IMPLEMENTATION OF PERFORMANCE ENGINEERED MIXTURES, AASHTO PP 84-20: I-35W NEAR LAKE STREET, HENNEPIN COUNTY, MINNESOTA

FINAL REPORT

Prepared by:

Jussara Tanesi, Ph.D. Derek Tompkins, Ph.D., P.E. American Engineering Testing, Inc.

Robert Golish, PE Minnesota Department of Transportation Office of Materials & Road Research

April 2021

Published by:

Minnesota Department of Transportation Office of Research & Innovation 395 John Ireland Boulevard, MS 330 St. Paul, Minnesota 55155-1899

This report represents the results of research conducted by the authors and does not necessarily represent the views or policies of the Minnesota Department of Transportation or [author's organization]. This report does not contain a standard or specified technique.

The authors, the Minnesota Department of Transportation, and [author's organization] do not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to this report.

ACKNOWLEDGMENTS

MnDOT gratefully acknowledges the support of the Federal Highway Administration Pooled Fund TPF-5(368), "Performance Engineered Concrete Paving Mixtures." We also thank MnDOT personnel, consultants, and contractors for all the additional work required to perform the testing and data collection related to the implementation of Performance Engineered Mixtures, AASHTO PP 84.

TABLE OF CONTENTS

CHAPTER 1: Introduction	1
1.1 Background	1
1.2 Scope and objectives	1
1.3 Overview of report	1
CHAPTER 2: Project Information	2
2.1 General Information on the Paving Project	2
2.2 MnDOT Specification and Pooled Fund TPF-5(368) Additional Testing	2
CHAPTER 3: Tests Performed	7
3.1 Aggregate Tests	7
3.2 Fresh Concrete Air Parameters - Super Air Meter (SAM)	7
3.3 Water-Cementitious Ratio of Plastic Concrete	7
3.4 Concrete Workability	7
3.5 Estimation of Strength by the Maturity Method	8
3.6 Formation Factor	8
CHAPTER 4: Chapter 4 Laboratory Trial Batching Results	9
4.1 Initial Trial Mixture Proportion and Fresh Test Results	9
4.2 Hardened Properties Test Results	10
CHAPTER 5: Field Testing	15
5.1 Final Concrete Paving Mixture Proportions	15
5.2 Aggregates	16
J.Z Aggregates	10
5.3 Fresh Properties	
	16
5.3 Fresh Properties	16 21
5.3 Fresh Properties	16 21 25
 5.3 Fresh Properties 5.4 Mechanical Properties 5.5 Durability Related Properties 	16 21 25 27
 5.3 Fresh Properties 5.4 Mechanical Properties 5.5 Durability Related Properties CHAPTER 6: Conclusions and Discussion 	16 21 25 27 27
 5.3 Fresh Properties 5.4 Mechanical Properties 5.5 Durability Related Properties CHAPTER 6: Conclusions and Discussion	16 21 25 27 27 27
 5.3 Fresh Properties. 5.4 Mechanical Properties 5.5 Durability Related Properties . CHAPTER 6: Conclusions and Discussion . 6.1 General Observations . 6.2 Super air meter . 	16 21 25 27 27 27 28

Appendix AMnDOT 3A21-43 Mix Design SummaryAppendix BField Testing

LIST OF FIGURES

Figure 1. Project location
Figure 2. Location of paving project along I-35W near Lake Street in Minneapolis, MN
Figure 3. Overview of paving operations5
Figure 4. Typical concrete pavement section
Figure 5. Typical concrete panels. (a) configuration of the panels, transverse, and longitudinal joints, (b) details of longitudinal joints, and (c) typical cross section of the panels
Figure 6. Composite gradation of the combined aggregates (Job Mix Formula) for 3A21-6, and acceptable range – Tarantula Curve
Figure 7. Fresh properties over the first 30 minutes after mixing the concrete: (a) Slump, (b) Total fresh air content, (c) SAM, and (d) VKelly10
Figure 8. Flexural strength-maturity relationship of mix 3A21-611
Figure 9. Formation factor (F _{app}) of the trial mixtures
Figure 10. Surface resistivity reported as per AASHTO T 358 [10] and as effective surface resistivity. (a) cylinders from mix 3A21-6 immersed in simulated pore solution, (b) zoom-in of (a) for the first 20 days, (c) cylinders from mix 3A21-6 immersed in simulated pore solution or sealed
Figure 11. Composite gradation of the combined aggregates (Job Mix Formula) for mix MnDOT 3A21-43 and acceptable range – Tarantula Curve15
Figure 12. Average JMF moving average and designed JMF16
Figure 13. Calculated average w/cm and w/cm, measured according to AASHTO T 318 [19]17
Figure 14. Concrete unit weight of batches between 4/21/20 and 5/7/20
Figure 15. Total fresh air content over the period between 4/21/20 and 5/5/20
Figure 16. SAM number before and after the paver
Figure 17. Comparison between SAM and fresh air content: (a) before paver, (b) after paver, and (c) correlation between SAM and total fresh air content for all "Likely Correct" SAM tests. All valid data best fit line ($R^2 = 0.0105$) includes before and after paver. The other two best fit lines consider before and after paver separately

Figure 18. Correlation between SAM and hardened concrete air void system: (a) entrained air, (b) spacing factor, and (c) specific surface. Green and Red areas delimit the passing-fail the threshold SAM and the hardened air void parameter
Figure 19. Maturity curve for mixture 3A21-4322
Figure 20. Flexural strength of specimens at 2 or 3 days of age. Dates shown represent the casting dates. Flexural strength represents the average of two beams, with exception of strength of specimens cast on 4/22/20 and 4/27/20, that represent a single beam. Error bars represent the range of strengths obtained
Figure 21. Flexural strength over time for different batches of concrete from mixture 3A21-4324
Figure 22. Concrete resistivity over time: T 358 SR – surface resistivity reported as per T 358, Effective SR – T 358 SR corrected for the cylinder's geometry, and BR – bulk resistivity determined as per TP 119. All specimens conditioned according Option A, with exception for the cores
Figure 23. Formation factor (F _{app}) based on effective surface resistivity and bulk resistivity26

LIST OF TABLES

Table 1. Mixture Proportions of Trial Batches
Table 2. Fresh Properties of Trial Batches and MnDOT Specification [1] and AASHTO PP 84 [16]
Requirements9
Table 3. Strength and Air Void System of Trial Batches11
Table 4. Concrete Electrical Surface Resistivity reported as per AASHTO T 358 [10] and Corrected for
Specimen Size (Effective Surface Resistivity)13
Table 5. Calculated formation factor (F _{app}). 13
Table 6. Mixture 3A21-43 Proportions Summary 15
Table 7. Summary of SAM results - Before and After Paver 19
Table 8. Summary SAM results and Hardened Concrete Air Voids System
Table 9 Maturity test results in the field and estimated modulus of rupture (MR) based on the maturity-
third point flexural strength relationship curve presented in Figure 19

EXECUTIVE SUMMARY

The Minnesota Department of Transportation (MnDOT), as a participant in the Federal Highway Administration Pooled Fund TPF-5(368), "Performance Engineered Concrete Paving Mixtures," specified the use of Performance Engineered Mixture (PEM) designs for two paving projects constructed in Minnesota: the Trunk Highway TH-60 in Watonwan County (MnDOT S.P. 8309-52), for which a report has been prepared in April 2020, and the I-35W in Hennepin County near Lake Street in the City of Minneapolis (MnDOT S.P. 2782-327). The latter is the subject of this report.

The project, located on I-35W in Hennepin County, comprised of approximately 4.929 miles of mainline, with concrete pavements ranging from 8 to 12 inches in depth. The mixtures for the PEM initiative were poured between April and May 2020 on 10-inch thick concrete pavement. Super Air Meter (SAM) testing, aggregate gradation monitoring, flexural strength testing, strength monitoring through maturity, and concrete surface resistivity testing, among other testing, were carried out through the construction period.

In summary, the following observations of the Authors on the PEM implementation can be made. First, maturity faced some challenges since the materials for the mixtures in the field were not the same as the trial mixtures, but in general terms, it was a very useful tool and will continue to be used. While MnDOT has not established if formation factor (FF) will be incorporated in the specifications, if FF is incorporated, it is likely to be used only for mixture qualification, not for quality control/assurance.

Finally, the use of SAM also presented some difficulties as 46% of the tests performed in the field were deemed as "not run properly". Additional training and experience should help reduce the number of "not run properly" test that occur. Future plot projects using the SAM will help MnDOT determine how best to use the SAM in the future.

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

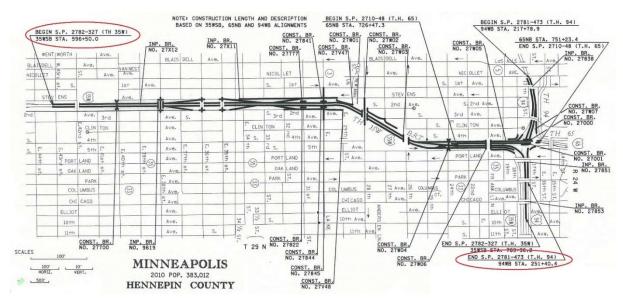
The Federal Highway Administration Pooled Fund TPF-5(368), "Performance Engineered Concrete Paving Mixtures," is a collaborative effort among many state transportation agencies to deploy performance engineered mixtures in highway paving projects. As a participant in this study, the Minnesota Department of Transportation (MnDOT) has worked to implement Performance Engineered Mixture (PEM) designs in paving projects constructed in Minnesota and fulfilling Work *Task 5* of TPF-5(368). This report presents the results obtained in MnDOT 2782-327, a non-reinforced 10-inch, doweled pavement on I-35W in Hennepin County near Lake Street in the City of Minneapolis, Minnesota (Figure 1).

Figure 1. Project location

1.2 SCOPE AND OBJECTIVES

This portion of the TPF-5(368) Task 5 effort focused on the following objectives:

- On-site training and support for contractor use of the Super Air Meter (SAM)
- Collect and compile all contractor construction QA/QC test data related to PEM
- Complete PEM Pooled Fund Administrator data collection spreadsheet


In addition, the fulfillment of the Task 5 objectives includes the production of this post-construction report summarizing the project and data collection.

1.3 OVERVIEW OF REPORT

This report provides general information on tests performed and a summary of test results related to the use of PEM for the concrete pavement on I-35W in Hennepin County. Appendices to the report include documents of the MnDOT mixture design development, laboratory test results (as described in section 2.2.1), and field test results, including the TPF-5(368) Task 4 (see section 2.2.2) documentation.

CHAPTER 2: PROJECT INFORMATION

The project was located along I-35W near Lake Street in Minneapolis, MN. The project area is illustrated in Figure 2. The project construction operations overview is shown in Figure 3.

2.1 GENERAL INFORMATION ON THE PAVING PROJECT

The general information relating to the paving project include the following items.

- The contractor for this project was Shafer Contracting Company, from MN.
- The results presented in this report are referent to the paving that occurred between April 21 and May 5 of 2020.
- The typical pavement consisted of a 15-foot square panel of 10.0-inch non-reinforced concrete over a 4.0-inch aggregate base (CV) class 5Q (Figure 4 and Figure 5).
- Transverse joints depths were ¼ of the pavement thickness with 1.25-inch diameter high performance dowel bars.
- The longitudinal joints along the pavement were unsealed paved construction joints. The longitudinal joints at shoulders were unsealed construction joints, with keyway and tie bars to tie the concrete curbs and gutters to the concrete shoulders (Figure 5). The ties were No. 4, 30-inch long tie bars, every 3-foot.

2.2 MNDOT SPECIFICATION AND POOLED FUND TPF-5(368) ADDITIONAL TESTING

MnDOT Specification 2301 [1] for Contractor mixture designs is mainly prescriptive. It includes a maximum w/cm ratio, a minimum cementitious content, aggregate gradation requirements, minimum aggregate size, a maximum content of supplementary cementitious, and an acceptable slump range. In the project described in this report (MnDOT SP 2782-327), this specification was modified to include the

tasks of the Federal Highway Administration Pooled Fund TPF-5(368). The following subsections describe tasks that were added to the MnDOT specification.

2.2.1 Laboratory Testing

Tasks 1 and 2 – This task refers exclusively to preparing and testing trial batches of the concrete mixture proportions. The contractor was asked to provide the test results of the trial batches for the following:

- Third Point Flexural Strength at 1, 3, 7 and 28 days (sets of 3) AASHTO T 97[2],
- Compressive Strength at 1, 3, 7 and 28 days (sets of 3) AASHTO T22 [3],
- Unit Weight AASHTO T 121M/T 121 [4],
- Slump Test AASHTO T 119M/T 119 [5]– at <5 minutes, 15 minutes, and 30 minutes after the completion of mixing,
- Box Test (AASHTO TP 137 [6]) and Modified V-Kelly Test (AASHTO TP 129 [7]) at <5 minutes, 15 minutes, and 30 minutes after the completion of mixing,
- Air Content and SAM number AASHTO TP 118 [8] at <5 minutes, 15 minutes, and 30 minutes after the completion of mixing as determined by Super Air Meter,
- Hardened Air at 7 days ASTM C457/C457M [9],
- Surface Resistivity AASHTO T 358 [10]– measured on 28-day compressive strength cylinders,
- Aggregate Voids ASTM C29/C29M [11],
- Maturity Method ASTM C1074 [12], [13],
- Sealed Resistivity AASHTO TP 119 [14] measured on 28-day compressive strength cylinders, and
- Aggregate gradation AASHTO T 27 [15] and preparation of the tarantula curve.

2.2.2 Field Testing

Task 2 - In this task, the contractor was asked to develop the Maturity-Strength Relationship for the trial batches – per MnDOT Specification 2461.G.6.a, "Development of Maturity-Strength Relationship." [13] If changes in the concrete mixture occur and a new maturity curve is required, the Contractor is allowed to develop the new maturity curve in the laboratory or the field. The contractor was also asked to perform the following tests during construction using the SAM and cast cylinders:

- Air Content and SAM number AASHTO TP 118 [8]:
 - Before consolidation (before paver) 1 per 1500 yd3 and 1 from the first 10 loads of each day,
 - After consolidation (after paver) 1 per ½ day of slip form paving and 1 SAM at the same location where a "before consolidation" SAM was determined.
- Cast two cylinders (4 by 8 in. or 6 by 12 in.) per day for Hardened Air content ASTM C457/C457M "Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete [9]: One cylinder from where the "before SAM consolidation"

was determined (i.e., before the paver) and one cylinder from where the "after SAM consolidation" was determined (i.e., after the paver).

• Cast one cylinder (4 by 8 in. or 6 by 12 in.) if the SAM number is greater than or equal to 0.30. Sample the concrete from the same location.

Task 3 – The contractor was asked to provide detailed descriptions of the actions to monitor the quality constituent materials, construction process, and the final product including test methods and frequencies of those tests.

Task 4 – The contractor was asked to provide the following documentation:

- Summary of the Job Mix Formula (JMF) Moving Average (Appendices B2.1: Aggregates: JMF Worksheets and B2.2: Aggregates: Moving Average),
- Individual composite gradations against the tarantula curve (Appendices B2.3: Aggregates: QA test reports and B2.4: Aggregates: Tarantula Curves),
- Contractor plastic air content and SAM number tests (Appendices B3.4: Concrete: Fresh Air Content and B3.5: Concrete: SAM),
- Aggregate Moisture Content (%) (Appendix B2.5: Aggregates: Moisture Content),
- W/C Ratio (Appendix B3.1: Concrete: Water/ Cementitious Ratio),
- Unit Weight (Appendix B3.3: Concrete: Unit Weight),
- Water Content (Appendix B3.2: Concrete: Ingredients Summary),
- Flexural Strength (Appendix B4.3: Concrete: Flexural Strength),
- Maturity (Appendix B4.2: Concrete: Strength-Maturity Data),
- Batch tickets (Appendix C), and
- Reports, records, and diaries developed during construction activities.

Figure 3. Overview of paving operations.

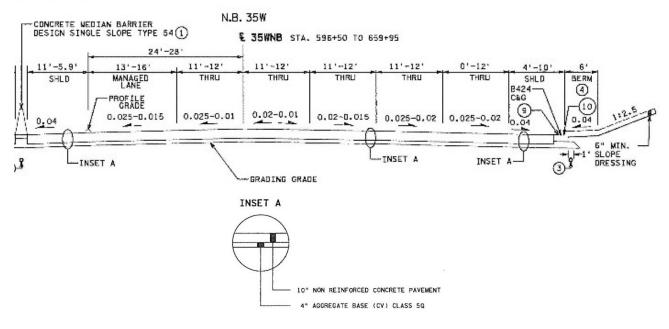


Figure 4. Typical concrete pavement section.

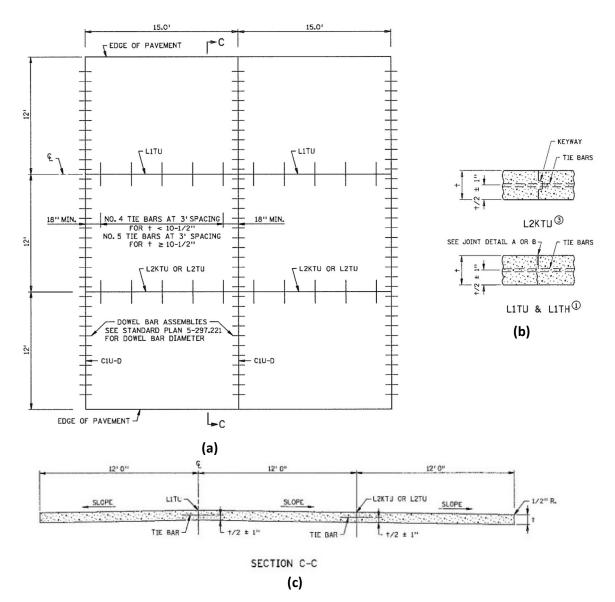


Figure 5. Typical concrete panels. (a) configuration of the panels, transverse, and longitudinal joints, (b) details of longitudinal joints, and (c) typical cross section of the panels.

