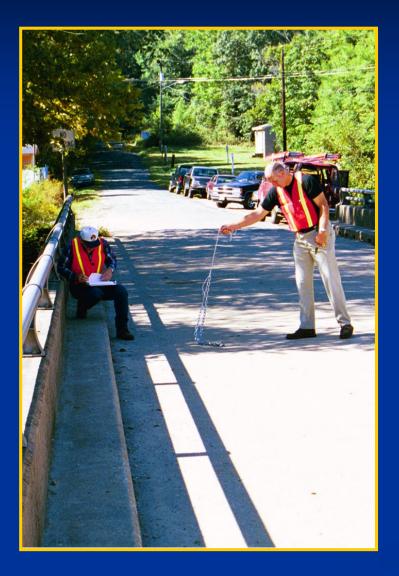
- Various polymer resins (epoxy, urethane, epoxyurethane, polyester, other co-polymer)
- Broom and Seed Multiple-Layer Epoxy Binder, 1/4 – 1/2 in.
- Slurry Overlay Methacrylate Binder, $\sim 1/4 3/8$ in.
- Premixed & Screeded Polyester-Styrene Binder, 3/4
 1 in. plus

Multiple-Layer Polymer Overlay

Slurry Polymer Overlay

Premixed Polymer Overlay

Why Polymer Overlay ?


Very low permeability to water and chlorides High wear/abrasion resistance (0.015 in./yr) Excellent bond strength High tensile and flexural strength Thin, less deadload, no deck adjustments Correct for construction defects: Finishing defects, Grade, Low cover Fast setting – traffic in about 2 hours

Deck Conditions

Commonly used on aged decks with distress
Best extension of service life on new decks or decks without current damage

*May not be best for decks at the end of their service life

Older decks - Sounding

 Detecting unsound and deteriorated areas of concrete

 Chain Drag or Hammertapping to locate boundary of unsound concrete

 Infrared, Rolling Impact Echo, GPR

Surface Preparation

 Important factor in performance of concrete and polymer overlays

Surface Preparation

- PatchingMicromilling, if needed followed by:
- Shotblasting preferred
 Hydrojetting must allow to dry after
 Sandblasting (or other blasting types)

Dry and Clean with subsequent passes

Shotblast

Sandblasting or Waterblasting

Hydrodemolition

Surface Profile – ASTM E 965

Tension Pull-off – ASTM C 1583

Polyester Polymer Concrete

Early use was broom and seed method (1960's) 1970's - Oregon DOT 1000 cps resin, roller screed First use of current system 1983 – Thomson Creek & Beaver Creek Bridges (Caltrans) 1985/86 Highway overlay I-80 (10 lane miles) Common use by Caltrans and many other states for night time construction windows on urban bridges

Caltrans Polyester Polymer Concrete

Polyester-styrene resin (100-200 cps) Uniform aggregate gradation – gravels Silane coupling agent (1-2%) Mobile concrete mixer or common drum Slip-form paving machines or vibratory screed

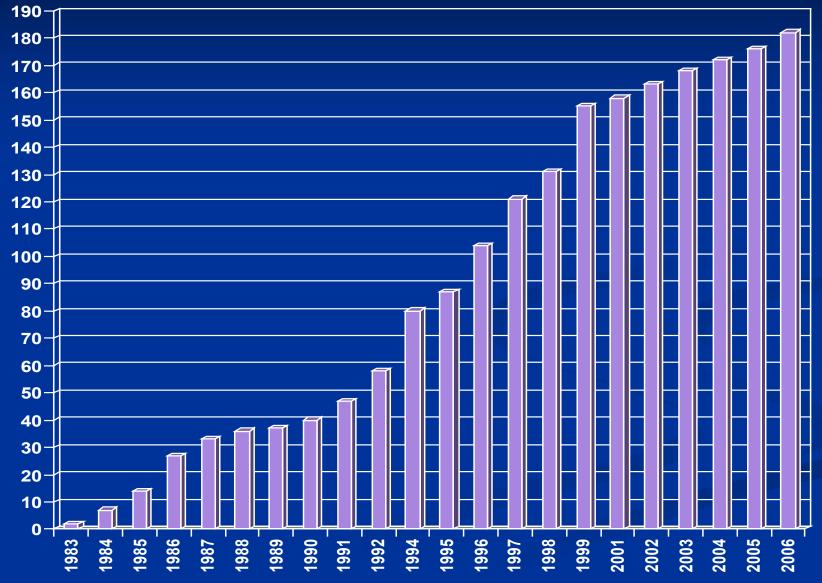
Overlay performance

 Rigid concrete overlays fail by cracking and delamination. Design polymer overlays for:
 1. Excellent Adhesion

- 2. Cracking Resistance
- Performance
 - Prevents water and deicer penetration
 - Slow active corrosion
 - Creates equilibrium conditions
 - Limits oxygen
 - Primer (HMWM) fills and bonds cracks in deck

	Polyester Concrete	Portland Cement (8 sk)	Latex-mod. Concrete	Silica-fume concrete
Compressive Strength, psi	8,000	7,000	7 - 9,000	7 - 10,000
24 hr. Early Strength	4,000	1500	1500	2500
Return to Service	2 - 4 hours	3 - 7 days	3 - 7 days	2 - 4 days
Modulus (E), x10 ⁶ psi	1 - 2	3 - 5	3 - 4	3-5
Flexural, psi	2,200	800	900	1,100
Abrasion, gms	1 - 2	10 - 20	10 - 20	10 - 20
RCP, coulombs	0 - 100	1,000 - 3,000	500 - 1,000	500 - 1000

