Dr. Peter C. Taylor P.E. (IL) FACI is the Director of the National Concrete Pavement Technology Center at Iowa State University.

He spends time helping agencies ask for better concrete and helping contractors deliver it.

Geotextile Interlayer for Overlays

Peter Taylor, Yifeng Ling
Background

- How does the geotextile influence vertical deflections in the system?
- Does this tendency change over time?
- Does the thickness of the textile matter?
- Is the risk of slab migration changed?
- Are there any other impacts of reduced friction between layers?
- Are the layers effective at providing drainage and does it change over time?
- Does the risk of cracking change?
- Does the color of the textile affect thermal performance of the slab?

Lab work

- **Variables**
 - Fabric thickness – 5-7 oz. (1 mm) and 13-15 oz. (3-3.5 mm)
 - Black and white fabric
Lab work

• Measure temperature rise behind sample exposed to a heat lamp
• Investigate thermal mass of the interlayer
• Load deflection plot for bare textile
• Load deflection test on composite sample

Results

<table>
<thead>
<tr>
<th></th>
<th>Exposed face, °F</th>
<th>Shadowed face, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick Black</td>
<td>105</td>
<td>112</td>
</tr>
<tr>
<td>Thick White</td>
<td>105</td>
<td>98</td>
</tr>
<tr>
<td>Thin Black</td>
<td>110</td>
<td>115</td>
</tr>
</tbody>
</table>

• Black material does get hotter
• Mass is so low, effect on concrete is small
Results

<table>
<thead>
<tr>
<th>Material</th>
<th>Exposed face, °F</th>
<th>Shadowed face, °F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thick Black</td>
<td>111</td>
<td>87</td>
</tr>
<tr>
<td>Thick White</td>
<td>102</td>
<td>90</td>
</tr>
<tr>
<td>Thin Black</td>
<td>105</td>
<td>104</td>
</tr>
</tbody>
</table>

- Black material surface does get hotter
- Both colors insulate about the same
- Increasing thickness = better insulation

Results

- Using specific heat capacity from published data
 - For 6” concrete overlay
 - Start with separator layer at 120°F and concrete at 70°F
 - Concrete temperature increase
 - 1” Asphalt – 8.0°F
 - 3 mm Textile – 0.3°F

- Still need to account for base temperature
Results

• Load deflection plot for bare textile between metal plattens

![Load deflection plot for bare textile between metal plattens](image)

Results

• Load deflection plot in concrete

![Load deflection plot in concrete](image)

<table>
<thead>
<tr>
<th>Concrete Sample</th>
<th>Concrete Modulus of Elasticity, ksi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black Concrete 3</td>
<td>1,739</td>
</tr>
<tr>
<td>White Concrete 3</td>
<td>1,889</td>
</tr>
<tr>
<td>Black Concrete 1</td>
<td>3,467</td>
</tr>
</tbody>
</table>
Results

- Textile vertical movement <0.05” (~1 mm)
- System stiffness is reduced with thicker textile

Field Work

- ...