CHAPTER 3: TESTS PERFORMED

In addition to the more traditional concrete tests to characterize fresh and hardened concrete properties in the laboratory and field, MnDOT, the paving contractor (Shafer Contracting Company), and subcontractors to MnDOT (American Engineering Testing) conducted additional tests as indicators of the concrete paving mixtures performance. The tests were selected based on the Federal Highway Administration Pooled Fund TPF-5(368) and AASHTO PP 84 [16]. Following is a summary of these tests.

3.1 AGGREGATE TESTS

3.1.1 Gradation – Job Mix Formula and Tarantula Curve

The Job Mix Formula (JMF) contains proportions of each aggregate fraction and the individual gradations for each aggregate fraction (as per AASHTO T 27 [15]), as well as the composite gradation of the combined aggregates. See section 3 of MNDOT 2301 Specifications [1].

3.1.2 Unit Weight

The unit weight of the aggregates was determined following a modified version of ASTM C29/C29M [11], proposed by Taylor et al. [17]. In this methodology, the unit weight of the aggregates is not obtained on individual aggregates, but rather, on the blend of all aggregates, at the proportions they will be used in the mixture.

3.2 FRESH CONCRETE AIR PARAMETERS - SUPER AIR METER (SAM)

The Super Air Meter (SAM) method (AASHTO TP 118 [8]) assesses the volume of air and gives an idea of the air void system using a measure known as the SAM number. The SAM number is used as an indicator of appropriate air spacing. In addition, the spreadsheet provided for the SAM calculation, establishes some criteria to determine whether the test result is considered "Likely Correct" or "Run Incorrect" [18].

3.3 WATER-CEMENTITIOUS RATIO OF PLASTIC CONCRETE

AASHTO T 318 [19] is used to determine the w/cm of the concrete delivered to the job site by drying the freshly mixed concrete in a microwave oven.

3.4 CONCRETE WORKABILITY

3.4.1 Vibrating Kelly ball (VKelly)

The vibrating Kelly ball test, AASHTO TP 129 [7], evaluates the consistency of fresh concrete by measuring the depth of penetration of a metal mass into plastic concrete under the force of gravity and quantitatively assessing the responsiveness to vibration of dry concrete mixtures, as is desired of a mixture suitable for slipform paving.

3.4.2 Box test

The box test, AASHTO TP 137 [6], assesses the workability of a given concrete paving mixture and its ability of being properly placed, consolidated, and finished. The field box test was performed on the mixture according to the procedure outlined in AASHTO TP 137 [6]. Box test results include (A) a qualitative measure to estimate the surface percent voids, and (B) slump edge.

3.5 ESTIMATION OF STRENGTH BY THE MATURITY METHOD

In pavement construction, a strength-maturity relationship is developed when the in-place concrete strength is required to be estimated, normally with the intention to open the pavement for traffic. MnDOT specification 2461.3.G.6 [1], which was based on ASTM C1074 [12], describes how the strength-maturity relationship shall be developed. Additional information specific to concrete pavements are presented in MnDOT specification 2301.3.0 [13].

3.6 FORMATION FACTOR

Formation Factor (F) is not a test method, but a durability performance measure and is calculated as the ratio between the concrete electrical resistivity and the concrete pore solution resistivity. Formation Factor is used in AASHTO PP 84 [16] as a criterion for transport properties in mixture proportioning and qualification, and as the basis to obtain a freeze-thaw durability criterion, known as the time for critical saturation.

3.6.1 Surface Resistivity (SR)

The most widely used is AASHTO T 358 - Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration [10]. AASHTO T 358 [10] obtains an "apparent" surface resistivity as it does not include the specimen geometry correction factor, so it yields different resistivity results for different sizes of cylinders.

CHAPTER 4: CHAPTER 4 LABORATORY TRIAL BATCHING RESULTS

4.1 INITIAL TRIAL MIXTURE PROPORTION AND FRESH TEST RESULTS

4.1.1 Mixture Proportion

In April 2019, a mixture was prepared, cured, and tested at the AET laboratories.

- Table 1 presents the mixture proportions and Figure 6 shows the combined aggregate gradation, as well as the acceptable range, by means of a tarantula curve. Fresh properties PEM-specific tests were performed immediately after mixing, at 15 minutes after mixing, and at 30 minutes after mixing.
- Table 2 and Figure 7 present the fresh properties test results. Overall, the fresh properties did not change significantly over the first 30 minutes. This table also shows the MnDOT 2301 and AASHTO PP 84 requirements. Additional information on mixture proportions and fresh test results can be found in Appendix A.

ltem	Amount per yd ³	
Item	3A21-6	
Type I/II Portland Cement, Holcim St. Genevieve (lb)	400	
Class C Fly Ash, Lafarge Portage (lb)	170	
Coarse Aggregate, Empire #67, Pit #19129 (lb)	1,038	
Coarse Aggregate, Empire #4, Pit #19129 (lb)	661	
Fine Aggregate, Empire Sand, Pit #19129 (lb))	1,191	
Fine Aggregate, CIA, Pit #19129 (lb)	249	
Water (lb)	199	
Air Entrainer, GRT Polychem SA (oz/cwt)	0.53	
Water Reducer, GRT Polychem 400 NC (oz/cwt)	8.42	
Water to Cementitious Ratio	0.35	

Table 1. Mixture Proportions of Trial Batches

Table 2. Fresh Properties of Trial Batches and MnDOT Specification [1] and AASHTO PP 84 [16] Requirements.

		Initial	15 Minutes	30 Minutes	Requirements
Unit W	Unit Weight (lb/ft³)		148.4	148.4	N.R.
Slu	ımp (in)	2.50	2.50	2.25	1⁄2-3*
Air Co	ontent (%)	7.0 6.8 6.8 5.5-		5.5-9.0*	
SAM	Number	0.23	0.24	0.24	≤ 0.30*
Box Test	Ratings	1,1,2,2	1,1,2,2	1,1,2,2	≤2 * *
	Edge Slump (in)	0	0	0	N.R.
VKelly I	ndex (in/vs)	x (in/vs) 0.711 0.711 0.621 0.6 -		0.6 - 1.2 **	

* MnDOT 2301 Specification Requirement; ** AASHTO PP 84 requirement; N.R. - No Requirement

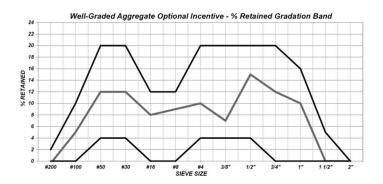


Figure 6. Composite gradation of the combined aggregates (Job Mix Formula) for 3A21-6, and acceptable range – Tarantula Curve.

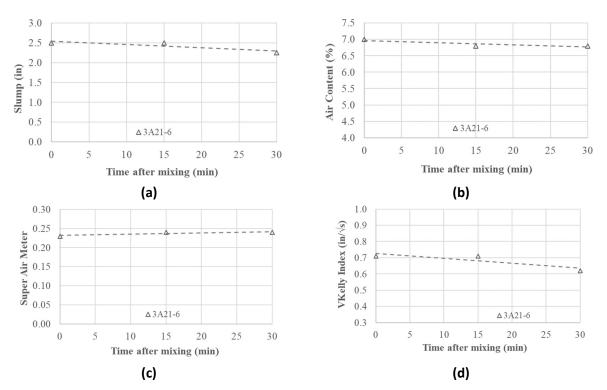


Figure 7. Fresh properties over the first 30 minutes after mixing the concrete: (a) Slump, (b) Total fresh air content, (c) SAM, and (d) VKelly.

4.2 HARDENED PROPERTIES TEST RESULTS

A summary of the trial batch test results is presented in the following sub-sections. For detailed information and results refer to Appendix A.

4.2.1 Maturity

The strength-temperature relationship can be established using either compressive or flexural strength. Since it was envisioned that flexural strength would be used to estimate the strength during

construction, only the flexural-temperature curves for mixture 3A21-6 (Figure 8) are shown below. For information on the compressive strength curve development and results, refer to Appendix A.

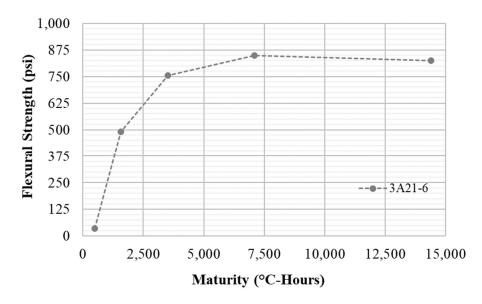


Figure 8. Flexural strength-maturity relationship of mix 3A21-6.

4.2.2 Strength and Hardened Air

Table 3 presents the flexural and compressive strengths, as well as the hardened air void system test results. This table also shows the MnDOT 2301 requirements [1]. The hardened total air content was lower than the measured fresh air content (Table 2) and lower than the specified range of 5.5-9.0%. However, their spacing factor was considered adequate (≤ 0.008 in.).

Age	AASHTO T 97 [2] – Flexural Strength	AASHTO T 22 [3] – Compressive Strength			
1-day (psi)	35	2,350			
2-day (psi)	445	5,090			
3-day (psi)	490	6,270			
7-day (psi)	755	7,260			
14-day (psi)	850	7,740			
28-day (psi)	825	8,680			
ASTM C457 [9] – Hardened Air					
Total air (%)	4	.3			
Specific Surface (in ² /in ³)	550				
Spacing Factor (in)	0.008				

4.2.3 Resistivity and Formation Factor

Table 4 presents the electrical resistivity results obtained according to AASHTO T 358 [10] on 6 by 12 in. cylinders. The surface resistivity is presented in two different ways: as per AASHTO T 358 [10] and after the application of the geometry correction factor, which takes into account the specimen size.

Resistivity was determined in two sets of specimens: in one set, after demolding, specimens were immersed in calcium hydroxide saturated, simulated pore solution, as prescribed in AASHTO TP 119 [14] Option A, where they remained until testing was completed, while in the second set, specimens were removed from the molds only for testing and inserted back in the molds until testing was completed, herein referred as sealed specimens. These two curing/conditioning procedures are defined in the "Conditioning" section of AASHTO TP 119 [14], as "Option A" and "Option B", respectively. Conditioning option B method was nicknamed by the industry as the "Bucket Test", however, it does not represent a test, only a conditioning method.

The importance of correcting the values obtained according to AASHTO T 358 [10] for the geometry of the specimen is clear in Figure 10a where the effective surface resistivity is about 70 % of that of the values reported according to AASHTO T 358 [10]. Special care must be exercised so that the two values are not used interchangeably. Only the effective surface resistivity is an indication of the material property and is comparable to the bulk resistivity (AASHTO TP 119 [14]), consequently, only the effective surface resistivity shall be used to calculate the formation factor.

Figure 10a also shows that, for the mixtures tested and cured in pore solution, both the AASHTO T 358 [10] surface resistivity and the effective surface resistivity doubled from 28 days to 91 days. Figure 10b presents a zoom of the first 20 days of testing. It is interesting to highlight that the first measurement was taken at 1 day, when the cylinders were demolded. Then the resistivity decreases from day 1 to day 3, because the cylinders are immersed in calcium hydroxide saturated, simulated pore solution, causing the degree of saturation of the cylinders to increase and, consequently, their resistivity to decrease.

Figure 10c compares the resistivity for two different curing conditions: immersion in calcium hydroxide saturated, simulated pore solution, and sealed. The effect of the curing on the resistivity is very clear: the sealed specimens present a much lower degree of saturation, consequently a much higher resistivity. The magnitude of the effect of the curing on the resistivity depends on the mixture, and its permeability. At 91 days, the ratio between the sealed resistivity and the resistivity of immersed specimens was found to be 1.9 for mix 3A21-6.

Formation factor was calculated for the cylinders immersed in calcium hydroxide saturated, simulated pore solution, by dividing the effective surface resistivity found in Table 4 by the pore solution resistivity, believed to be the same as the solution used to condition the specimens, i.e., 0.0127 k Ω ·cm. Formation factor (F_{app}) is presented in Table 5 and Figure 9.

According to AASHTO PP84 [16], for concrete subjected to freezing and thawing and deicer application the formation factor shall be greater than or equal to 1,000 at 91 days. The trial batch for the mixture 3A21-6 complied with that requirement.

	Mix 3A21-6					
Age	Surface Resistivity ¹	Effective Surface Resistivity ²				
Specimens Immersed in Calcium Hydroxide Saturated Pore Solution (Option A of AASHTO TP 119 [14])						
1-day (kΩ.cm)	6.7	4.7				
3-day (kΩ.cm)	6.1	4.3				
5-day (kΩ.cm)	7.3	5.1				
7-day (kΩ.cm)	7.9	5.5				
14-day (kΩ.cm)	9	6.3				
28-day (kΩ.cm)	11.2	7.9				
56-day (kΩ.cm)	12.1	8.5				
91-day (kΩ.cm)	21.8	15.3				
Specimens in S	Sealed Condition (Option B of AASHTO	TP 119 [14])				
2-day (k Ω .cm) ³	7	4.9				
28-day (kΩ.cm)	20.3	14.2				
91-day (kΩ.cm)	41.1	28.8				

 Table 4. Concrete Electrical Surface Resistivity reported as per AASHTO T 358 [10] and Corrected for Specimen

 Size (Effective Surface Resistivity)

¹ Surface Resistivity reported as per AASHTO T 358 [10] (no geometry correction factor applied); ² Effective Surface Resistivity reported geometry correction factor applied to the T 358 results. For 6 by 12 in cylinders, results of AASHTO T 358 [10] are multiplied by 0.699; ³ Measurement at age of 2 day, instead of 1 day

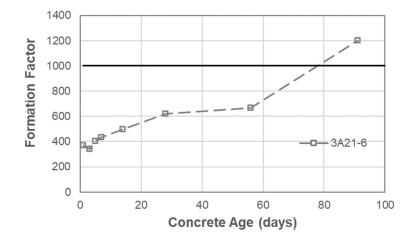


Figure 9. Formation factor (F_{app}) of the trial mixtures.

Table 5.	Calculated	formation	Tactor	(Fapp).	

	Formation Factor (F _{app})							
Age (days)	1 d	3 d	5 d	7 d	14 d	28 d	56 d	91 d
Mix 3A21-6	369	339	403	433	498	620	666	1201

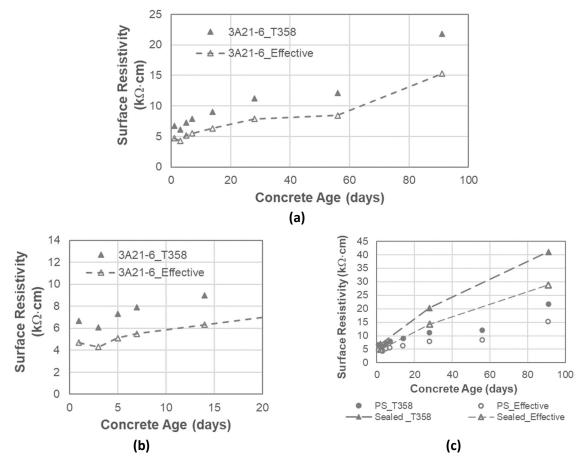


Figure 10. Surface resistivity reported as per AASHTO T 358 [10] and as effective surface resistivity. (a) cylinders from mix 3A21-6 immersed in simulated pore solution, (b) zoom-in of (a) for the first 20 days, (c) cylinders from mix 3A21-6 immersed in simulated pore solution or sealed.

CHAPTER 5: FIELD TESTING

5.1 FINAL CONCRETE PAVING MIXTURE PROPORTIONS

Prior to construction, the Class C fly ash, Lafarge Portage, used in the trial batches, became unavailable and had to be replaced by a different source of Class C fly ash, Lafarge Oak Creek Power Plant at Oak Creek, WI. As a result, mixture 3A21-6 was revised and is shown in Table 6 as 3A21-43. The composite gradation of combined aggregates for mix 3A21-43, as well as the acceptable range, is shown in Figure 11.

ltom	Amount per yd ³			
Item	3A21-43			
Type I/II Portland Cement, Holcim St. Genevieve (lb/yd ³)	400			
Class C Fly Ash, Oak Creek (lb/yd ³)	170			
Class C Fly Ash (%)	30			
Total cementitious content (lb/yd3)	570			
Coarse Aggregate, Empire #67, Pit #19129 (lb/yd ³)	1,080			
Coarse Aggregate, Empire #4, Pit #19129 (lb/yd ³)	679			
Fine Aggregate, Empire Sand, Pit #19129 (lb/yd ³)	1,322			
Water (lb/yd³)	222			
Air Entrainer, GRT Polychem SA (oz/cwt)	0.5 to 3			
Water Reducer, GRT Polychem Paver Plus (oz/cwt)	0 to 8			
Water to Cementitious Ratio	0.39			
Paste content (%)	24.4			

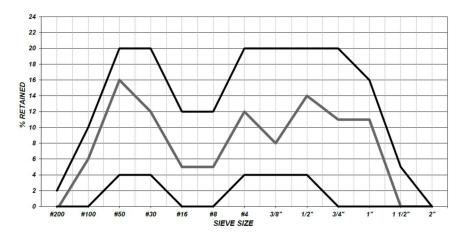


Figure 11. Composite gradation of the combined aggregates (Job Mix Formula) for mix MnDOT 3A21-43 and acceptable range – Tarantula Curve.

