What is the NRRA?

- A pool fund focusing on solving problems that impact highway agencies
- Minnesota lead state
- Highway agencies provide input and participate in decision making needed for future construction and research
- Industry and academia provide their knowledge and experience
- Barriers to implementation

Agency Members

10 Total

 California (CalTran), Illinois DOT, Illinois Tollway, Iowa DOT, Michigan DOT, Minnesota DOT, Minnesota Local Road Research Board, Missouri DOT, North Dakota DOT, and Wisconsin DOT

About the Presenter

- Brett Trautman works for the Missouri Department of Transportation as the Physical Laboratory Director
- He has worked for MoDOT for over 30 years. The first 6 years worked in the Materials Section of the Central District before joining the Construction and Materials Division as a Field Materials Engineer. In 2013, Brett was promoted to his currer position where he oversees the testing of concrete, bituminou mixtures, aggregates, what, and other highway construction
- He serves as the Departments representative and voting member of the AASHTO Committee on Materials and Pavements (COMP) and is the Vice-Chair for Technical Subcommittee 3a Hydraulic Cement and Lime
- Brett is the current Chair of the NRRA Rigid Team
- Brett graduated from the University of Missouri Columbia with a degree in Civil Engineering and is a registered professional engineer in Missouri

National Road Research Alliance (NRRA) Project Update

Brett Trautman Physical Laboratory Director Missouri DOT

2020 Fall National Concrete Consortium No. September 3, 2020

BT1 Brett Trautman, 8/19/2020

Associate Members 60 Total HELIX F RTA - 17 Academia Dow AMERICAN Engineering Testing, Inc. - 7 Associations **D** • BASF We create chemistry - 36 Private TRANSTEC GROUP \bigcirc PAVEMENT ASSOCIATION IOWA STATE UMD UNIVERSITY GGA Driven to Discover National Concrete Pavemen chnology Center GP Michigan Technological University Transportation Institute A AGGREGATE & READY MIX University of Pittsburg St.Thomas Pittsburgh Swanson School of Engineering

Rigid Team Efforts

2017 Synthesis (2)

- Design & Performance of Concrete Unbonder Overlays
- Repair of Joints Associated Distress in Concrete
 Pavement

2017 Projects (4)

- Fiber-Reinforced Concrete Pavement
- Evaluation of Long-Term Impacts of Early
 Opening of Concrete Pavements

Compacted Concrete for Local Streets

 Reduced Cementitious Materials in Optimized Concrete Mixtures

Structure Executive Committee 2 members per agency 5 Teams Intelligent Construction Technologies Flexibility Rigid Geotechnical

Rigid Team Efforts

2019 Projects (5)

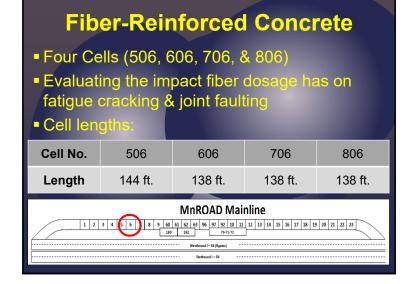
- Solutions to Mitigate Dowel/Tie-Bar Propagated Cracking
- Construction Report for Jointless FRC Roundabout in Minnesota
- Incorporate Joint Faulting Model into BCOA-ME
- Blending of Higher Strength Aggregates with Recycled Concrete and Marginal Aggregates to Improve Concrete Properties
- Performance of Concrete Overlays over Full Depth Reclamation (FDR)

2020 NRRA Initiatives

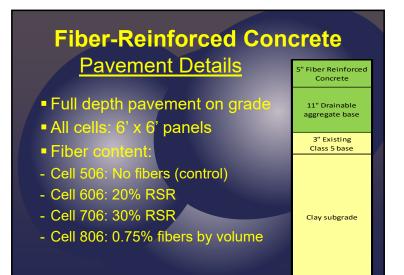
- Call for Innovations
- Additional funding available
- Evaluated several projects
- Three select for funding
- Pavement Specific Structural Synthetic Fibers
- Call for Construction
- For associate members
- Fund construction
- MnROAD monitors
- Satellite locations considered

2017 Projects

- Three constructed at MnROAD
- 3.5 mi. Mainline
- 3.5 mi. Bypass
- 2.5 mi. Low Volume Road
- Live traffic
- Interstate 94, EB & WB
- Opened in 1994



Fiber-Reinforced Concrete


Objectives

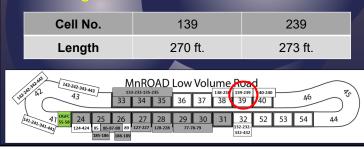
- 1) Determine contribution of fibers in reducing panel fatigue cracking
- 2) Determine contribution of fibers in mitigating joint faulting
- 3) Determine optimal panel size for thin unbonded concrete overlays
- 4) Determine minimum thickness of FRC for lowvolume streets

Fiber-Reinforced Concrete

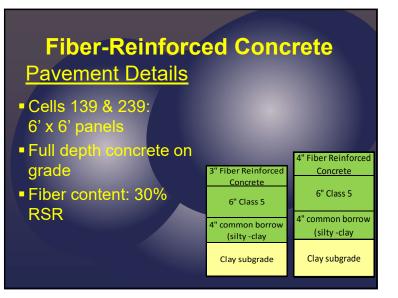
Fiber-Reinforced Concrete

- Two Cells (705 & 805)
- Evaluating the impact fibers have on fatigue cracking, joint faulting, & panel size

Cell Lengths:


Fiber-Reinforced Concrete Pavement Details

- Unbonded Overlay
- Non-woven geotextile fabric interlayer
- Cell 705
- 14'W x 12'L & 12'x12' panels
- Cell 805
- 6' Wx12'L & 8'Wx12'L panels
- Fiber content: 20% RSR



