About the Presenter

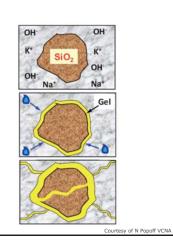
PCA

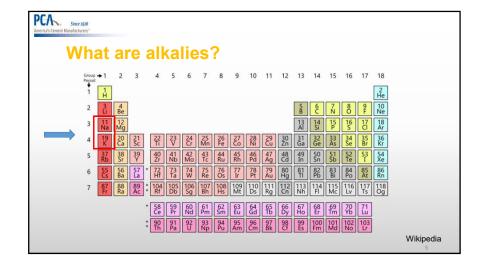
Cement Manufacturers™

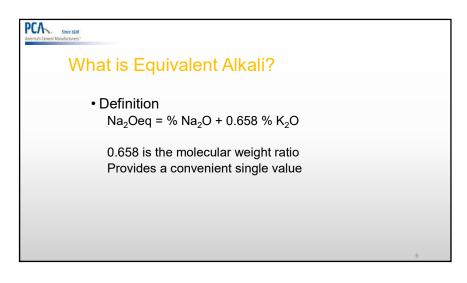
America's

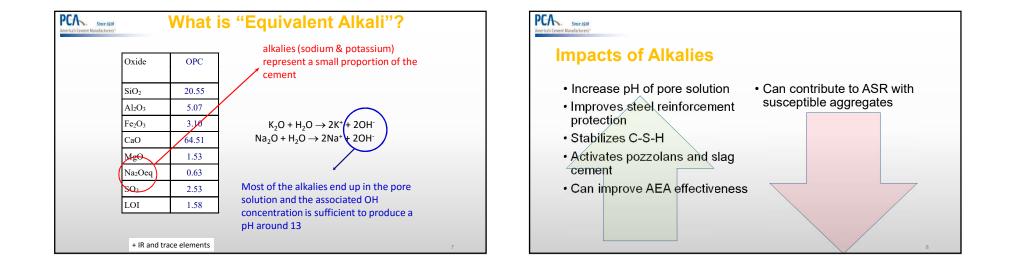
NATIONAL CONCRETE CONSORTIUM

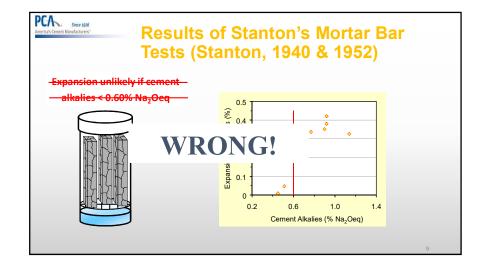
- Paul Tennis is the Director of Product Standards and Technology for the Portland Cement Association (PCA).
- Paul has been with PCA in various capacities for 24 years, focused on cement and concrete standards development, including ASTM and AASHTO cement specifications and concrete durability-related standards.
- He holds a Bachelor of Science degree in Ceramic Engineering from Clemson University, and an MS and PhD in Materials Science and Civil Engineering both from Northwestern University.
- He is a fellow of ACI, an ASTM Bryant Mather award recipient, past chairman of ASTM Committee C01, and 'friend' of several AASHTO and TRB committees.
- Fun fact: Paul attended the inaugural meeting of the Midwest Concrete Consortium in 1997 and has participated periodically in the MC2 and NC2 meetings ever since.

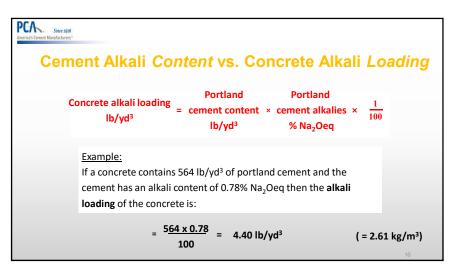


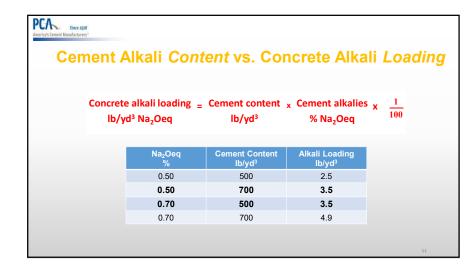


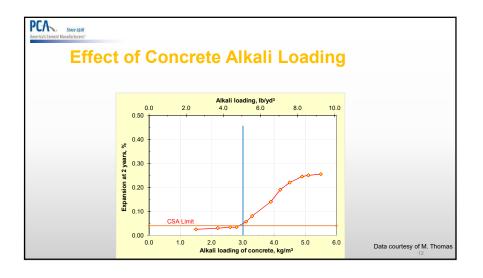



A little more on ASR...