5.2 AGGREGATES

The JMF data provided by the contractor related to aggregates, as requested in *Task 4* of the Pooled Fund TPF-5(368), for the mixtures cast between 04/21/20 and 05/07/20 are summarized below. The JMF moving average summary is shown in Figure 12. They were obtained from a total of 108 samples of aggregates, i.e., 36 samples of each aggregate fraction (CA#1, CA#2 and FA#1). All JMF fell within the tarantula curve. Daily information on the aggregate gradation and moisture content can be found in Appendices B2.1: Aggregates: JMF Worksheets, B2.3: Aggregates: QA test reports, B2.4: Aggregates: Tarantula Curves, and B2.5: Aggregates: Moisture Content.

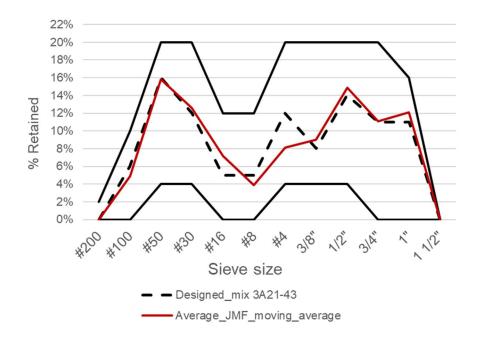


Figure 12. Average JMF moving average and designed JMF.

5.3 FRESH PROPERTIES

5.3.1 Water/ Cementitious Ratio

As part of the *Task 4* of TPF-5(368), the contractor provided the Agency the aggregate moisture content, the average calculated w/cm, and the measured w/cm (according to AASHTO T 318 [19], the microwave test).

The calculated average w/cm was determined using the aggregate moisture contents of a randomly selected concrete batch, and taking into account the average aggregate moisture content and cementitious content of 10 total batches surrounding the selected concrete batch. A total of 37 calculated average w/cm are reported in Figure 13. The average of these 37 calculated average w/cm

was found to be 0.35, with a maximum w/cm of 0.39 and a minimum of 0.29. In addition, at least once a day on the selected batch, the w/cm was measured according to AASHTO T 318 [19] using a microwave. Figure 13 also shows the results obtained from 19 microwave tests. The average measured w/cm results from the microwave tests was of 0.34, a maximum of 0.37 and a minimum of 0.31. No measurement was above the maximum allowed of 0.40. Individual test results can be found in Appendix B3.1: Concrete: Water/ Cementitious Ratio.

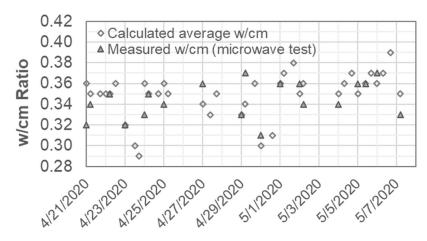


Figure 13. Calculated average w/cm and w/cm, measured according to AASHTO T 318 [19].

5.3.2 Unit Weight

The unit weight of concrete was determined on 37 batches. The results are presented in Figure 14. The concrete unit weight varied from 141 to 147 lb/ft³, with an average of 145 lb/ft³. Individual test results can be found in Appendix B3.3: Concrete: Unit Weight.

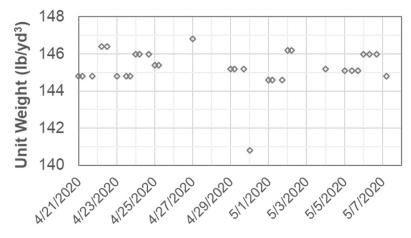
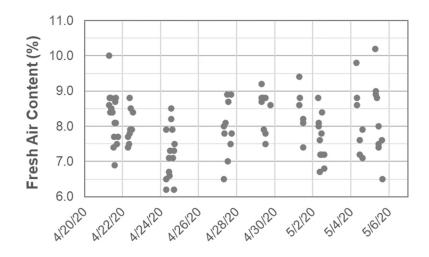



Figure 14. Concrete unit weight of batches between 4/21/20 and 5/7/20.

5.3.3 Fresh Air Content

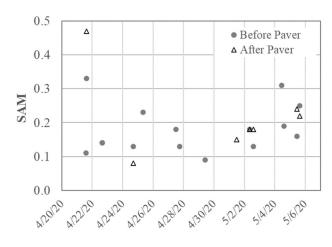
Total fresh air content was measured, according to AASHTO T 152 [20]. The individual data is presented in B3.4: Concrete: Fresh Air Content. The average total fresh air content between 4/21/20 and 5/5/20

was 8.0%, with a standard deviation of 0.85%. The lowest total air was 6.2% measured on 4/24 and 4/27. For the period reported herein, all the data is within the specification range of 5.5-9.0%. Individual test results can be found in Appendix B3.4: Concrete: Fresh Air Content.

5.3.4 Super Air Meter

SAM tests were conducted before and after the paver. A total of 36 SAM tests were performed, 21 of the SAM tests considered "Likely Correct" if the SAM at 14.5 psi, 30 psi, and 45 psi were above 0 and if the reliability factor (indicated as "SAM's Chance" in the worksheets) was above or equal to 0.5. The reliability factor is a parameter that is automatically calculated in the SAM worksheets provided for the study – more detail on the reliability factor is provided in Hall et al [18]. The SAM results that were "Likely Correct" are summarized in Table 7. Figure 16 shows the "Likely Correct" results. The air content in these tables represent the total air measured with SAM. Individual test results can be found in Appendix B3.5: Concrete: SAM.

Two cylinders were cast per day, 1 before and 1 after the paver for the evaluation of the hardened air. An additional cylinder was cast for the evaluation of hardened air if SAM was greater than or equal to 0.30. A limited number of these cylinders (9 total) were tested for the determination of the air-void system in hardened concrete, according to ASTM C457/C457M [9]. The results were then compared to the SAM for the same sample. From the nine cylinders, eight of them correspond to pairs representing before and after the paver (Table 8 and Figure 18).


Table 8 shows that the fresh air content is, in all cases but one, higher than the total air measured according to ASTM C457/C457M [9]. It also shows that both the ASTM C457/C457M [9] total air content and entrained air is higher before the paver, comparing to after the paver, as expected. The spacing factors before and after the paver were very low and no considerable difference was found between before and after the paver. The same way, the specific surface differences between before and after the paver were not considerable significant.

The often-quoted rule of thumb of a good air void system are spacing factor ≤ 0.008 in. and specific surface $\geq 600 \text{ in}^2/\text{in}^3$. All of the nine cylinders presented very good air void systems, with spacing factors between 0.002 and 0.004 in. and specific surfaces above 920 in $^2/\text{in}^3$, no threshold for these parameters are shown in Figure 18 b and c, however, a threshold for SAM of 0.25 is shown. The areas in red distinguish cylinders that passed the thresholds for surface area or specific surface but had a measured SAM above 0.25.

A complete ASTM C457/C457M [9] report can be found in Appendix B4.1: Concrete: Hardened Air.

Date	Location	%) Air Content with	6) – Measured SAM	SAM (at pressure 45 psi)			
		Before Paver	After Paver	Before Paver	After Paver		
4/21/2020	635+00	8.7	8.1	0.33	0.47		
4/21/2020	638+50	8.1	-	0.11	-		
4/22/2020	633+75	8.1	-	0.14	-		
4/24/2020	609+25	7.3	6.2	0.13	0.08		
4/25/2020	602+00	-	6.6	-	0.21		
4/27/2020	76+69	8.9	-	0.18	-		
4/27/2020	596+65	8.9	-	0.13	-		
4/29/2020	612+85	8.9	-	0.09	-		
5/1/2020	750+00	-	7.4	-	0.15		
5/2/2020	728+75	7.6	6.7	0.18	0.18		
5/2/2020	746+50	7.2	6.8	0.13	0.18		
5/4/2020	26+25	7.6	-	0.31	-		
5/4/2020	74+80	7.9	-	0.19	-		
5/5/2020	740+75	8	7.4	0.16	0.24		
5/5/2020	728+15	7.6	6.5	0.25	0.22		

Table 7. Summary of SAM results - Before and After Paver

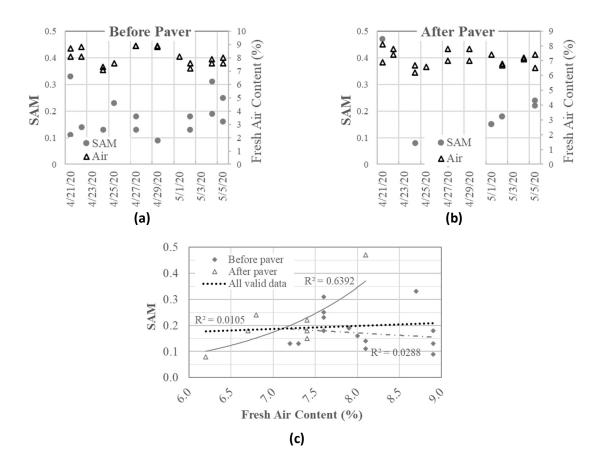


Figure 17. Comparison between SAM and fresh air content: (a) before paver, (b) after paver, and (c) correlation between SAM and total fresh air content for all "Likely Correct" SAM tests. All valid data best fit line (R² = 0.0105) includes before and after paver. The other two best fit lines consider before and after paver separately.

Casting Date		4/24	4/2	25	5/2		5/2		5/4	
	Station	609+25	602-	+00	728-	+75	746+50		26+25	
Re	elation to Paver	After	Before	After	Before	After	Before	After	Before After	
Fresh	SAM	0.08	0.23	0.21	0.18	0.18	0.13	0.18	0.31	0.18
Conc.	Total Air Content, %	6.2	7.6	6.6	7.6	6.7	7.2	6.8	7.6	7.2
0	C457 at Age, days	200	199		192		192		190	
Concrete	Total Air Content, %	6.3	5.6	5.4	6.4	4.5	5.5	4.9	6.2	6.8
	Entrained Air, %	4.9	4.7	4.1	5.3	3.9	4.6	4.1	4.7	5.2
pər	Entrapped Air, %	1.4	0.9	1.3	1.1	0.6	0.9	0.8	1.5	1.6
Hardened	Specific Surface, in ² /in ³	1090	1090	920	1010	1080	1160	1060	1050	1090
-	Spacing Factor, in.	0.003	0.003	0.004	0.003	0.004	0.003	0.003	0.002	0.002

Table 8. Summary SAM results and Hardened Concrete Air Voids System.

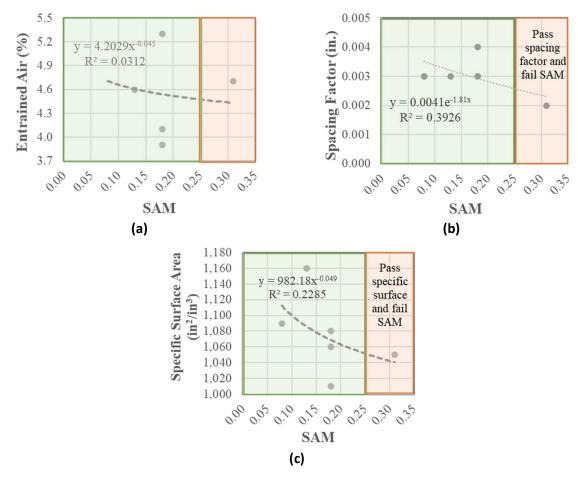


Figure 18. Correlation between SAM and hardened concrete air void system: (a) entrained air, (b) spacing factor, and (c) specific surface. Green and Red areas delimit the passing-fail the threshold SAM and the hardened air void parameter.

5.4 MECHANICAL PROPERTIES

5.4.1 Maturity Tests

For this project the maturity-strength relationship curve was initially developed in the laboratory (see section 2.3.1) according to ASTM C1074 and was expected to be used in the field to estimate the strength. For such, the relationship developed in the laboratory was supposed to be validated in the field on the first day of paving and be within 10% of the limits in the laboratory.

The specification for this project also calls for the development of a new maturity-strength curve if mixture proportions change by more than 5% by mass, if the w/cm increases by more than 0.02 or if the source of materials change.

Since the original mixtures tested in the laboratory could not be used due to a change in the fly ash, new maturity curves, based on the third point flexural strength, were developed for the field mixtures. Figure 19 shows the curve developed for mixture 3A21-43, using specimens cast in the field on 4/20/20. The

measured air content of the mixture was 6.4% and the w/cm was 0.37. From this curve, it was determined the required TTF for opening, equivalent to 350 psi, to be 960 C·hours. For the same mixture, the required TTF for the opening strength of 460 psi was determined as 1549 C·hours. For the estimation of strength in the field, sensors were embedded at approximately mid-depth of the pavement and not less than 12 in. from the edge.

Based on the data shown in Figure 19, a maturity-third point flexural strength relationship was developed and used to estimate the concrete flexural strength and determine the time to open for traffic.

Table 9 presents the maturity over time for batches poured in different days, as well as the estimated flexural strength. Some observations can be made based on Table 9. The maturity (TTF) at a certain age for the data used to develop the maturity-third point flexural strength relationship (Figure 19) is significantly lower than the TTF of the other batches in Table 9. This is because the temperatures on 04/20/20 and subsequent days were significantly lower than the temperatures when the other batches were cast. Consequently, the other batches developed strength faster than the 04/20/20 batch.

Second, the batch for station 72+20, poured on 04/05/20, seems to develop strength much faster than the batches for the other stations in Table 9, because the temperatures on 04/05/20 were much higher than the when the other stations were cast. For that reason, station 72+20 was excluded from the observations that follow and the calculated modulus of rupture average and coefficient of variation (COV) presented in the same table. Starting at 1 day, maturity results of different batches were very consistent and comparable. Once concrete reached 1.5 d, the coefficient of variation was only 7%. This shows that those batches developed strength at the same rate.

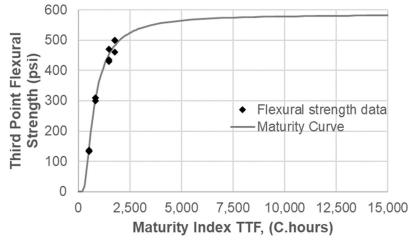


Figure 19. Maturity curve for mixture 3A21-43.

Station	Date	Time (days)	0.5 d	1 d	1.5 d	2 d	2.5 d	3 d	3.5 d
Figure 4/20/	4/20/20	Maturity (C·h)	-	565	830	-	1475	1760	-
	4/20/20	MR ² (psi)	-	134	307	-	445	487	-
F0C+7F	4/27/20	Maturity (C·h)	330	691	1014	1312	1622	1944	2293
596+75 4	4/2//20	MR ³ (psi)	32	242	364	428	469	496	516
F08+F0	4/22/20	Maturity (C·h)	307	602	958	1257	1598	1890	2243
598+50	4/22/20	MR ³ (psi)	22	194	348	419	466	492	513
606+50	4/24/20	Maturity (C·h)	334	738	1144	1505	1863	2218	2602
000+50	4/24/20	MR ³ (psi)	33	265	396	456	490	512	528
720.50	Г /Г / <u>Э</u> О	Maturity (C·h)	301	691	1045	-	-	-	-
739+50	5/5/20	MR ³ (psi)	20	242	373	-	-	-	-
746+75	5/2/20	Maturity (C·h)	383	800	1223	1553	1922	2004	-
/40+/5		MR ³ (psi)	59	292	412	461	494	500	-
72+20	5/4/20	Maturity (C·h)	509	1065	1634	1698	-	-	-
72+20		MR ³ (psi)	138	378	470	476	-	-	-
Average MR ⁴ (psi)		33	247	379	441	480	500	519	
COV MR ⁴ (%)			47%	15%	7%	5%	3%	2%	2%

Table 9 Maturity test results in the field and estimated modulus of rupture (MR) based on the maturity- third point flexural strength relationship curve presented in Figure 19.

¹ Batch used to establish the maturity-flexural strength relationship in Figure 19, and used to estimate the flexural strength of the other batches in this table.; ² Measured third-point flexural strength (or modulus of rupture); ³ MR stands for the estimated third-point flexural strength (or modulus of rupture), based on the relationship maturity-flexural strength obtained in Figure 19; ⁴ Does not include station 72+20, neither the data presented in Figure 19. COV stands for coefficient of variation.

5.4.2 Flexural Strength

The flexural strength of 11 batches of the same mixture, cast at different dates was obtained. Specimens were cast and cured according to AASHTO T 23[21], and tested, according to AASHTO T 97 [2] in the field. Figure 20 shows the flexural strength obtained at 2 or 3 days of age. For all batches represented in Figure 20, concrete surpassed the minimum strength of 350 psi for opening traffic at 2 or 3 days. However, the 2-day strengths were lower than those obtained in the trial batches (Table 3), possibly, not only because of the variations in the mixtures, but also due to the lower curing temperatures for the first 24 hours in the field. Figure 21 combines the results from the different batches to show the evolution of flexural strength over time. The variability among batches is also evident in Figure 21, as the coefficient of determination (R^2) of the best fit curve is only 0.57.

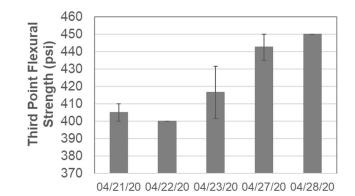


Figure 20. Flexural strength of specimens at 2 or 3 days of age. Dates shown represent the casting dates. Flexural strength represents the average of two beams, with exception of strength of specimens cast on 4/22/20 and 4/27/20, that represent a single beam. Error bars represent the range of strengths obtained.

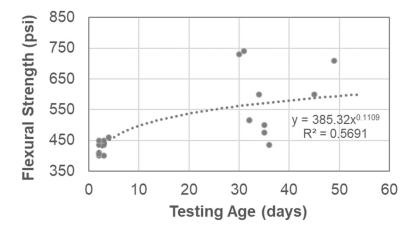


Figure 21. Flexural strength over time for different batches of concrete from mixture 3A21-43.

