

Concrete Overlays – A Proven Technology

- The Challenge
- The Value Proposition
- Addressing Barriers to Implementation
- Getting Started
- Project Highlights
- Resources

The Challenge to Pavement Owners

- Existing infrastructure is continually deteriorating
 - Weather
 - Traffic
- Demands are increasing
 - Traffic
 - Ride quality
 - Continuous access
- · Funding is not increasing
 - Maintenance costs may exceed Agency revenue

Maintaining Existing Pavements

- · We can toss them out and start again
 - A long term solution
 - · Creates a disposal headache
 - · Loose equity of existing system
 - Takes energy to move them out of the way
 - Takes time = traffic delays

Maintaining Existing Pavements

- We can patch them buy a few years
 - Limited materials usage, energy and traffic impact
 - Short term solution

Maintaining Existing Pavements

- · We can overlay them with concrete
 - Use existing equity
 - Minimize sustainability impacts
 - Long term solution
 - Elevations / connections are tricky

Another Tool in the Toolbox

- Concrete Overlays Concrete placed over an existing surface to:
 - Extend life
 - Restore ride
 - Increase capacity

Costs

- Initial costs depend on
 - Competition
 - Local contractor experience
 - Local materials availability
- Can be competitive with other solutions

Environmental Impacts

- Long life and low maintenance reduces environmental impacts
- Improved fuel efficiency
- Low albedo, reducing the heat island effect
- Concrete is 100% recyclable
- May absorb CO₂

Resiliency

- Flooding saturates and weakens a pavement's foundation
- Concrete overlays reduce the stress in the asphalt layer
- · Sensitivity to subgrade softening is reduced

FHW

Effectiveness

- History
 - As early as 1901
 - 2000 miles in service in Iowa

Effectiveness

- Performance depends on:
 - Thickness
 - Condition of existing layer
 - Detailing
- Can be
 - Unbonded from existing layer to prevent reflective damage
 - Bonded to make use of system in place
- Life can be up to 35 years

Effectiveness

- Versatility
 - Can be applied to all surface types
 - Many degrees of distress can be accommodated
 - Has been used for a range of applications
 - Roadways
 - Intersections
 - Parking lots
 - Airfields

Effectiveness

- Rapid Construction
 - Depends on preparation effort required
 - Placement is fast with thinner sections
 - Productivity is less influenced by weather conditions
 - · Traffic can be restored in a weekend

Effectiveness

- Traffic Impact
 - Maintenance of traffic is simpler than reconstruction
 - Construction under traffic is possible
 - Early opening is possible

Effectiveness

- New technologies improve everything
 - New design methodologies
 - Performance Engineered Mixtures (PEM)
 - Reduced CO₂ footprint
 - Stringless control
 - Large, adaptable paving machines
 - Vibrator monitoring
 - Real Time Smoothness
 - Maturity monitoring

Effectiveness

- Safety
 - Reduced frequency of closures

Effectiveness

- Efficiency
 - Similar practices to conventional concrete paving
 - Simple plan sets are possible
 - Guide specifications available
 - Guidance documents available
 - Training and troubleshooting available

Challenges

- Exclusion from Agency Project Management System
 - Most PMS reflect local institutional experience and practices
 - Innovation is hard
 - Alternative solutions are not considered
 - Change needs to come from above

Challenges

- Technical Experience
 - Lack of technical competency of SHA staff can be a concern.
 - Help is available from CP Tech Center and FHWA EDC-6 program
 - Building technical competency is not difficult.
 - Lack of concrete paving contractors with experience may also be a concern.
 - Help is available from ACPA

Challenges

- Agency Focus on Surface Condition Only
 - Pressure to "cover as much as possible"
 - Unsustainable short term fixes
 - Ignores traffic disruptions and safety impacts
 - Diamond grinding can be a cost-effective surface treatment

Challenges

- Difficulty Identifying Candidate Projects
 - Suitable overlay type for the existing system
 - Elevation issues
 - Bridges
 - Connections
 - Services
- A range of solutions are available

Challenges

- Traffic Management/Detour Options
 - An overlay can be built faster than a reconstruct
 - Construction under traffic is possible
- Communication and planning...

Challenges

- Perceived Federal Funding Limitations
 - Concrete overlays can be considered preventative maintenance, qualifying them for use of federal aid funds.

Getting Started

- Start with a simple project
- Get help
- Evaluate performance
- Build competency
- Integrate the process into the mix of fixes

The Process

- Identify the type of pavement to be overlaid
- Assess the condition of the existing pavement
- Design
- Build
- Repeat

Project Highlights State/Route Existing Maintenance of Traffic Year Traffic Volume Functional Constructed Classifications Pavement & Strategy Overlay Type North Carolina/I-77 2007-2008 COC-U on Interstate 31,500 AADT Maintain two-lanes each with 25% trucks direction COA-B on Colorado/SH13 2016 Primary Hwy 1,400 AADT with 24-hour pilot car нма 20% trucks Oklahoma/SH51 2016 COA-B on Primary Hwy Closed to through traffic НМА COA-U on Iowa/County Route 2009 County road Closed to through traffic COA-U on Kansas/City of 2012 Urban 32,000 Staged construction Salina composite intersection maintaining traffic pavement