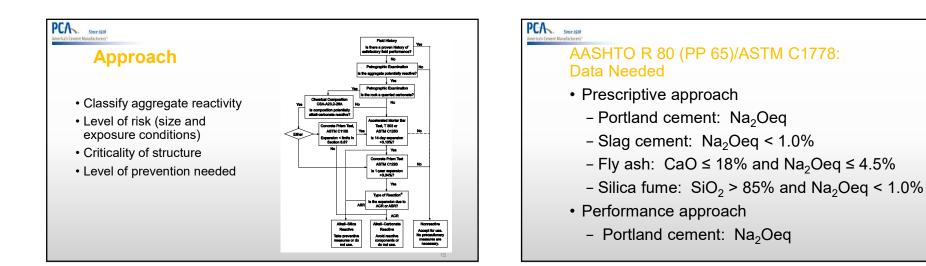

- Aggregates react with soluble alkalies in pore solution with silica in aggregate
- Alkali-Silica gel forms.
- AS Gel fills pores
- Reaction continues

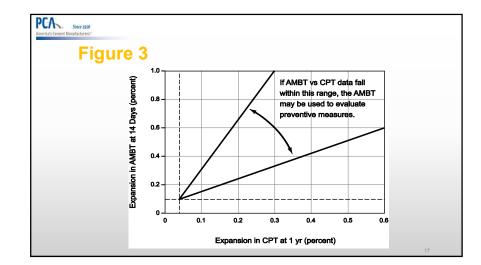


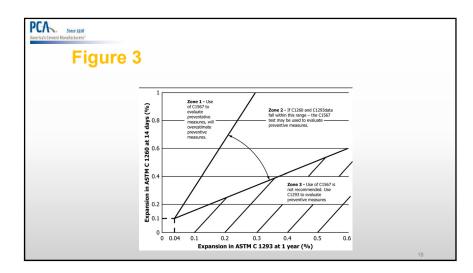




PCA. Since 1916


What changed in the Specs?


- C150/M 85 no longer include the optional low-alkali limit of 0.60%
- Manufacturers are required to report Na₂Oeq on all portland cement mill test reports
- Note references ASTM C1778/AASHTO R 80 for guidance on ASR
- Reference to the historical optional limit is included in a nonmandatory note


PCA. Since 1916

Why the Spec Change?

- A 0.60% limit on *cement* is not protective in all cases
 - · False sense of security
 - Aggregate reactivity
 - Concrete mix design
- Alkali loading of *concrete* is more relevant/effective
 Reporting equivalent alkalies allows alkali loading to be readily calculated
- SCMs are most common solution
- C1778 and R 80 provide state-of-the-art guidance

Table 1. Classification of Aggregate					
Aggregate- Reactivity Class	Description of Aggregate Reactivity	1-Year Expansion in CPT, %	14-Day Expansion in AMBT, %		
R0	Nonreactive	≤0.04	≤0.10		
R1	Moderately reactive	>0.04, ≤0.12	>0.10, ≤0.30		
R2	Highly reactive	>0.12, ≤0.24	>0.30, ≤0.45		
R3	Very highly reactive	>0.24	>0.45		

	Aggregate-Reactivity Class			
Size and Exposure Conditions	R0	R1	R2	R3
Nonmassive concrete ^a in a dry environment	Level 1	Level 1	Level 2	Level 3
Massive elements ^a in a dry environment	Level 1	Level 2	Level 3	Level 4
All concrete exposed to humid air, buried or immersed	Level 1	Level 3	Level 4	Level 5
All concrete exposed to alkalies in service ^c	Level 1	Level 4	Level 5	Level 6
 ^a A massive element has a least dimension >0.9 m (3 ft). ^b A dry environment corresponds to an average ambient relati in buildings. ^c Examples of structures exposed to alkalies (sodium and pota seawater and highway structures exposed to deicing salts (e. potassium formate, sodium acetate, sodium formate, etc.). 	ssium) in servic	e include mar	ine structures	exposed to

Sev	erity of Con	sequences of	ASR
			AUN
Class	Consequences of ASR	Acceptability of ASR	Examples ^b
S1	Safety, economic, or environmental consequences	Some deterioration from ASR may be tolerated.	Non-load-bearing elements inside buildings
	small or negligible		Temporary structures (e.g., <5 years)
S2	Some safety, economic, or	Moderate risk of ASR is acceptable.	Sidewalks, curbs, and gutters
	environmental consequences if major deterioration		Service life <40 years
S3	Significant safety, economic,	Minor risk of ASR acceptable.	Pavements
	or environmental		Culverts
	consequences if minor		Highway barriers
	damage		Rural, low-volume bridges
			Large numbers of precast elements where
			economic costs of replacement are sever
			Service life normally 40 to 75 years
S4	Serious safety, economic, or	ASR cannot be tolerated.	Major bridges
	environmental consequences		Tunnels
	if minor damage		Critical elements that are very difficult to
			inspect or repair
			Service life normally >75 years