5.4.3 Pavement Thickness and Compressive Strength

Cores were obtained for thickness verification. On 5/05/2020, four cores were obtained according to AASHTO T 24M/T 24 [22] from four different portions of the project cast on 4/24/2020, so concrete was cored at an age of 11 days. After coring, cores were kept in the field in water tanks for several days and sent to the laboratory to be tested, where they were maintained in a moist room. The cores were tested for pavement thickness using a nine-probe testing device. The thicknesses varied from 10.52 to 11.60 in, with an average of 11.00 in. The cores were also tested for compressive strength according to AASHTO T 22 [3] at the age of 60 days. The compressive strength varied from 5,500 psi to 6,180 psi, with an average of 5,800 psi.

5.5 DURABILITY RELATED PROPERTIES

5.5.1 Concrete Surface Resistivity

On 9/22/20, two 4 by 8 in. cylinders were cast in the field to be tested for electrical resistivity. These cylinders were not cast in the same period as the rest of the field testing in this report due to the pandemic, however they were from the same mix design 3A21-43. After demolding, surface resistivity testing was carried out according to AASHTO T 358 [10]. The cylinders were then immersed in calcium hydroxide saturated, simulated pore solution, as prescribed in AASHTO TP 119 [14], and consisting of 7.6 g/L NaOH (0.19 M);10.64 g/L KOH (0.19 M); 2 g/L Ca(OH)₂ and tested on a regular basis until 90 days of age, according to AASHTO T 358 [10], with exception of the specimens' conditioning that followed AASHTO TP 119 [14] Option A. Bulk resistivity, according to AASHTO TP 119 [14], was also determined at ages 56 and 90 days.

In Figure 22, two different surface resistivity values are presented: those obtained according to AASHTO T 358 [10], and referred as T 358 SR, and the effective SR, (referred as effective SR), which were obtained by diving the results obtained according to T 358 by the geometry factor (in case of a 4 by 8 inch cylinder is 1.95). Figure 22 also presents the results obtained according to AASHTO TP 119 [14].

Figure 22 shows that T 358 SR is almost twice the value of the effective SR, since effective SR is calculated by multiplying T 358 SR by the geometry factor and, as a result, both show the same trends. Although concrete resistivity is expected to increase over time, surface resistivity decreased from 56 to 90 days. Possible causes for unexpected results could not be determined, however, one can observe a very high variability among the eight surface resistivity readings on each cylinder, especially on one of them, which overall presented a lower resistivity than the other cylinder. It does not seem to be related to any issue with a particular cylinder since the difference in bulk resistivity of the two cylinders was not considerable. In addition, the bulk resistivity followed the expected trend of increase with age.

In addition, SR was obtained for three 3.95 by 8 in. cylinders that were cored on 5/05/20 (see 4.4.3). They were maintained in the field in water tanks and stored in a moist room once they arrived in the laboratory. Two cores were 60 days old at the time of testing and resulted in effective surface resistivities of 9.8 and 10.0 k Ω ·cm, while the core tested at the age of 604 days, presented an effective surface resistivity of 16.0 k Ω ·cm. Due to the curing conditions, significant leaching of alkalis may have occurred, potentially increasing the resistivity for these cylinders. However, that is not observed in Figure 22.

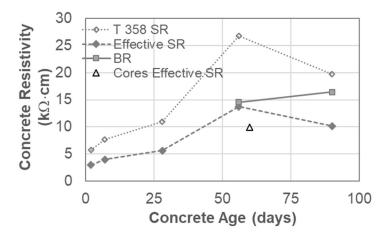


Figure 22. Concrete resistivity over time: T 358 SR – surface resistivity reported as per T 358, Effective SR – T 358 SR corrected for the cylinder's geometry, and BR – bulk resistivity determined as per TP 119. All specimens conditioned according Option A, with exception for the cores.

5.5.2 Formation Factor

Figure 23 shows the Formation Factor (F_{app}). Since F_{app} was calculated from resistivity values (effective surface resistivity and bulk resistivity), the results at 90 days from effective surface resistivity do not seem to be reasonable, because there is a significant decrease from 56 to 90 days. Resistivity, and consequently F_{app} , are expected to increase over time, as it is observed with the F_{app} calculated from the bulk resistivity. The F_{app} at 56 days from effective surface resistivity was very similar to the one obtained from bulk resistivity, so at 90 days, the same trend should have been observed, and it would have surpassed the requirement of a minimum 1,000 at 91 days for concretes exposed to freezing-thawing and deicing salts (AASHTO PP 84 [16]).

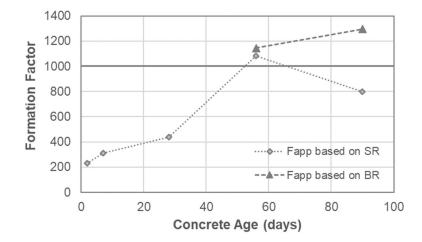


Figure 23. Formation factor (F_{app}) based on effective surface resistivity and bulk resistivity.

CHAPTER 6: CONCLUSIONS AND DISCUSSION

The implementation of PEM on this project was an opportunity to familiarize MnDOT and contractor personnel with PEM testing, and especially the SAM. The initial mixtures batched and tested in the laboratory had to be modified due to changes in materials. Consequently, the results obtained in the laboratory could not be directly compared to those obtained in the field and the maturity-strength curve had to be developed again. Unless otherwise stated, the remarks below refer to the field results.

6.1 GENERAL OBSERVATIONS

For the period showcased in this report:

- All the JMF's fell within the tarantula curve.
- The average w/cm measured using a microwave was 0.34, with a maximum of 0.37, complying with the specification. The microwave results compared well with the w/cm calculated from the batch materials.
- The concrete unit weight varied from 141 to 147 lb/ft3, with an average of 145 lb/ft3.
- The fresh air content, measured according to AASHTO T 152 [20], presented an average of 8.0 %. All 92 tests performed complied with the specification range of 5.5-9.0%.
- Eleven batches of concrete had their flexural strength determined. All of them achieved the minimum opening strength of 350 psi on day 2 or 3.

6.2 SUPER AIR METER

MnDOT required the contractor to perform the SAM testing for this project. The contractor was trained to use the SAM. Based on the results obtained in the field, the following observations can be made:

- A total of 36 SAM tests were carried out, from which 58 % were considered "Likely Correct".
- The SAM average for the "Likely Correct" tests was 0.19, with 85 % of the SAM below 0.25, i.e., considered freeze-thaw resistant.
- The air content after the paver decreased from 0.4 % to 1.1 %, in comparison with before the paver.
- A total of 9 cylinders were tested to determine the hardened air void systems according to ASTM C457/C457M [9]. All of the cylinders presented very good air void systems, with spacing factors between 0.002 and 0.004 in. and specific surfaces above 920 in2/in3. In one of the nine cylinders, the SAM number was greater than 0.25.
- With more experience and training, MnDOT believes that the SAM can be utilized for mixture qualification and/or quality control/quality assurance to provide real-time results regarding freeze thaw durability of the concrete pavement.

6.3 MATURITY AND STRENGTH

The maturity-strength curve is a powerful tool to estimate in-place strength. The fact that the source of the fly ash had to be modified created an extra step to the process because the curve developed in the laboratory couldn't be used and a new one had to be developed in the field. Once the new curve was established, maturity testing provided a very good real time estimate of strength for opening to traffic.

6.4 RESISTIVITY TESTS AND FORMATION FACTOR

Results were reported for surface resistivity, as per AASHTO T 358 [10] or as "effective" surface resistivity (a geometry factor was applied to the T 358 results). In addition, for particular ages, bulk resistivity was also determined for the field cylinders. This report showed the importance of properly referring to the type of results being displayed. Surface resistivity (reported as per AASHTO T 358 [10]) are about double of the "effective" surface resistivity, for 4 by 8 in. cylinders (as observed with the field cylinders), and about 40 % higher, for 6 by 12 in. cylinders (as observed with the trial batches).

In addition, the importance of cylinder conditioning was also presented. For the trial batches, two different conditionings were used: calcium hydroxide saturated, simulated pore solution (Option A of AASHTO TP 119 [14]) and sealed curing (Option B of AASHTO TP 119 [14]). The ratio of the resistivity of cylinders conditioned in calcium hydroxide saturated, simulated pore solution and the resistivity of the sealed cylinders varied, depending on the mixture microstructure, from 0.46 to 0.60.

In the field, only two cylinders were cast, and they were conditioned in calcium hydroxide saturated, simulated pore solution (Option A of AASHTO TP 119 [14]. An anomaly was observed on the surface resistivity results between the ages of 56 and 91 days, because the surface resistivity decreased with time. However, bulk resistivity confirmed the expected trend of resistivity increase with time. Bulk resistivity values are expected to be comparable to those of the "effective" surface resistivity. At age 56 days, bulk resistivity and effective surface resistivity were comparable, however, since an anomaly was observed with the 91 days surface resistivity results, the 91 days resistivities were not comparable.

Formation factor was calculated from the "effective" surface resistivity and bulk resistivity results. AASHTO PP 84 [16] presents a requirement of a minimum formation factor of 1,000 for concretes exposed to freezing-thawing. The formation factor at 91 days calculated from the bulk resistivity results complied with this requirement.

REFERENCES

- [1] Minnesota Department of Transportation, "Standard Specifications for Construction 2018 Edition," St. Paul, 2018.
- [2] AASHTO T 97-18, "Standard Method of Test for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)." American Association of State Highway and Transportation Officials, Washington, D.C.
- [3] AASHTO T 22-17, "Standard Method of Test for Compressive Strength of Cylindrical Concrete Specimens." American Association of State Highway and Transportation Officials, Washington, D.C.
- [4] AASHTO T 121M/T 121-19, "Standard Method of Test for Density (Unit Weight), Yield, and Air Content (Gravimetric) of Concrete." American Association of State Highway and Transportation Officials, Washington, D.C.
- [5] AASHTO T 119M/119-18, "Standard Method of Test for Slump of Hydraulic Cement Concrete." American Association of State Highway and Transportation Officials, Washington, D.C.
- [6] AASHTO TP 137-20, "Standard Method of Test for Box Test in Slip Form Paving of Fresh Portland Cement Concrete." American Association of State Highway and Transportation Officials, Washington, D.C., 2020.
- [7] AASHTO TP 129-18, "Standard Method of Test for Vibrating Kelly Ball (VKelly) Penetration."
 American Association of State Highway and Transportation Officials, Washington, D.C., pp. 1–7, 2020.
- [8] AASHTO TP 118-18, "Standard Method of Test for Characterization of the Air-Void System of Freshly Mixed Concrete by the Sequential Pressure Method," vol. 17, no. 2018. Washington, D.C., pp. 1–11, 2018.
- [9] ASTM C457/C457M-16, "Standard Test Method for Microscopical Determination of Parameters of the Air-Void System in Hardened Concrete." ASTM International, West Conshohocken, PA, doi: 10.1520/C0457_C0457M-16.
- [10] AASHTO T 358-19, "Standard Method of Test for Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration." American Association of State Highway and Transportation Officials, Washington, D.C., 2019.
- [11] ASTM C29/C29M-17a, "Standard Test Method for Bulk Density ('Unit Weight') and Voids in Aggregate." ASTM International, West Conshohocken, PA, doi: 10.1520/C0029_C0029M-17A.
- [12] ASTM C1074-19e1, "Standard Practice for Estimating Concrete Strength by the Maturity Method." ASTM International, West Conshohocken, PA, doi: 10.1520/C1074-19E01.
- [13] Minnesota Department of Transportation, "Estimating Concrete Strength by the Maturity Method." Minnesota Department of Transportation, [Online]. Available: https://www.dot.state.mn.us/materials/concretedocs/MaturityMethodProcedure2020.pdf.
- [14] AASHTO TP 119-20, "Standard Method of Test for Electrical Resistivity of a Concrete Cylinder

Tested in a Uniaxial Resistance Test." American Association of State Highway and Transportation Officials, Washington, D.C.

- [15] AASHTO T 27-14 (2018), "Standard Method of Test for Sieve Analysis of Fine and Coarse Aggregates." American Association of State Highway and Transportation Officials, Washington D.C.
- [16] AASHTO PP 84-20, "Standard Practice for Developing Performance Engineered Concrete Pavement Mixtures," vol. 1, no. April. American Association of State Highway and Transportation Officials, Washington, D.C., pp. 1–36, 2020.
- [17] P. Taylor, E. Yurdakul, X. Wang, and X. Wang, "Concrete Pavement Mixture Design and Analysis (MDA): An Innovative Approach To Proportioning Concrete Mixtures. Report TPF-5(205)," *Natl. Concr. Pavement Technol. Cent.*, 2015.
- [18] H. Hall *et al.*, "Improving Specifications to Resist Frost Damage in Modern Concrete Mixtures, Part 2." Report, FHWA Pooled Fund Study TPF-5-297, Federal Highway Administration, 2019.
- [19] AASHTO T 318-15 (2019), "Standard Method of Test for Water Content of Freshly Mixed Concrete Using Microwave Oven Drying." American Association of State Highway and Transportation Officials, Washington D.C.
- [20] AASHTO T 152-19, "Standard Method of Test for Air Content of Freshly Mixed Concrete by the Pressure Method." American Association of State Highway and Transportation Officials, Washington, D.C., 2019.
- [21] AASHTO T 23-18, "Standard Method of Test for Making and Curing Concrete Test Specimens in the Field," vol. 1. American Association of State Highway and Transportation Officials, Washington, D.C., pp. 1–9, 2020.
- [22] AASHTO T 24M/T 24-15 (2019), "Standard Method of Test for Obtaining and Testing Drilled Cores and Sawed Beams of Concrete." American Association of State Highway and Transportation Officials, Washington D.C.

APPENDIX A

MnDOT 3A21-43 Mix Design Summary

July 30, 2019

CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

Mr. Greg Pelkey Shafer Contracting Co., Inc 30405 Regal Avenue Shafer, MN 55074

Re: MnDOT TH35W & Lake Street, SP 2782-327 MnDOT Work Task #1 – Materials Performance Test Results AET Project No. 29-20213

Dear Mr. Pelkey,

Attached are the final test results for the referenced project. Three mix designs that you provided and identified as 3A21-3, 3A21-6, and 3A41-9 were used to cast various concrete test specimens at American Engineering Testing, Inc. (AET) between April 24 and April 26, 2019 in accordance with the required test matrix identified as MnDOT Task #1. You submitted and identified all materials for the concrete mix. Materials were delivered to AET in early April 2019.

Basic and additional required plastic properties were obtained after mixing.

The requested testing was conducted in accordance with the following standard test methods:

- ASTM C192/C192M 16a, "Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory" Plastic Tests: Air Content, SAM Number, Slump, Unit Weight
- Box Test
- Vibrating V-Kelly Ball Test
- AASHTO T 22-17, "Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens"
- AASHTO T 97-18, "Standard Method of Test for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading)"
- AASHTO T 358-19, "Standard Method of Test for Surface Resistivity Indication of Concrete's Ability to Resist Chloride Ion Penetration
- AASHTO TP 119-19, "Modified Standard Method of Test for Electrical Resistivity of a Concrete Cylinder Tested in a Uniaxial Resistance Test" (Bucket Test)
- ASTM C29/C29M 17a, "Standard Test Method for Bulk Density ("Unit Weight") and Voids in Aggregate

- ASTM C457/C457M 16, "Standard Test Method for Microscopical Determination of Parameters of the Air Void System in Hardened Concrete"
- ASTM C136/136M 14, "Standard Test Method for Sieve Analysis of Fine and Coarse Aggregate"
- ASTM C1074 17, "Standard Practice for Estimating Concrete Strength by the Maturity Method"

Any remaining test samples will be retained for a period of 30 days from the date of this report. Unless we are informed otherwise, the specimens will then be discarded. The results represent specifically the samples tested and the methods specified.

Please contact us should you have any questions or need additional information.

American Engineering Testing, Inc.

Patrick Barnhouse, PE Engineer II, Concrete Materials Laboratory Phone: 651-999-1772 <u>pbarnhouse@amengtest.com</u>

Daniel M. Vruno, PE Principal Engineer MN Reg. No. 42037 Phone: 651-659-1334 <u>dvruno@amengtest.com</u>

AET Project No:	29-20213	AET Project Mgr.: D. Vruno
Project:	MnDOT Work Task #1	AET Engineer: P. Barnhouse
Client:	Shafer Contracting Co., Inc.	Approved: W. Morrison
Contact:	Mr. Greg Pelkey	Date: July 30, 2019

Mix Design and Fresh Property Summary

	3A21-3	3A21-6	3A41-9
Type I/II Portland Cement, Holcim St. Genevieve (lb/yd ³)	390	400	420
Class C Fly Ash, Lafarge Portage (lb/yd ³)	180	170	180
Coarse Aggregate, Empire #67, Pit #19129 (lb/yd ³)	1,038	1,038	1,020
Coarse Aggregate, Empire #4, Pit #19129 (lb/yd ³)	660	661	649
Fine Aggregate, Empire Sand, Pit #19129 (lb/yd ³)	1,191	1,191	1,170
Fine Aggregate, CIA, Pit #19129 (lb/yd ³)	249	249	244
Water (lb/yd ³)	199	199	210
Air Entrainer, GRT Polychem SA (oz/cwt)	0.53	0.53	0.53
Water Reducer, GRT Polychem 400 NC (oz/cwt)	8.42	8.42	8.83
Water to Cementitious Ratio	0.35	0.35	0.35

Notes:

^{1.} All test specimens were fabricated at AET between April 24 and April 26, 2019.