Fiber-Reinforced Concrete

- Two cells (139 & 239)
- Evaluate using fiber-reinforced concrete pavement for city streets
- Cell Lengths:

Fiber-Reinforced Concrete

Early Opening to Traffic Six cells (124, 224, 324, 424, 524, 8, 624)

 Early sequential traffic loadings 									
Cell No.	124	224	324	424	524	624			
Length	120 ft.	120 ft.	120 ft.	115 ft.	60 ft.	20 ft.			
MnROAD Low Volume Road 138-238-139-140 43 33 34 35 36 37 38 39 40 40 40 40 40 40 40 40 40 40									

Early Opening to Traffic

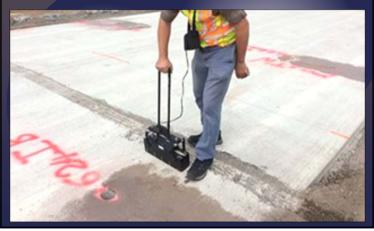
Objectives

- 1) Evaluate visible and non-visible immediate damage caused by early age loading
- 2) Quantify the effect of early loading damage on long-term performance
- Determine minimum strength at opening or other measurable variables associated with this parameter
- 4) Recommend strategies for minimizing or avoiding early loading damage detrimental to long-term performance

Early Opening to Traffic Pavement Details • Standard panel size 12'W x 15'L • Full depth concrete on grade • Standard concrete mix • Doweled joints

6" Class 6

Sand subgrade

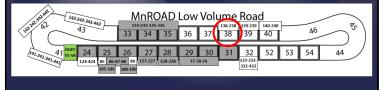


	In	itial	Compressive and Flexural		
• C ea	ells 1	a ding 24 – 424 4 not loaded	$w_{1} = 0$		
		Cell x24 Early Load	ing Sequence		
Maturity (Deg-Hr)	Flexural (psi)	Loads applied to lanes			
100	73	1st Load on Cell 124 (forward and back)			
200	196	1st Load on Cell 224, 2nd load on Cell 124			
300	267	1st Load on Cell 324, 2nd load on Cell 224, 3rd load on Cell 124			
400	318	1st Load on Cell 424, 2nd load on Cell 324, 3rd load on Cell 224, 4th load on Cell 124			
Starting Da	ay 2, 5 passes	per day for first week			

Reduced Cementitious Content Objectives

- Investigate the early-age characteristics of concrete paving mixes containing low cementitious content
- 2) Assess the potential for durability issues with very low cementitious content
- Identify effect of reduced cementitious content on long term serviceability and economics of concrete pavements
- 4) Develop recommended specifications, mixing and placement practices for the use of low cementitious content concrete mixes

Early Opening to Traffic



Reduced Cementitious Content

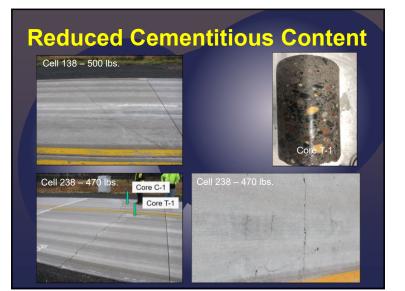
- Two Cells (138 & 238)
- Cells will be exposed to deicing agents

Cell Lengths:

Cell No.	138	238
Length	258 ft.	260 ft.

Reduced Cementitious Content

Pavement Details


- Standard panel size 12'W x 15
- Full depth concrete on grade
- Doweled Joints
- Cell 138
- Cementitious content = 500 lb./cy
- Cell 238
- Cementitious content = 470 lb./cy

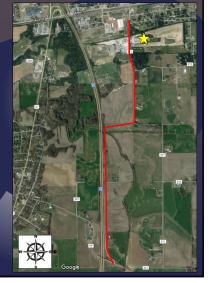
Compacted Concrete for Local Streets

Objectives

- 1) Evaluate the feasibility of producing and placing compact concrete pavement
- 2) Evaluate overall field performance
- 3) Determine if longer joint spacing can be utilized
- 4) Evaluate the effectiveness of utilizing macro fibers for load transfer

NRRA Involvement

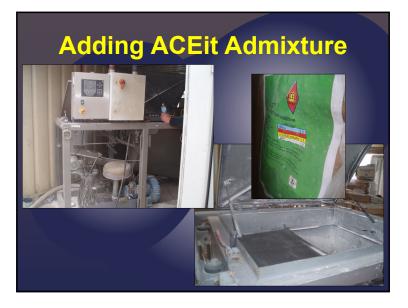
- Rigid Team selected CCP
- Cost more than anticipated
- SE District added CCP to a project
- Contract awarded
- Asked if NRRA funds could be used for research
- First NRRA satellite project


Test Sections

Constructed three test sections (SBL's)

- Test Section No. 1 (495 ft.)
- 15 ft. joint spacing
- No fibers
- Test Section No. 2 (504 ft.)
- 12 ft. joint spacing
- No fibers
- Test Section No. 3 (255 ft.)
- 15 ft. joint spacing
- 5 lbs./C.Y. macro fibers utilized (2" length)

Project Location


- Outer Road East side of I-55
- Scott County
- Approx. 2 miles
- Test Strip on Oct. 24, 2018
- Full Production started on Oct. 25, 2018
- SBL placed first

or

If interested in joining contact:
 Glenn Engstrom (Email: glenn.engstrom@state.mn.us)

Ben Worel (Email: ben.worel@state.mn.us)

The pool fund solicitation is posted at:
https://www.encledfund.org/Details/Solicitation/1531

Email: Brett.Trautman@modot.mo.gov Office: 573-751-1036