PCA. Since 1916 America's Cement Manufacturers"

Table 3. Level of Prevention

Level of ASR Risk	Classification of Structure (Table 4)				
(Table 2)	S1	S2	S3	S4	
Risk level 1	V	V	V	V	
Risk level 2	V	V	W	Х	
Risk level 3	V	W	Х	Y	
Risk level 4	W	Х	Y	Z	
Risk level 5	Х	Y	Z	ZZ	
Risk level 6	Y	Z	ZZ	а	
^a It is not permitted to construct a Class S4 structur level of risk in these circumstances. The levels of				taken to reduce the	

PCA. Since 1916 America's Cement Manufacturers" Table 5. Maximum Alkali Contents in **Portland Cement Concrete**

Maximum Alkali Loading of Concrete (Na₂Oeq)

Prevention Level	kg/m³	lb/yd ³	
V	No limit	No limit	
W	3.0	5.0	
Х	2.4	4.0	
Y	1.8	3.0	
Za	Table 8	Table 8	
ZZ ^a	Table 8	Table 8	
^a SCMs must be used in prevention levels	Z and ZZ.		23

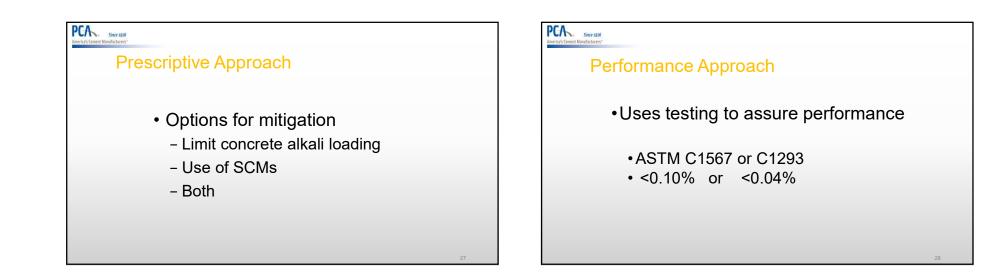
PCA. Since 1916 America's Cement Manufacturers"

Table 6. Minimum SCM Levels

	Alkali Level of SCM,	Minimu		ement Leventitious Ma		lass of
Type of SCM ^a	(% Na ₂ Oeq)	Level W	Level X	Level Y	Level Z	Level ZZ
Fly ash	≤3.0	15	20	25	35	
(CaO ≤18%)	>3.0, ≤4.5	20	25	30	40	
Slag	≤1.0	25	35	50	65	
Silica fume ^c	≤1.0	2.0 ×	2.5 ×	3.0 ×	4.0 ×	Table 8
(SiO ₂ ≥85%)		KGA	KGA	KGA	KGA	Table o
		or	or	or	or	
		1.2 ×	1.5 ×	1.8 ×	2.4 ×	
		LBA	LBA	LBA	LBA	
						24

PCA Since 1916

Table 7. Adjustment for Alkali Level ofPortland Cement


Cement alkalies	
(% Na ₂ Oeq)	Level of SCM
≤0.70	Reduce the minimum amount of SCM given in Table 6 by one prevention level. ^a
>0.70, ≤1.00	Use the minimum levels of SCM given in Table 6.
>1.00, ≤1.25	Increase the minimum amount of SCM given in Table 6 by one prevention level.
>1.25	No guidance is given.

^a The replacement levels should not be below those given in Table 6 for prevention level W, regardless of the alkali content of the portland cement.

PCA. Since 1916 America's Cement Manufacturers'

Table 8. Using SCM and Limiting Alkali Contentto Provide Exceptional Levels of Prevention

	SCM as Sole Prevention	Limiting Concrete Alk	kali Loading Plus SCM	
Prevention Level	Minimum SCM Level	Maximum Alkali Loading, kg/m ³ (lb/yd ³)	Minimum SCM Level	
Z	SCM level shown for Level Z in Table 6	1.8 (3.0)	SCM level shown for Level Y in Table 6	
ZZ	Not permitted	1.8 (3.0)	SCM level shown for Level Z in Table 6	

PCA. Since 1916

Performance approach: Data Needed

- C1293: Adjusts mix water alkali content based on portland cement
- Equivalent alkali content of portland cement or portland cement portion of blended cement

ConclusionAlkali-Silica Reactivity (ASR) Alkalies in Cement and Concrete Cement equivalent alkali content Concrete alkali loading Benefits of alkalies in concrete ASTM C1778/AASHTO R 80 for best guidance now and for the future http://mdot.mse.mtu.edu/dotspecs/