^{2.} Aggregate weights provided are for the oven dry condition.

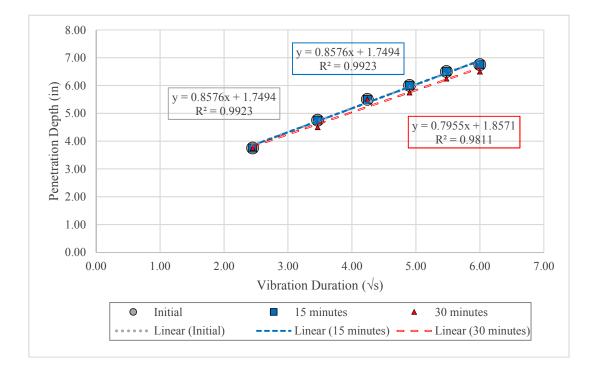
AET Project No:	29-20213	AET Project Mgr.: D. Vruno
Project:	MnDOT Work Task #1	AET Engineer: P. Barnhouse
Client:	Shafer Contracting Co., Inc.	Approved: W. Morrison
Contact:	Mr. Greg Pelkey	Date: July 30, 2019

Mix Design and Fresh Property Summary

	3A21-3	3A21-6	3A41-9				
Initial							
Unit Weight (lb/ft ³)	148.8	148.2	143.6				
Slump (in)	2.50	2.50	2.75				
Air Content (%)	6.1	7.0	6.3				
Super Air Meter (SAM) Number	0.21	0.23	0.16				
Box Test Ratings/Edge Slump (in)	1,1,1,2 / 0	1,1,2,2 / 0	2,2,2,1/0				
VKelly Index (in/ \sqrt{s})	0.858	0.711	0.390				
15 Minutes							
Unit Weight (lb/ft ³)	148.6	148.4	142.8				
Slump (in)	2.25	2.50	2.50				
Air Content (%)	5.9	6.8	6.0				
Super Air Meter (SAM) Number	0.24	0.24	0.19				
Box Test Ratings/Edge Slump (in)	1,1,1,2 / 0	1,1,2,2 / 0	2,2,2,1/0				
VKelly Index (in/ \sqrt{s})	0.858	0.711	0.418				
30 Minutes							
Unit Weight (lb/ft ³)	148.0	148.4	143.2				
Slump (in)	2.00	2.25	2.25				
Air Content (%)	5.8	6.8	5.8				
Super Air Meter (SAM) Number	0.25	0.24	0.21				
Box Test Ratings/Edge Slump (in)	2,1,1,2 / 0	1,1,2,2 / 0	1,2,2,2 / 0.25				
VKelly Index (in/ \sqrt{s})	0.796	0.621	0.475				

Notes:

- 1. All test specimens were fabricated at AET between April 24 and April 26, 2019.
- 2. Aggregate weights provided are for the oven dry condition.

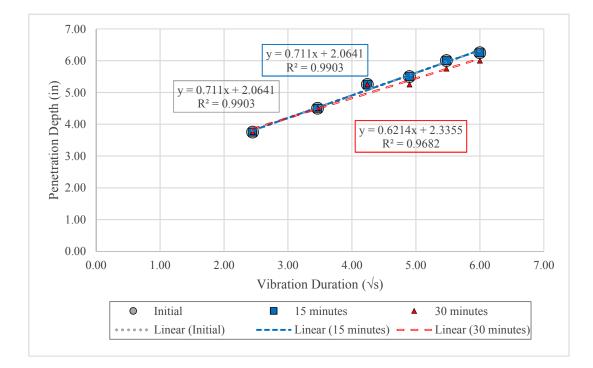


Project No: 29-20213 Project: MnDOT Work Task #1 Client: Shafer Contracting Co., Inc. Contact: Mr. Greg Pelkey CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Approved: W. Morrison Date: June 7, 2019

Fresh Property Data Sheet Mix ID - 3A21-3 VKelly Ball Test Results

	Initial		15 minutes					
Time (s)	Depth (in)		Time (s)	Depth (in)		Time (s)	Depth (in)	
Initial	1.25		Initial	1.00		Initial	1.00	
At Rest	1.75		At Rest	1.50		At Rest	1.50	
6	3.75		6	3.75		6	3.75	
12	4.75		12	4.75		12	4.50	
18	5.50		18	5.50		18	5.50	
24	6.00		24	6.00		24	5.75	
30	6.50		30	6.50		30	6.25	
36	6.75		36	6.75		36	6.5	
VKelly Index	VKelly Index (in/ \sqrt{s}) 0.858 VKelly Index (in/ \sqrt{s})		0.858	VKelly Inde	$x (in/\sqrt{s})$	0.796		

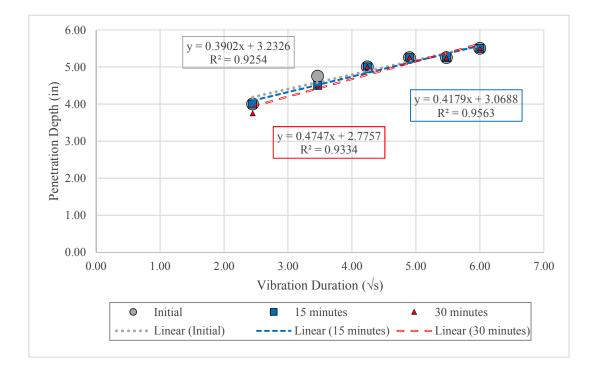


Project No: 29-20213 Project: MnDOT Work Task #1 Client: Shafer Contracting Co., Inc. Contact: Mr. Greg Pelkey CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Approved: W. Morrison Date: June 7, 2019

Fresh Property Data Sheet Mix ID - 3A21-6 VKelly Ball Test Results

	Initial		15 minutes				30 minutes	
Time (s)	Depth (in)		Time (s)	Depth (in)		Time (s)	Depth (in)	
Initial	1.50		Initial	1.50		Initial	1.50	
At Rest	2.00		At Rest	2.00		At Rest	2.00	
6	3.75		6	3.75		6	3.75	
12	4.50		12	4.50		12	4.50	
18	5.25		18	5.25		18	5.25	
24	5.50		24	5.50		24	5.25	
30	6.00		30	6.00		30	5.75	
36	6.25		36	6.25		36	6.00	
VKelly Index	$x (in/\sqrt{s})$	0.711	VKelly Inde	$x (in/\sqrt{s})$	0.711	VKelly Index	$x (in/\sqrt{s})$	0.621

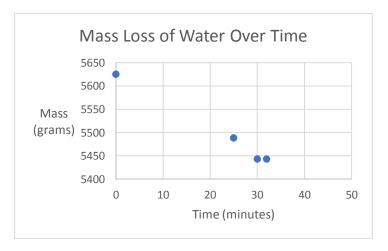


Project No: 29-20213 Project: MnDOT Work Task #1 Client: Shafer Contracting Co., Inc. Contact: Mr. Greg Pelkey CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS

AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Approved: W. Morrison Date: June 7, 2019

Fresh Property Data Sheet Mix ID - 3A41-9 VKelly Ball Test Results

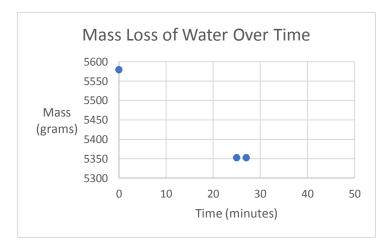
	Initial		15 minutes				30 minutes	
Time (s)	Depth (in)		Time (s)	Depth (in)		Time (s)	Depth (in)	
Initial	2.25		Initial	2.00		Initial	1.75	
At Rest	2.50		At Rest	2.50		At Rest	2.25	
6	4.00		6	4.00		6	3.75	
12	4.75		12	4.50		12	4.50	
18	5.00		18	5.00		18	5.00	
24	5.25		24	5.25		24	5.25	
30	5.25		30	5.25		30	5.25	
36	5.50		36	5.50		36	5.50	
VKelly Inde	$x (in/\sqrt{s})$	0.390	VKelly Inde	$x (in/\sqrt{s})$	0.418	VKelly Index	$x (in/\sqrt{s})$	0.475



AMERICAN ENGINEERING TESTING, INC.					CONSULTANTS • ENVIRONMENTAL • GEOTECHNICAL • MATERIALS • FORENSICS
AET Project No.:	29-20213			AET Project Mgr.	: D. Vruno
Project:	Work Task #1				: W. Morrison
Client:	Shafer			Date:	June 7, 2019
Contact:	Mr. Greg Pelkey			Mix ID:	: 3A21-3
Specific Gravities	Absorptions		Batch Mas	ses	
Cement SG	3.15 CAI	1.2 Cen		57.8	3
Fly Ash SG	2.72 CAII	1.2 Fly		26.7	
CAI	2.67 CAIII	CAI		156.9	
CAII	2.67 FAI	0.5 CAI		100.9	
CAIII	FAII	1.4 CAI			
FAI	2.66	FAI		185.3	}
FAII	2.64	FAII		38.2	
		Wat	ter	29.5	5
		Bate	ched Volume (ft^3) ched Concrete Air Volu	4	
Air Volume	Total Water Absorb	ed Bind	der and Absorbed Wate	er Cylinder	
Cylinder Density (g/ft^3)	67737.6 CAI Abs		ume Ratio	, 0.014665896	5
Total Batched Mass	595.3 CAII Abs	1.21 Cyli	nder Binder	1.239268187	7
Absolute Volume Batched (Air Free)	3.8 CAIII Abs	-	nder Abs Water	0.066801688	3
Air Content (%)	6.1 FAI Abs	0.93			
	FAII Abs	0.53			
	Total Absorbed Water	4.55			
			Т	est One	
Absolute Volume Batched	4.06				
Batched Density	146.49		0.30		•
			Measure 0.20		
Water Loss Mass (lbs)	0.40		d w/cm 0.10		
			. 0.10		
			0.00		
			0.00	0.10 0.20 0.3	30 0.40
				Batched w/cm	

AET Project No.:	29-20213			AET Project Mgr.: D. Vruno
Project:	Work Task #1			Approved: W. Morrison
Client:	Shafer			Date: June 7, 2019
Contact:	Mr. Greg Pelkey			Mix ID: 3A21-3
Phoenix Masses		lbs	Mass loss of water over t	ime
Tare Cylinder (g)	108.9	0.24	Mass (g) Time (min)	
Mass Cylinder Filled (g)	4173.1	9.2	5625 0	
Mass Cylinder Emptied (g)	136.1	0.3	5488.5 25	
Volume Cylinder (ft^3)	0.06		5443.1 30	
			5443.1 32	
Mass of Pan Fresh Concrete (g)	5624.64	12.4		
Mass of Pan Dried Concrete (g)	5443.2	12		
Cylinder Volume Tested (g/ft^3) 0.06 (lbs/ft^3)	0.06		

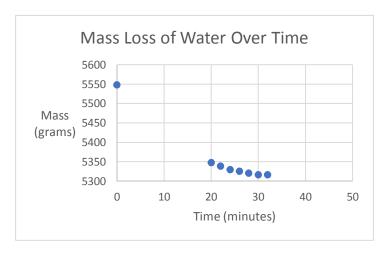
w/cm Calculations	
Measure w/cm	0.27
Batched w/cm	0.35



						ENVIRONMENTAL GEOTECHNICAL MATERIALS FORENSICS	
29-20213				AET	Project Mgr.:	D. Vruno	
Work Task #1					Approved	W. Morrison	
Shafer					Date:	June 7, 2019	
Mr. Greg Pelkey					Mix ID:	3A21-6	
Absorptions		E	Batch	Masses			
3.15 CAI	1.2 Ce	ment			59.3		
2.72 CAII	1.2 Fly	Ash			25.2		
2.67 CAIII	-				156.9)	
2.67 FAI	0.5 CA	II			101.1		
FAII	1.4 CA						
2.66	FA				185.3		
2.64	FA	I			38.2		
	Wa	iter			29.5		
					4		
Total Water Absorbe	ed Bir	der and Abso	rbed ۱	Water Cyl	inder		
66981.6 CAI Abs							
595.5 CAII Abs	1.21 Cy	inder Binder			1.237688525		
3.8 CAIII Abs	Cyl	inder Abs Wa	ter		0.066751691		
6.8 FAI Abs	0.93						
FAII Abs	0.53						
Total Absorbed Water	4.56						
				Test (Dne		
			0.40	1	1		
145.54						•	
		Magazina					
0.50		d w/cm					
				00 010	0.20 0.3	80 0.40	
			0.			0.40	
	Work Task #1 Shafer Mr. Greg Pelkey Absorptions 3.15 CAI 2.72 CAII 2.67 CAIII 2.67 FAI FAII 2.66 2.64 Total Water Absorbed 66981.6 CAI Abs 595.5 CAII Abs 3.8 CAIII Abs 6.8 FAI Abs FAII Abs Total Absorbed Water 4.09	Work Task #1 Shafer Mr. Greg Pelkey Absorptions 3.15 CAI 1.2 Cer 2.72 CAII 1.2 Fly 2.67 CAIII CA 2.67 FAI 0.5 CA FAII 1.4 CA 2.66 FAI 2.64 FAI 2.64 FAI 2.65 CAII Abs 1.88 Vol Bat Bat Bat 66981.6 CAI Abs 1.28 Vol 595.5 CAII Abs 1.21 Cyl 3.8 CAIII Abs Cyl 6.8 FAI Abs 0.93 FAII Abs 0.53 Total Absorbed Water 4.56 4.09 145.54	Work Task #1ShaferMr. Greg PelkeyAbsorptions3.15 CAI1.2 Cement2.72 CAII1.2 Fly Ash2.67 CAIIICAI2.67 FAI0.5 CAIIFAII1.4 CAIII2.66FAI2.64FAIIWaterBatched VolumeBatched VolumeBatched ConcretTotal Water AbsorbedBinder and Abso66981.6 CAI Abs1.21 Cylinder Binder3.8 CAIII Abs0.93FAII Abs0.53Total Absorbed Water4.564.09145.540.50Measure d w/cm	Work Task #1AbsorptionsBatchShaferMr. Greg PelkeyI.2 CementAbsorptions1.2 Cement2.72 CAII1.2 Fly Ash2.67 CAIIICAI2.67 FAI0.5 CAIIFAII1.4 CAIII2.66FAI2.64FAIIWaterBatched Volume (ft^3Batched Volume attributesBinder and Absorbed66981.6 CAI Abs1.88 Volume Ratio595.5 CAII Abs1.21 Cylinder Binder3.8 CAIII Abs0.93FAII Abs0.53Total Absorbed Water4.564.090.50	Work Task #1 Shafer Mr. Greg Pelkey Batch Masses 3.15 CAI 1.2 Cement 2.72 CAII 1.2 Fly Ash 2.67 CAIII CAI 2.67 FAI 0.5 CAII FAII 1.4 CAIII 2.66 FAI 2.64 FAII Water Batched Volume (ft^3) Batched Volume (ft^3) Batched Concrete Air Volume Total Water Absorbed Binder and Absorbed Water Cyl 66981.6 CAI Abs 1.88 Volume Ratio 595.5 CAII Abs 1.21 Cylinder Binder 3.8 CAIII Abs 0.93 FAII Abs 0.53 Total Absorbed Water 4.56 4.09 145.54 0.50 Measure	29-20213 AET Project Mgr.: Work Task #1 Approved: Shafer Date: Mr. Greg Pelkey Mix ID: Absorptions Batch Masses 3.15 CAI 1.2 Cement 59.3 2.72 CAII 1.2 Fly Ash 25.2 2.67 CAIII CAI 166.9 2.67 FAI 0.5 CAII 101.1 FAII 1.4 CAIII 11.1 2.66 FAI 185.3 2.64 FAII 38.2 Water 29.5 Batched Volume (ft^3) 4 Batched Concrete Air Volume 0.014647201 1.237688525 3.8 CAIII Abs 0.93 FAII Abs 0.53 Total Absorbed Water 4.56 Test One 4.09 145.54 0.50 0.20 0.10 0.50 Call Absorbed Water 4.56 0.20 0.20	29-20213 AET Project Mgr.: D. Vruno Work Task #1 Approved: W. Morrison Shafer Date: June 7, 2019 Mr. Greg Pelkey Mix ID: 3A21-6 Absorptions Batch Masses 3.15 CAI 1.2 Cement 2.67 CAIII CAI 2.67 CAIII CAI 2.66 FAI 2.67 CAIII CAI 2.66 FAI 3.15 CAI 1.4 CAIII 2.66 FAI 2.67 FAI 3.264 FAI 2.64 FAI 3.8 Volume Ratio 0.014647201 3.9 S.5 CAII Abs 1.21 Cylinder Binder 66981.6 CAI Abs 1.88 Volume Ratio 0.014647201 595.5 CAII Abs 1.21 Cylinder Binder 1.237688525 3.8 CAIII Abs 0.53 Cylinder Abs Water 0.066751691 6.8 FAI Abs 0.53 Total Absorbed Water 4.56 4.09 145.54 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