 ε_{t} = shrinkage at time *t* after initial drying E_{eff} = effective modulus a time *t* (psi) σ_{t} = stress induced by restrained shrinkage (psi)


Stress Due to Shrinkage or Temperature

Where:

PPC Overlay Properties vs. PCC

Thermal coefficient of expansion – similar to pcc $(14.6 \times 10-6 \deg C)$ due to mixer blended gradation Lower modulus equals less stress Higher creep capacity Higher tensile and flexural strength Excellent bond strength High wear/abrasion resistance (0.015 in./yr) Very low permeability to water and chlorides \square $\frac{3}{4}$ in. to several inches thick Fast setting – traffic in about 2 hours

Number of Projects *Since 2001 30-50/yr

Examples of Major Bridge Projects in SF Bay Area

- Benicia-Martinez Bridge (1990)
- Marina Viaduct Approach to Golden Gate Bridge (July 1992)
- Oakland Bay Bridge (2006)
- Richmond San Rafael Bridge (2006)

SF Bay Area Projects

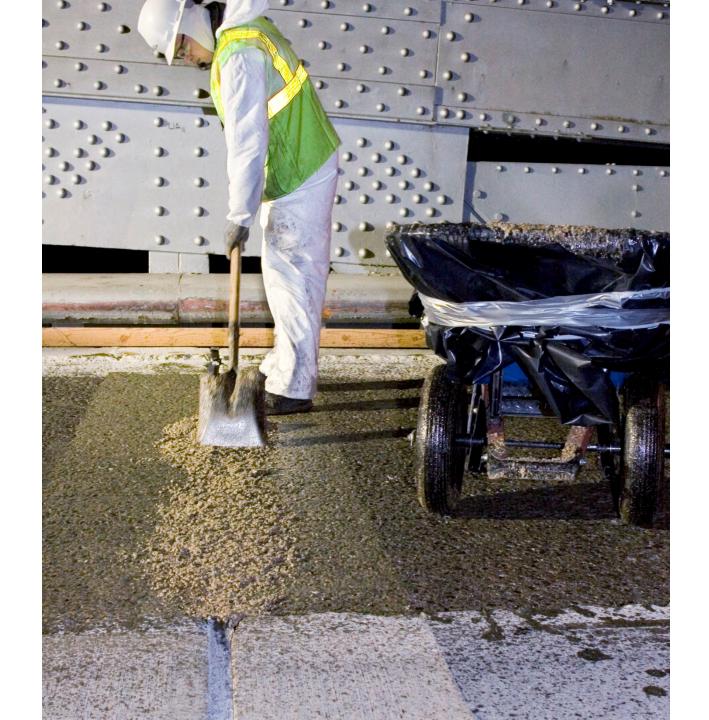
- Marina Viaduct Approach to Golden Gate Bridge July 1992
 - 250,000 square feet
 - All night construction open each morning
 - Cured in 2 hours
 - Temperatures below 45F, mist and fog
 - Continuous mixer and paving machines

San Francisco-Oakland Bay Bridge

- Treasure Island to the San Francisco Anchorage
- 300,000 cars per day
- Two miles long with 5 lanes on the upper deck and 5 lanes on the lower deck
- No extra weight was to be added
- \square ³/₄" modified asphalt surface that had been failing
- 2 hour paving window —min. ¹/₄ lane mile/shift
- Completed within 5 months planners estimated two seasons

San Rafael-Richmond Bridge

- Built in the early 50's -lt wt concrete structural deck topped with a high density grout
- Long bay crossing spanning 3.6 miles 3 top deck lanes
 & 3 bottom deck lanes
- 80,000 vehicles per day high % of truck traffic
- 8 hours of paving time per night
- Kwik Bond Polymers PPC 1121
- \ge > 1 lane mile/night
- Completed in two months


The Process

- Remove the modified asphalt or high density grout surfaces using micro mill technology
- Repair underlying deck using PPC, clean and roughen surface using Disa Goff 30" shot blast machine
- Prime with a 100% reactive, high molecular weight methacrylate HMWM resin
- Place Polyester Polymer Concrete using specialty volumetric mixers and a two track slip-form paving machines

Health and Safety

- Resins, peroxide, cleaning solvents
- Odor is present can cause nausea, etc.
- Monitoring shown less than PEL of 100
 (Permissible exposure level)
- Face respirators recommended for workers esp. at mixer and immediately behind screed
 Resin suppliers add volatile suppressant to reduce emissions (wax)

Conclusions

- Polymer overlays provide a valuable option in our toolboxes: esp. need speed, lightweight, & long life
- Polyester polymer concrete used successfully by Caltrans for the past 35 years
- Can be used on major urban structures with all construction at off-peak night hours (6 hour traffic closure windows are possible)

WJE

SOLUTIONS FOR THE BUILT WORLD

Polymer Resin Concrete for Bridge Deck Overlays

Paul D. Krauss, PE

Wiss, Janney, Elstner Associates, Inc. 330 Pfingsten Road Northbrook, IL 60065 847-753-6517 pkrauss@wje.com