AET Project No.:	29-20213		AET Project Mgr.: D. Vruno
Project:	Work Task #1		Approved: W. Morrison
Client:	Shafer		Date: June 7, 2019
Contact:	Mr. Greg Pelkey		Mix ID: 3A21-6
Phoenix Masses		lbs	Mass loss of water over time
Tare Cylinder (g)	113.4	0.25	Mass (g) Time (min)
Mass Cylinder Filled (g)	4132.3	9.11	5579 0
Mass Cylinder Emptied (g)	117.9	0.26	5352 25
Volume Cylinder (ft^3)	0.06		5352 27
Mass of Pan Fresh Concrete (g)	5579.28	12.3	
Mass of Pan Dried Concrete (g)	5352.48	11.8	
Cylinder Volume Tested (g/ft^3) 0.06 (lbs/ft^3)	0.06	

w/cm Calculations	
Measure w/cm	0.35
Batched w/cm	0.35



AMERICAN ENGINEERING TESTING, INC.					CONSULTANTS ENVIRONMENTAL GEOTECHNICAL MATERIALS FORENSICS
AET Project No.:	29-20213			AET Project Mgr.:	: D. Vruno
Project:	Work Task #1				W. Morrison
Client:	Shafer			Date:	June 7, 2019
Contact:	Mr. Greg Pelkey			Mix ID:	: 3A41-9
Specific Gravities	Absorptions		Batch	Masses	
Cement SG	3.15 CAI	1.2	Cement	248.9)
Fly Ash SG	2.72 CAII	1.2	Fly Ash	106.7	,
CAI	2.67 CAIII		CAI	616.6	j
CAII	2.67 FAI	0.5	CAII	397	,
CAIII	FAII	1.4	CAIII		
FAI	2.66		FAI	728.2	2
FAII	2.64		FAII	149.6	j
			Water	124.4	Ļ
			Batched Volume (ft^3) Batched Concrete Air V		5
Air Volume	Total Water Absor	bed	Binder and Absorbed \	Water Cylinder	
Cylinder Density (g/ft^3)	66376.8 CAI Abs	7.40	Volume Ratio	0.003692633	}
Total Batched Mass	2371.4 CAII Abs	4.76	Cylinder Binder	1.313100465	5
Absolute Volume Batched (Air Free)	15.3 CAIII Abs		Cylinder Abs Water	0.06609297	,
Air Content (%)	5.9 FAI Abs	3.64			
	FAII Abs	2.09			
	Total Absorbed Water	17.90			
				Test One	
Absolute Volume Batched	16.21		0.40		
Batched Density	146.28		0.30		•
			N 4		
Water Loss Mass (lbs)	0.51		d w/cm		
			0.10		
			0.00		
			0.0		30 0.40
				Batched w/cm	

AET Project No.:	29-20213				AET Project Mgr.: D. Vruno
Project:	Work Task #1				Approved: W. Morrison
Client:	Shafer				Date: June 7, 2019
Contact:	Mr. Greg Pelkey				Mix ID: 3A41-9
Phoenix Masses		lbs	Mass loss of wa	ter over time	
Tare Cylinder (g)	108.9	0.24	Mass (g) Time	(min)	
Mass Cylinder Filled (g)	4091.5	9.02	5548	0	
Mass Cylinder Emptied (g)	117.9	0.26	5348	20	
Volume Cylinder (ft^3)	0.06		5339	22	
			5330	24	
Mass of Pan Fresh Concrete (g)	5547.528	12.23	5325	26	
Mass of Pan Dried Concrete (g)	5316.192	11.72	5321	28	
			5316	30	
Cylinder Volume Tested (g/ft^3) 0.06 (lbs/ft^3)	0.06	5316	32	

w/cm Calculations	
Measure w/cm	0.34
Batched w/cm	0.35

CONSULTANTS ENVIRONMENTAL GEOTECHNICAL MATERIALS FORENSICS

AET Project No: 29-20213 Project: MnDOT Work Task #1 Client: Shafer Contracting Co., Inc. Contact: Mr. Greg Pelkey

AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Approved: W. Morrison Report Date: June 7, 2019

Test Result Summary of Hardened Properties

Concrete Mix 3A21-3

ACTM C70 Elaward Strangth

ASTM C78, Flexural Strength					Specification
	Specimen 1	Specimen 2	Specimen 3	Average	
1 day, psi	225	250	255	245	
2 days, psi	560	460	610	545	
3 days, psi	460	475	445	460	
7 days, psi	720	680	605	670	
14 days, psi	690	695	595	660	
28 days, psi	635	600	600	610	

ASTM C39, Compressive Strength

	Specimen 1	Specimen 2	Specimen 3	Average	
1 day, psi	2,750	840	1,000	1,530	
2 days, psi	4,700	4,290	3,280	4,090	
3 days, psi	4,800	5,900	5,840	5,510	
7 days, psi	6,610	6,850	6,680	6,710	
14 days, psi	6,710	6,530	6,270	6,500	
28 days, psi	8,090	8,330	7,750	8,060	

ASTM C457, Air Void Analysis

Total Air Voids, %	Specific Surface, in ² /in ³	Spacing Factor, in	
5.7	1050	0.005	

Notes:

1. The test results represent the specimens tested and the methods specified.

2. All test specimens were fabricated at AET on April 24, 2019.

CONSULTANTS ENVIRONMENTAL GEOTECHNICAL MATERIALS FORENSICS

AET Project No: 29-20213 Project: MnDOT Work Task #1 Client: Shafer Contracting Co., Inc. Contact: Mr. Greg Pelkey

AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Approved: W. Morrison Report Date: June 7, 2019

Test Result Summary of Hardened Properties Concrete Mix 3A21-6

ACTM C70 Elaward Strangth

STM C78, Flexural Strength					Specification
	Specimen 1	Specimen 2	Specimen 3	Average	
1 day, psi	20	35	50	35	
2 days, psi	410	435	485	445	
3 days, psi	460	510	495	490	
7 days, psi	745	795	720	755	
14 days, psi	860	815	880	850	
28 days, psi	845	825	810	825	

ASTM C39, Compressive Strength

	Specimen 1	Specimen 2	Specimen 3	Average	
1 day, psi	1,860	2,500	2,680	2,350	
2 days, psi	4,690	5,290	5,290	5,090	
3 days, psi	6,410	5,900	6,510	6,270	
7 days, psi	7,190	7,310	7,270	7,260	
14 days, psi	7,960	7,770	7,490	7,740	
28 days, psi	8,400	8,840	8,800	8,680	

ASTM C457, Air Void Analysis

Total Air Voids, %	Specific Surface, in ² /in ³	Spacing Factor, in	
4.3	550	0.008	

Notes:

1. The test results represent the specimens tested and the methods specified.

2. All test specimens were fabricated at AET on April 24, 2019.

CONSULTANTS ENVIRONMENTAL GEOTECHNICAL MATERIALS FORENSICS

AET Project No: 29-20213 Project: MnDOT Work Task #1 Client: Shafer Contracting Co., Inc. Contact: Mr. Greg Pelkey

AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Approved: W. Morrison Report Date: June 7, 2019

Test Result Summary of Hardened Properties Concrete Mix 3A41-9

ASTM C78 Florural Strongth

ASTM C78, Flexural Strength					Specification
	Specimen 1	Specimen 2	Specimen 3	Average	
1 day, psi	420	425	410	420	
2 days, psi	495	450	525	490	
3 days, psi	605	555	565	575	
7 days, psi	690	675	720	695	
14 days, psi	600	675	680	650	
28 days, psi	735	625	715	690	

ASTM C39, Compressive Strength

	Specimen 1	Specimen 2	Specimen 3	Average	
1 day, psi	2,300	2,380	2,270	2,320	
2 days, psi	3,630	3,710	3,840	3,730	
3 days, psi	4,220	4,170	4,140	4,180	
7 days, psi	4,550	5,350	4,930	4,940	
14 days, psi	5,360	4,950	5,230	5,180	
28 days, psi	5,590	5,760	6,200	5,850	

ASTM C457, Air Void Analysis

Total Air Voids, %	Specific Surface, in ² /in ³	Spacing Factor, in	
4.3	1090	0.004	

Notes:

1. The test results represent the specimens tested and the methods specified.

2. All test specimens were fabricated at AET on April 26, 2019.

ENVIRONMENTALGEOTECHNICAL

MATERIALS

• FORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-3

Day 1	4/25/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,336.5	13,399.5			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	6.9	8.4	9.0	9.1	8.1	8.3	8.3	9.5
Sample 2	8.9	8.2	7.4	7.3	9.2	9.5	7.8	7.6
		•	burface Resistiv	• • •	Effective Sur	face Resistivi	ity (kΩ-cm)	
-	Sample 1		8.5			5.76		5.83
-	Sample 2		8.2			5.91		5.83
Day 3	4/27/19							
·				Submerged 1	Submerged 2			
			Mass (g)	13,403.0	13,463.0			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	7.6	6.2	7.4	7.4	7.7	6.5	8	7.6
1	,	0.2	/.+	/.+	/./		-	1.0
Sample 2	6.3	6.8	7.4	7.3	8.2	7.4	7	7
<u>^</u>		6.8 Average S		7.3 vity (kΩ-cm)	8.2		7	
^		6.8 Average S	7.2 Surface Resistiv	7.3 vity (kΩ-cm)	8.2	7.4	7	

ENVIRONMENTALGEOTECHNICAL

MATERIALS

FORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-3

Day 5	4/29/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,410.8	13,470.5			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	8.0	8.7	9.4	8.6	9.3	8.6	9.5	8.5
Sample 2	8.9	8.2	8.3	8.6	9.7	9.0	9.4	9.1
		•	Surface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
-	Sample 1		8.8			6.22		6 20
_	Sample 2		8.9			6.17		6.20
D 7								
Day 7	5/1/19							
Day 7	5/1/19			Submerged 1	Submerged 2			
Day 7	5/1/19		Mass (g)	Submerged 1 13,413.9	Submerged 2 13,474.4			
Day 7	5/1/19 0°	90°	Mass (g) 180°		ų	90°	180°	270°
		90° 9.2		13,413.9	13,474.4	90° 10.0	180° 10.7	<u>270°</u> 9.8
Submerged	0°		180°	13,413.9 270°	13,474.4 0°			
Submerged Sample 1	0° 9.8	9.2 9.8 Average S	180° 10.9	13,413.9 270° 9.1 9.9 vity (kΩ-cm)	13,474.4 0° 10.3	10.0 10.6	10.7 10.0	9.8
Submerged Sample 1	0° 9.8	9.2 9.8 Average S	180° 10.9 9.4 Surface Resistive	13,413.9 270° 9.1 9.9 vity (kΩ-cm)	13,474.4 0° 10.3 10.6	10.0 10.6	10.7 10.0	9.8

• ENVIRONMENTAL

GEOTECHNICALMATERIALS

FORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-3

Day 14	5/8/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,424.1	13,483.0			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	9.6	9.8	10.7	10.2	11.5	10.9	11.6	10.4
Sample 2	11.2	11.0	10.9	10.7	11.6	11.1	11.1	10.8
		-	burface Resistiv	• • •	Effective Sur	face Resistivi	ity (kΩ-cm)	
_	Sample 1		10.6			7.73		7.57
_	Sample 2		11.1			7.40		1.57
Day 28	5/22/19			_				
Day 28	5/22/19			Submerged 1	Submerged 2			
Day 28	5/22/19		Mass (g)	Submerged 1 13,430.4	Submerged 2 13,494.0			
Day 28 Submerged	5/22/19 0°	90°	Mass (g) 180°	, , , , , , , , , , , , , , , , , , ,	Ű	90°	180°	270°
		90° 11.0		13,430.4	13,494.0	<u>90°</u> 13.1	180° 13.1	270° 13.0
Submerged	0°		180°	13,430.4 270°	13,494.0 0°			
Submerged Sample 1	0° 10.1	11.0 11.1 Average S	180° 11.7	13,430.4 270° 11.8 11.6 vity (kΩ-cm)	13,494.0 0° 12.9	13.1 11.8	13.1 11.2	13.0
Submerged Sample 1	0° 10.1	11.0 11.1 Average S	180° 11.7 10.3 Surface Resistiv	13,430.4 270° 11.8 11.6 vity (kΩ-cm)	13,494.0 0° 12.9 11.2	13.1 11.8	13.1 11.2	13.0

• ENVIRONMENTAL

GEOTECHNICALMATERIALS

FORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-3

Day 56	6/19/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,445.0	13,503.6			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	13.5	14.3	14.1	13.2	17.9	15.2	16.3	14.9
Sample 2	15.6	13.2	13.2	12.7	14.3	15.0	14.4	15.1
			burface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
	Sample 1		14.9			9.92		10.18
_	Sample 2		14.2			10.44		10.10
Day 91	7/24/19			1				
				Submerged 1	Submerged 2			
				υ	Ű			
			Mass (g)	13,449.6	13,506.7			
Submerged	0°	90°	Mass (g)		Ű	90°	180°	270°
Submerged Sample 1	0° 16.2	90° 15.2		13,449.6	13,506.7	90° 19.1	180° 20.1	270° 19.8
	÷		180°	13,449.6 270°	13,506.7 0°			
Sample 1	16.2	15.2 38.3 Average S	180° 18.5	13,449.6 270° 18.1 27.1 vity (kΩ-cm)	13,506.7 0° 17.5	<u>19.1</u> 25.9	20.1 29.7	19.8
Sample 1	16.2	15.2 38.3 Average S	180° 18.5 24.8 Surface Resisting	13,449.6 270° 18.1 27.1 vity (kΩ-cm)	13,506.7 <u>0°</u> <u>17.5</u> 22.9	<u>19.1</u> 25.9	20.1 29.7	19.8 27.2
Sample 1	16.2 26.9	15.2 38.3 Average S	180°18.524.8Surface Resistiv poreted as per '	13,449.6 270° 18.1 27.1 vity (kΩ-cm)	13,506.7 <u>0°</u> <u>17.5</u> 22.9	19.1 25.9 face Resistivi	20.1 29.7	19.8

Environmental

GEOTECHNICALMATERIALS

Forensics

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-6

Day 1	4/25/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,662.4	13,641.4			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	6.1	7.2	6.4	7.0	6.2	7.1	6.4	7.4
Sample 2	6.5	6.3	7.4	6.9	6.5	6.3	7.2	6.3
		e	Surface Resisti	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
	Sample 1		6.7			4.67		4.69
_	Sample 2		6.7			4.70		4.09
Day 3	4/27/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,685.0	13,662.8			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	5.8	6.1	5.7	5.8	6	6.2	6	7.1
Sample 2	5.8	5.9	6.4	5.9	6.3	6.3	6.9	6
		•	Surface Resisti	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
_	Sample 1		6.1			4.33		4.29
_	Sample 2		6.2			4.26		4.29
		55	0 Cleveland A	venue North S	Saint Paul, MN	55114		

-

-

.....

CONSULTANTS

• ENVIRONMENTAL

• GEOTECHNICAL

MATERIALSFORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-6

Day 5	4/29/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,697.0	13,672.3			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	6.5	7.0	7.0	7.4	7.0	7.2	7.1	7.9
Sample 2	7.2	7.4	7.7	7.0	7.7	7.9	7.6	7.4
		e	Surface Resistiv	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
_	Sample 1		7.1			5.24		5.11
_	Sample 2		7.5			4.99		5.11
Day 7	5/1/19			Submarad 1	Submana d 2			
Day 7	5/1/19		Mass (g)	Submerged 1 13,701.5	Submerged 2 13,677.0			
-	5/1/19 0°	90°	Mass (g)			90°	180°	270°
-		<u>90°</u> 7.3		13,701.5	13,677.0	<u>90°</u> 8.8	180° 7.5	270° 7.8
Submerged	0°		180°	13,701.5 270°	13,677.0 0°			
Submerged Sample 1	0° 6.2	7.3 8.5 Average S	180° 6.8	13,701.5 270° 8.0 7.8 vity (kΩ-cm)	13,677.0 0° 7.2	8.8 8.9	7.5 8.4	7.8
Submerged Sample 1	0° 6.2	7.3 8.5 Average S	180°6.87.9Surface Resistive	13,701.5 270° 8.0 7.8 vity (kΩ-cm)	13,677.0 0° 7.2 8.3	8.8 8.9	7.5 8.4	7.8

. .

-

CONSULTANTS

• ENVIRONMENTAL

• GEOTECHNICAL

MATERIALSFORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-6

Day 14	5/8/19							
-				Submerged 1	Submerged 2			
			Mass (g)	13,710.2	13,686.7			
~		0.00	1 1000		I aa I	2.2.2	1000	
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	7.7	9.0	7.9	9.3	8.3	9.0	8.3	8.9
Sample 2	9.5	9.1	9.4	9.2	9.7	9.9	9.5	9.7
			urface Resistiv	• • •	Effective Su	face Resistivi	ty (kΩ-cm)	
	Sample 1		8.6			6.64		6.31
_	Sample 2		9.5			5.98		0.31
Day 28	5/22/19			Submerged 1	Submerged 2			
			Mass (g)	13,718.4	13,695.3			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	10.3	10.4	11.9	11.6	11.5	12.4	12.5	13.3
Sample 2	10.1	10.5	10.3	10.2	11.1	11.1	11.5	11.0
		-	urface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
_	Sample 1		11.7			7.50		7.85
_	Sample 2		10.7			8.21		1.05

• ENVIRONMENTAL

• GEOTECHNICAL

MATERIALSFORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 24, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-6

Day 56	6/19/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,727.4	13,702.8			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	11.0	11.0	11.7	11.8	12.6	12.4	12.3	12.9
Sample 2	13.3	12.0	12.9	10.6	12.5	12.7	12.3	11.2
		-	urface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
	Sample 1		12.0			8.52		8.44
	Sample 2		12.2			8.37		0.44
Day 91	7/24/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,732.7	13,706.3			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	17.9	19	20.6	22.2	19.6	22.5	21.2	21.3
Sample 2	22.8	21.9	21.5	20.3	24.6	24.1	25.5	23.4
			urface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
-	Sample 1		20.5			16.09		15 22
	Sample 1 Sample 2		•			16.09 14.36		15.23

Environmental

GEOTECHNICALMATERIALS

FORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 26, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-9

Day 1	4/27/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,215.4	13,223.2			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	3.7	3.9	3.3	3.1	3.7	3.6	3.2	3.0
Sample 2	3.4	3.6	3.2	3.7	3.3	3.7	3.3	3.6
		-	Surface Resistiv	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
_	Sample 1		3.4			2.43		2.42
-	G 1 0		25			2.40		2.42
	Sample 2		3.5		I	2.40		
Day 3	Sample 2 4/29/19		3.5		I	2.40		
Day 3	-		3.5	Submerged 1	Submerged 2	2.40		
Day 3	-		3.5 Mass (g)	Submerged 1 13,260.7	Submerged 2 13,270.1	2.40		
	-	90°			Ű	2. 1 0 90°	180°	270°
	4/29/19	90° 5.5	Mass (g)	13,260.7	13,270.1		180° 4.8	270° 4.7
Submerged	4/29/19 0°		Mass (g) 180°	13,260.7 270°	13,270.1 0°	90°		
Submerged Sample 1	4/29/19 0° 5.4	5.5 5.6 Average S	Mass (g) 180° 5	13,260.7 270° 4.6 5 vity (kΩ-cm)	13,270.1 0° 5.2	90° 5.3 5.3	4.8 4.4	4.7
Submerged Sample 1	4/29/19 0° 5.4	5.5 5.6 Average S	Mass (g) 180° 5 4.1 Surface Resistive	13,260.7 270° 4.6 5 vity (kΩ-cm)	13,270.1 0° 5.2 5	90° 5.3 5.3	4.8 4.4	4.7

- -

F /1 /10

CONSULTANTS

• ENVIRONMENTAL

• GEOTECHNICAL

MATERIALSFORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 26, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-9

Day 5	5/1/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,268.7	13,279.2			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	5.5	6.0	5.5	5.3	5.8	6.0	5.3	5.6
Sample 2	5.7	6.8	5.5	5.8	6.0	6.5	5.4	6.0
		e	Surface Resistiv	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
	Sample 1		5.6			4.17		4.05
			6.0			2 0 2		4.05
	Sample 2		6.0			3.93		
Day 7	Sample 2 5/3/19		6.0	Submerged 1	Submerged 2	3.93		
Day 7	-		6.0 Mass (g)	Submerged 1 13,269.7	Submerged 2 13,282.1	3.93		
	-	90°			Ű	3.93 90°	180°	270°
	5/3/19	90° 7.0	Mass (g)	13,269.7	13,282.1		180° 6.7	270° 6.3
Submerged	5/3/19 0°		Mass (g) 180°	13,269.7 270°	13,282.1 0°	90°		
Submerged Sample 1	5/3/19 0° 6.3	7.0 7.2 Average S	Mass (g) 180° 6.7	13,269.7 270° 6.2 6.4 vity (kΩ-cm)	13,282.1 0° 7.2	90° 7.3 7.6	6.7 6.4	6.3
Submerged Sample 1	5/3/19 0° 6.3	7.0 7.2 Average S	Mass (g) 180° 6.7 6.0 Surface Resistive	13,269.7 270° 6.2 6.4 vity (kΩ-cm)	13,282.1 0° 7.2 6.3	90° 7.3 7.6	6.7 6.4	6.3

• ENVIRONMENTAL

• GEOTECHNICAL

MATERIALSFORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 26, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-9

Day 14	5/10/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,282.9	13,296.4			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	7.8	8.2	7.5	7.8	8.6	8.9	8.4	8.2
Sample 2	7.6	7.8	7.1	8.0	8.1	8.9	7.6	8.2
_		Ũ	ourface Resistiv	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
_	Sample 1		8.2			5.53		5.63
	Sample 2		7.9			5.72		5.05
Day 28	5/24/19			Submerged 1	Submerged 2			
			Mass (g)	13,289.9	13,302.3			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	9.8	10.2	8.8	9.3	10.5	11.1	10.2	10.1
Sample 2	8.9	9.3	8.0	9.0	8.8	10.1	8.0	9.5
		-	ourface Resistiv	• • •	Effective Sur	face Resistiv	ity (kΩ-cm)	
_	Sample 1		10.0			6.26		6.63
_	Sample 2		9.0			6.99		0.05

• ENVIRONMENTAL

• GEOTECHNICAL

MATERIALSFORENSICS

AET Project No: 29-20213	AET Project Mgr.: D. Vruno
Project: Work Task #1	AET Engineer: P. Barnhouse
Client: Shafer	Cast Date: April 26, 2019

AASHTO T 358 Surface Resistivity

Specimens immersed in a calcium hydroxide saturated, simulated pore solution, as in AASHTO TP 119 Mix 3A21-9

Day 56	6/21/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,297.4	13,310.2			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	13.2	14.3	12.7	13.2	14.3	15.4	14.2	14.3
Sample 2	11.2	12.3	11.5	11.9	12.9	13.1	12.9	13.9
		•	urface Resistiv	• • •	Effective Sur	ty (kΩ-cm)		
_	Sample 1		14.0			9.24		
_	Sample 2		12.5			9.24		
Day 91	7/26/19							
				Submerged 1	Submerged 2			
			Mass (g)	13,299.6	13,310.9			
Submerged	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	14.5	15	15.4	18.9	18.2	18.9	16.9	19.8
Sample 2	21.9	21.1	19	20.5	22.5	19.7	19.2	20.7
		-	urface Resistiv	• • •	Effective Sur			
-	Sample 1		17.2			12 21		
-	Sample 2		20.6			13.21		

• ENVIRONMENTAL

• GEOTECHNICAL

• MATERIALS

• FORENSICS

T Project No: 2 Project: Client:	Work Task #1						AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Cast Date: April 24, 201		
				Г 358 Surfac ealed Specim Mix 3A21-3					
Day 1	4/25/19								
				Sealed 1	Sealed 2				
			Mass (g)	13,306.4	13,274.7				
Sealed	0°	90°	180°	270°	0°	90°	180°	270°	
Sample 1	7.7	9.0	7.0	7.9	7.8	9.2	7.1	7.9	
Sample 2	8.7	7.6	6.7	8.2	8.7	7.6	7.3	8.7	
		÷	Surface Resistiv poreted as per T	• •	Effective Sur	face Resistivi	ty (kΩ-cm)		
	Sample 1		8.0				5.56		
	Sample 2		7.9			5.55		5.50	
Day 28	5/22/19								
				Sealed 1	Sealed 2				
			Mass (g)	13,306.6	13,274.2				
Sealed	0°	90°	180°	270°	0°	90°	180°	270°	
Sample 1	24.9	23.2	24.1	26.2	25.9	27.2	24.5	23.8	
Sample 2	28.5	26	23.1	26.8	28.5	26.1	23.7	25.9	
		e	Surface Resistiv poreted as per T	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)		
	Sample 1 25.0			17.85					
-	Sample 1		23.0		18.23				

• ENVIRONMENTAL

• GEOTECHNICAL

• MATERIALS

• FORENSICS

AET Project No: 29-20213 Project: Work Task #1 Client: Shafer							AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Cast Date: April 24, 201			
				Г 358 Surfac ealed Specim Mix 3A21-3	ens					
Day 91	7/24/19		Mass (g)	Sealed 1 13,304.6	Sealed 2 13,271.8					
Sealed	0°	90°	180°	270°	0°	90°	180°	270°		
Sample 1	47.8	52.1	44.6	48.8	48.8	49.6	43.6	56.5		
Sample 2	50.9	53.1	44.9	44.1	61.9	55.4	45.2	49.5		
		Average Surface Resistivity (kΩ-cm) (reporeted as per T 358)		• • •	Effective Surface Resistivity (kΩ-cm)					
-	Sample 1		49.0			34.25		34.83		
_	Sample 2		50.6			35.40		54.05		

• ENVIRONMENTAL

• GEOTECHNICAL

• MATERIALS

• FORENSICS

AET Project No: 29-20213 Project: Work Task #1 Client: Shafer						AET Project Mgr.: D. Vrun AET Engineer: P. Barn Cast Date: April 24		
				Г 358 Surfac ealed Specim Mix 3A21-6	ens			
Day 1	4/25/19							
				Sealed 1	Sealed 2			
			Mass (g)	13,760.6	13,698.8			
Sealed	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	6.3	6.3	7.7	7.3	6.1	6.5	7.5	7.5
Sample 2	6.7	7.1	6.4	8.5	6.6	7.2	6.3	8.3
		•	urface Resistiv oreted as per T	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
_	Sample 1		6.9				4.91	
	Sample 2		7.1			4.99		4.71
Day 28	5/22/19							
J				Sealed 1	Sealed 2			
			Mass (g)	13,755.1	13,695.3			
Sealed	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	17.4	17.4	21.8	19.6	17.6	18.2	21.6	18.8
Sample 2	19.6	21.7	19.1	25.7	19.7	22.8	19.1	24.7
	I	•	urface Resistiv oreted as per T	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)	
_	Sample 1	· •	19.1			13.32		14.20
	Sample 2		21.6		15.07			14.20

• ENVIRONMENTAL

• GEOTECHNICAL

• MATERIALS

• FORENSICS

AET Project No: 2 Project: V Client: S	Work Task #1	l			ET Engineer:	t Mgr.: D. Vruno gineer: P. Barnhouse t Date: April 24, 2019		
				Г 358 Surfac ealed Specim Mix 3A21-6	ens			
Day 91	7/24/19		Mass (g)	Sealed 1 13,727.4	Sealed 2 13,702.8			
Sealed	0°	90°	180°	270°	0°	90°	180°	270°
Sample 1	41.6	41.6	41.4	38.7	40.8	40.3	40.1	36.2
Sample 2	40.7	45.3	40.9	40.8	40.1	42.5	40.6	45.9
		Average Surface Resistivity (kΩ-cm) (reporeted as per T 358)		Effective Surface Resistivity (kΩ-cm)				
-	Sample 1		40.1			28.03		28.74
	Sample 2		42.1			29.44		20.74

• ENVIRONMENTAL

• GEOTECHNICAL

• MATERIALS

• FORENSICS

ET Project No: 2 Project: 2 Client: 3	Work Task #1						AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Cast Date: April 26, 2019		
				Г 358 Surfac ealed Specim Mix 3A21-9	ens				
Day 1	4/27/19								
				Sealed 1	Sealed 2				
			Mass (g)	13,208.2	13,295.4				
Sealed	0°	90°	180°	270°	0°	90°	180°	270°	
Sample 1	3.6	3.7	3.5	3.6	3.3	3.9	3.4	3.5	
Sample 2	4.2	3.4	3.5	3.7	4.0	3.8	3.7	3.7	
		÷	Surface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)		
	Sample 1	3.6				2.56			
_	Sample 2		3.8			2.62		2.30	
Day 28	5/24/19								
2				Sealed 1	Sealed 2				
			Mass (g)	13,202.5	13,288.2				
Sealed	0°	90°	180°	270°	0°	90°	180°	270°	
Sample 1	15.4	17.3	16	15.8	15.5	17	15.6	15.6	
Sample 2	17.3	16.2	16	16.5	16.1	16.4	15.8	16.3	
	I	÷	Surface Resistiv	• • •	Effective Sur	face Resistivi	ty (kΩ-cm)		
		16.0				11.21			
-	Sample 1		10.0		11.21 11.42			11.31	

• ENVIRONMENTAL

• GEOTECHNICAL

• MATERIALS

• FORENSICS

AET Project No: 29-20213 Project: Work Task #1 Client: Shafer							AET Project Mgr.: D. Vruno AET Engineer: P. Barnhouse Cast Date: April 26, 2019		
D 01	7/26/10			Г 358 Surfac ealed Specim Mix 3A21-9	ens				
Day 91	7/26/19		Mass (g)	Sealed 1 13,199.0	Sealed 2 13,283.5				
Sealed	0°	90°	180°	270°	0°	90°	180°	270°	
Sample 1	29.0	31.5	26.8	32.9	29.5	30.3	27.4	32.5	
Sample 2	34.3	33.7	33.0	31.8	32.5	36.3	32.5	30.7	
		Average Surface Resistivity (kΩ-cm) (reporeted as per T 358)		Effective Su	rface Resistivi	ty (kΩ-cm)			
-	Sample 1		30.0			20.97		22.06	
_	Sample 2		33.1			23.15		22.00	

DETERMINING CONCRETE STRENGTH USING THE MATURITY METHOD

Below are the results of maturity calculations conducted on the concrete mixture identified as 3A21-3. Compressive and flexural strength specimens were cast at the AET laboratory on April 24, 2019, and stored at our laboratory in St. Paul, MN, for strength testing. At the same time, a companion compressive and companion flexural specimen were cast and were used to monitor and record concrete temperature and maturity. All specimens were stored in a 100% relative humidity curing room at 23 °C until testing in accordance with ASTM C39 and ASTM C78. The temperature-time factor (i.e., maturity) was determined from the companion specimens in accordance with the method in ASTM C1074.

- Table 1 presents the temperature-time factor and compressive strengths at various ages for the given mix design.
- Figure 1 illustrates the relationship between estimated maturity and compressive strength through 28 days of curing in our laboratory.
- Table 2 presents the temperature-time factor and flexural strengths at various ages for the given mix design.
- Figure 2 illustrates the relationship between estimated maturity and flexural strength through 28 days of curing in our laboratory.

Table 1. Maturity and compressive strength results from laboratory-cured cylinders(3A21-3)

Age, days	Maturity (°C-Hours)	Compressive Strength (psi)
1	517	1,530
3	1,591	5,510
7	3,544	6,710
14	7,159	6,500
28	14,610	8,060

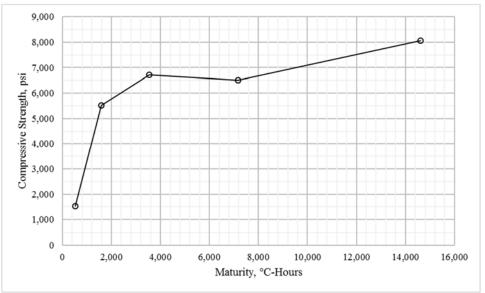


Figure 1. Compressive strength-maturity relationship (3A21-3)

Table 2. Maturity and flexural strength results from laboratory-cured cylinders (3A21-3)Age, daysMaturity (°C-Hours)Flexural Strength (psi)

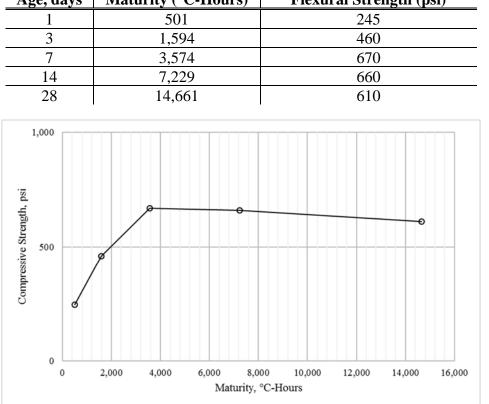


Figure 2. Flexural strength-maturity relationship (3A21-3)

DETERMINING CONCRETE STRENGTH USING THE MATURITY METHOD

Below are the results of maturity calculations conducted on the concrete mixture identified as 3A21-6. Compressive and flexural strength specimens were cast at the AET laboratory on April 24, 2019, and stored at our laboratory in St. Paul, MN, for strength testing. At the same time, a companion compressive and companion flexural specimen were cast and were used to monitor and record concrete temperature and maturity. All specimens were stored in a 100% relative humidity curing room at 23 °C until testing in accordance with ASTM C39 and ASTM C78. The temperature-time factor (i.e., maturity) was determined from the companion specimens in accordance with the method in ASTM C1074.

- Table 1 presents the temperature-time factor and compressive strengths at various ages for the given mix design.
- Figure 1 illustrates the relationship between estimated maturity and compressive strength through 28 days of curing in our laboratory.
- Table 2 presents the temperature-time factor and flexural strengths at various ages for the given mix design.
- Figure 2 illustrates the relationship between estimated maturity and flexural strength through 28 days of curing in our laboratory.

Table 1. Maturity and compressive strength results from laboratory-cured cylinders(3A21-6)

Age, days Maturity (°C-Hours)		Compressive Strength (psi)		
1	523	2,350		
3	1,598	6,270		
7	3,566	7,260		
14	7,205	7,740		
28	14,676	8,680		

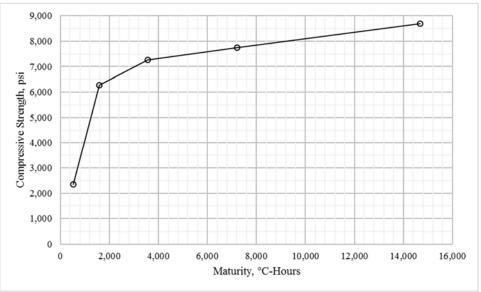


Figure 1. Compressive strength-maturity relationship (3A21-6)

Table 2. Maturity and flexural strength results from laboratory-cured cylinders (3A21-6)Age, daysMaturity (°C-Hours)Flexural Strength (psi)

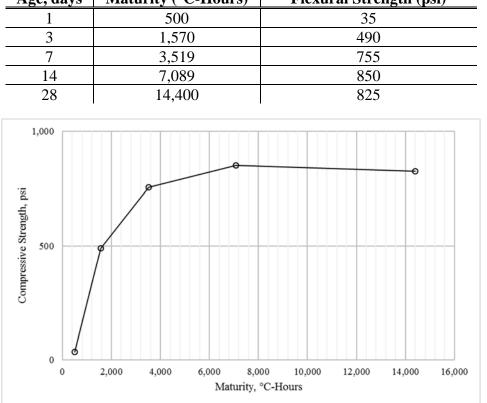


Figure 2. Flexural strength-maturity relationship (3A21-6)

DETERMINING CONCRETE STRENGTH USING THE MATURITY METHOD

Below are the results of maturity calculations conducted on the concrete mixture identified as 3A41-9. Compressive and flexural strength specimens were cast at the AET laboratory on April 26, 2019, and stored at our laboratory in St. Paul, MN, for strength testing. At the same time, a companion compressive and companion flexural specimen were cast and were used to monitor and record concrete temperature and maturity. All specimens were stored in a 100% relative humidity curing room at 23 °C until testing in accordance with ASTM C39 and ASTM C78. The temperature-time factor (i.e., maturity) was determined from the companion specimens in accordance with the method in ASTM C1074.

- Table 1 presents the temperature-time factor and compressive strengths at various ages for the given mix design.
- Figure 1 illustrates the relationship between estimated maturity and compressive strength through 28 days of curing in our laboratory.
- Table 2 presents the temperature-time factor and flexural strengths at various ages for the given mix design.
- Figure 2 illustrates the relationship between estimated maturity and flexural strength through 28 days of curing in our laboratory.

Table 1. Maturity and compressive strength results from laboratory-cured cylinders(3A41-9)

Age, days Maturity (°C-Hours)		Compressive Strength (psi)		
1	542	2,320		
3	1,567	4,180		
7	3,535	4,940		
14	7,236	5,180		
28	14,712	5,850		

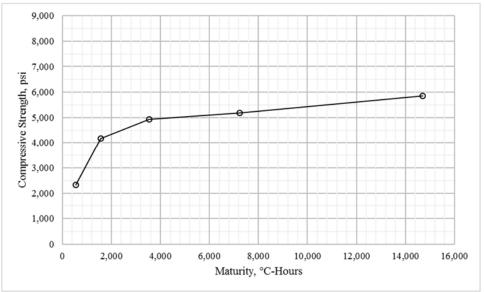


Figure 1. Compressive strength-maturity relationship (3A41-9)

Table 2. Maturity and flexural strength results from laboratory-cured cylinders (3A41-9)Age, daysMaturity (°C-Hours)Flexural Strength (psi)

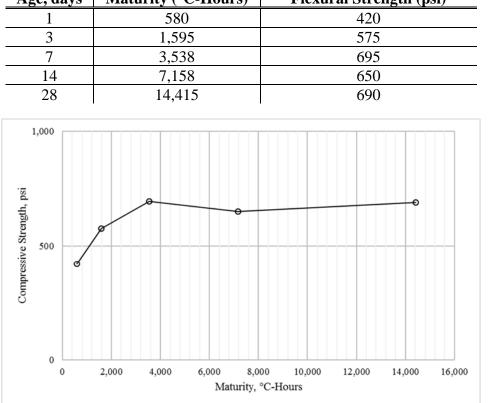


Figure 2. Flexural strength-maturity relationship (3A41-9)

AIR VOID ANALYSIS

PROJECT:

TH35W AND LAKE STREET MINNEAPOLIS, MN

REPORTED TO:

350

300

> 100 50

#

SHAFER CONTRACTING CO INC PO BOX 128 SHAFER, MN 55074

ATTN:	GREG PELKY

DATE: MAY 22, 2019

AET PROJECT NO: 29-20213

3A21-3

The concrete contains an air void system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance.

Som	nlo	Data
Sam	pie	Data

Sample ID:

Conformance:

Description:	Description: Hardened C	
Dimensions:	Dimensions: 152 mm (6")	
	(12	.") length
Test Data:	By ASTM C	C457, Procedure A
Air Void Conte	ent %	5.7
Entrained, % <	0.040"(1mm)	4.7
Entrapped, %>	0.040"(1mm)	1.0
Air Voids/inch		15.0
Specific Surfac	Specific Surface, in ² /in ³	
Spacing Factor, inches		0.005
Paste Content, % estimated		30
Magnification		75x
Traverse Lengt	h, inches	90
Test Date		5/13/2019
Test Performed	l By	W. Reely
Report Prepared By:		

American Engineering Testing, Inc.

Blake M. Lemcke, PG Geologist/Petrographer MN License #50337

CHORD LENGTH (1x0.0006666667")

Magnification: 15x Description: Hardened air void system.

AIR VOID ANALYSIS

PROJECT:

TH35W AND LAKE STREET MINNEAPOLIS, MN

REPORTED TO:

SHAFER CONTRACTING CO INC PO BOX 128 SHAFER, MN 55074

ATTN:	GREG PELKY		

AET PROJECT NO: 29-20213

DATE: MAY

MAY 22, 2019

120 100 80 40 20 0 1 1 1 2 1 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

Sample Data

Sample ID:

Conformance:

Sumple Data				
Description:	Hardened C	Concrete Cylinder		
Dimensions:	152 mm (6")	diameter x 305 mm		
	(12	") length		
Test Data:	By ASTM C	2457, Procedure A		
Air Void Conte	ent %	4.3		
Entrained, % <	0.040"(1mm)	3.3		
Entrapped, %>	0.040"(1mm)	1.0		
Air Voids/inch	Air Voids/inch			
Specific Surfac	Specific Surface, in ² /in ³			
Spacing Factor, inches		0.008		
Paste Content,	Paste Content, % estimated			
Magnification		75x		
Traverse Lengt	h, inches	90		
Test Date		5/13/2019		
Test Performed	l By	W. Reely		
Report Prepared By:	-	-		

3A21-6

The concrete contains an air void system which is generally consistent with current American Concrete Institute (ACI) recommendations for

freeze-thaw resistance.

American Engineering Testing, Inc.

Blake M. Lemcke, PG Geologist/Petrographer MN License #50337

Magnification: 15x Description: Hardened air void system.

AIR VOID ANALYSIS

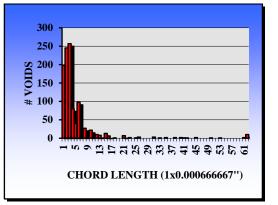
PROJECT:

TH35W AND LAKE STREET MINNEAPOLIS, MN

REPORTED TO:

SHAFER CONTRACTING CO INC PO BOX 128 SHAFER, MN 55074

ATTN:	GREG PELKY


DATE: MAY 22, 2019

AET PROJECT NO: 29-20213

Sample ID: **Conformance:**

The concrete contains an air void system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance.

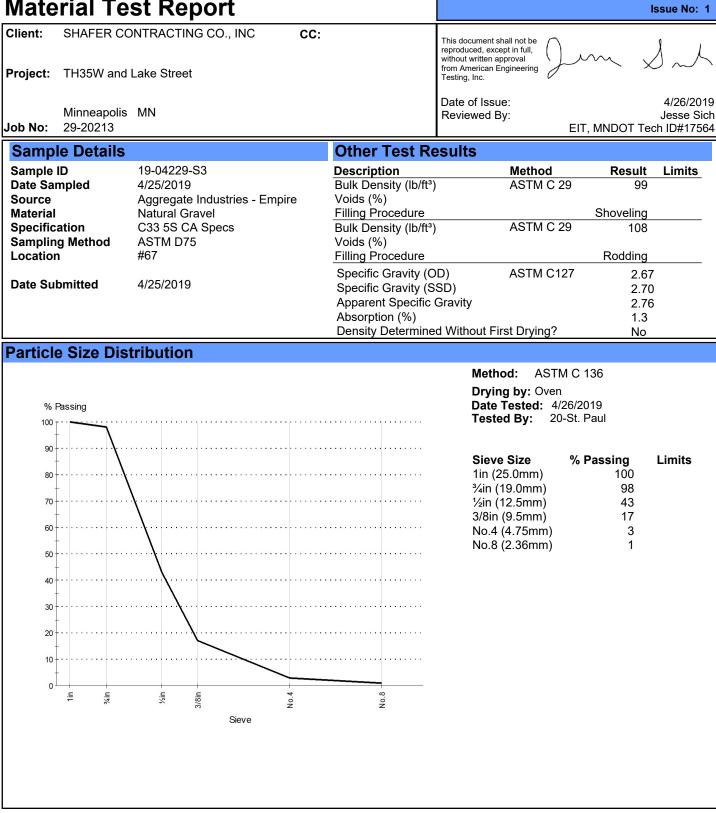
3A41-9

Sample Data

Sample Data		
Description:	Hardened Conc	rete Cylinder Section
Dimensions:	152 mm (6")	diameter x 19 mm
	(3/4	") length
Test Data:	By ASTM C	2457, Procedure A
Air Void Cont	tent %	4.3
Entrained, % <	< 0.040"(1mm)	3.4
Entrapped, %>	> 0.040"(1mm)	0.9
Air Voids/inch	1	11.6
Specific Surfa	ce, in ² /in ³	1090
Spacing Facto	r, inches	0.004
Paste Content,	% estimated	17
Magnification		75x
Traverse Leng	th, inches	90
Test Date		5/22/2019
Test Performe	d By	W. Reely
Report Prepared By:	-	-

American Engineering Testing, Inc.

Blake M. Lemcke, PG Geologist/Petrographer MN License #50337


Magnification: 15x Description: Hardened air void system.

American Engineering Testing, Inc. St. Paul Albertville 550 Cleveland Ave N 5548 Barthel Ind Dr, Ste 500 Albertville, MN 55301 (763) 428-5573 St. Paul, MN 55114 (651) 659-9001 Toll Free: (800) 972-6364 www.amengtest.com

Report No: MAT:19-04229-S3

Material Test Report

Comments

 American Engineering Testing, Inc.

 St. Paul
 Albertville

 550 Cleveland Ave N
 5548 Barthel Ind Dr, Ste 500

 St. Paul, MN 55114
 Albertville, MN 55301

 (651) 659-9001
 (763) 428-5573

 Toll Free: (800) 972-6364
 www.amengtest.com

Report No: MAT:19-04229-S4

. . -

Material Te	st Report			Issue No: 1
Client: SHAFER CC Project: TH35W and	DNTRACTING CO., INC CC		This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.	m Sah
Minneapolis Job No: 29-20213	MN		Date of Issue: Reviewed By: El ⁻	4/26/2019 Jesse Sich Г, MNDOT Tech ID#17564
Sample Details		Other Test Res	sults	
Sample ID Date Sampled Source Material Specification Sampling Method Location Date Submitted	19-04229-S4 4/25/2019 Aggregate Industries - Empire Natural Gravel C33 5S CA Specs ASTM D75 #4 4/25/2019	Description Bulk Density (lb/ft³) Voids (%) Filling Procedure Bulk Density (lb/ft³) Voids (%) Filling Procedure Specific Gravity (OE Specific Gravity (SS Apparent Specific G	ŚĎ)	ResultLimits95Shoveling104Rodding2.692.722.76
		Absorption (%)	I Without First Drying?	1.0 No
% Passing	ut uz ugg	Ro.8	Method: ASTM C Drying by: Oven Date Tested: 4/26/2 Tested By: 20-St. Sieve Size % 2in (50.0mm) 1½in (37.5mm) 1in (25.0mm) ¾in (19.0mm) ¼in (12.5mm) 3/8in (9.5mm) No.4 (4.75mm) No.8 (2.36mm)	019

Comments N/A

American Engineering Testing, Inc.St. PaulAlbertville550 Cleveland Ave N5548 BarthSt. Paul, MN 55114Albertville,(651) 659-9001(763) 428-Tell Forse (000) 070 0001(763) 428-5548 Barthel Ind Dr, Ste 500 Albertville, MN 55301 (763) 428-5573 www.amengtest.com Toll Free: (800) 972-6364

Report No: MAT:19-04229-S2

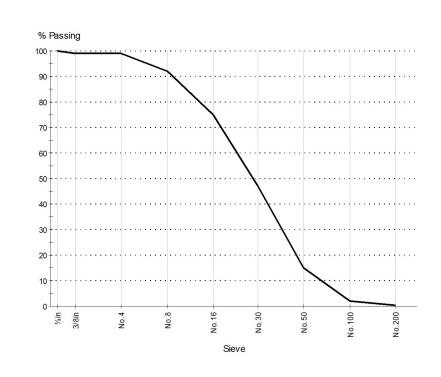
Motorial Toot Donart

Mate	erial le	st Report				ls	sue No: 1
Client: Project:	SHAFER CC	DNTRACTING CO., INC CC	:	This document shall n reproduced, except in without written approv from American Engine Testing, Inc.	full, ()	~~ X	1~~L
Job No:	Minneapolis 29-20213	MN		Date of Issue: Reviewed By:	EIT	, MNDOT Tec	4/26/2019 Jesse Sich h ID#17564
Samp	le Details		Other Test Re	esults			
Sample Date Sa Source Material Specific Samplir Location Date Su	mpled ation ng Method n	19-04229-S2 4/25/2019 Aggregate Industries - Empire Natural Gravel C33 5S CA Specs ASTM D75 CIA 4/25/2019	DescriptionBulk Density (lb/ft³)Voids (%)Filling ProcedureBulk Density (lb/ft³)Voids (%)Filling ProcedureSpecific Gravity (OSpecific Gravity (SiApparent Specific GAbsorption (%)) A:) A: D) A: SD)	ethod STM C 29 STM C 29 STM C 128	Result 97 Shoveling 106 Rodding 2.64 2.68 2.74 1.4	Limits
	e Size Dist	tribution		Method: Drying b Date Tes Tested E	y: Oven sted: 4/26/20		

90		••••••
80 +		
80	X	
70 + · · · · · · · · · · · · · · · · · ·		
-		
60 - · · · · · · · · · · · · · · · · · ·	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	••••••
50 +		
50		
40		
-		
30	•••••••••••••••••••••••••••••••••••••••	·····
20		
20		
10 - • • • • • • • • • • • • • • • • • •		•••••
+		
0 	4	<u></u>
3/8in	A. 0 4.	N 0.8
	Sieve	

Sieve Size % Passing Limits 3/8in (9.5mm) 100 No.4 (4.75mm) 83 No.8 (2.36mm) 15

Comments


American Engineering Testing, Inc. St. Paul Albertville 550 Cleveland Ave N 5548 Barthel Ind Dr, Ste 500 St. Paul, MN 55114 (651) 659-9001 Albertville, MN 55301 (763) 428-5573 Toll Free: (800) 972-6364 www.amengtest.com

Report No: MAT:19-04229-S1

Matorial Tost Ronart

Material Test Report			Issue No: 1
Client: SHAFER CONTRACTING CO., INC CC: Project: TH35W and Lake Street		This document shall not be reproduced, except in full, without written approval from American Engineering Testing, Inc.	m Sat
Minneapolis MN Job No: 29-20213		Date of Issue: Reviewed By: EIT,	4/26/2019 Jesse Sich MNDOT Tech ID#17564
Sample Details	Other Test Re	esults	
Sample ID19-04229-S1Date Sampled4/25/2019SourceAggregate Industries - EmpireMaterialConcrete SandSpecificationC33 FA SpecSampling MethodASTM D75LocationSandDate Submitted4/25/2019	DescriptionBulk Density (lb/ft³)Voids (%)Filling ProcedureBulk Density (lb/ft³)Voids (%)Filling ProcedureFineness ModulusSpecific Gravity (OSpecific Gravity (OSpecific Gravity (SSApparent Specific GAbsorption (%)	ASTM C 29 ASTM C 136, ASTM C 17 D) ASTM C128 SD)	Result Limits 103 103 Shoveling 110 110 110 Rodding 110 17 2.71 2.66 2.67 2.69 0.5

Particle Size Distribution

Method: ASTM C 136, ASTM C 117 Drying by: Oven Date Tested: 4/26/2019 Tested By: Maria Fuerstenberg

Sieve Size	% Passing	Limits
½in (12.5mm)	100	
3/8in (9.5mm)	99	
No.4 (4.75mm)	99	
No.8 (2.36mm)	92	
No.16 (1.18mm)	75	
No.30 (600µm)	47	
No.50 (300µm)	15	
No.100 (150µm)	2	
No.200 (75µm)	0.5	

Comments

APPENDIX B

Field Testing

B1.1: Cement Test Report

Bill of Lading:

Lab No: CE20-0115 Authorization Date: 06/25/2020 13:12 Report Date: 06/29/2020

Test Report on Cement Sample

Sample ID: Sampled By: Engineer Rep: Requested By:	MnAd\Lars4Dav20200507030644 Mark Kosmalski	Field ID: Project Number: Billed Agency: Bridge Number:	4 2782-327
Source: Brand:	St. Genevieve at Bloomsdale, MO	Sampled From: Sample Type:	Truck, 44
Additional Sources: Material Type:	Shafer - X425 3101-Type I/II Type I/II Portland Cement	Sample Date: Received Date:	04/21/2020 05/07/2020

MnDOT Results Specification Requirements Minimum Maximum Compstr 1 Day (PSI) Compstr 3 Day (PSI) Compstr 7 Day (PSI) 5,390 2,760 Compstr 28 Day (PSI) AutoCl Expan (%) Vicat INL Time of Set (minutes) Vicat FIN Time of Set (minutes) Gilmr INL Time of Set (minutes) Gilmr FIN Time of Set (minutes) Air Content (%) Reported Blaine (cm2/gm)

ASTM Test Methods: C109,C151,C185,C187,C191,C204, C266

SSA0074957

Report on Cement Chemical Tests

MnDOT Results Silicon Dioxide (%) 19.93 Aluminum Oxide (%) 4.60 Iron Oxide (%) 3.24 Calcium Oxide (%) 63.54 Magnesium Oxide (%) 2.69 Sulfur Trioxide † (%) 3.20 Loss on Ignition (%) 10.00

Insoluble Residue (%)	
Sodium Oxide (%)	0.10
Potassium Oxide (%)	0.60
Equivalent Alkalies (%)	0.49
Sulfide (%)	
Limestone (%)	
Sulfate as SO3 (%)	
Tricalcium Silicate (%)	62.59
Dicalcium Silicate (%)	9.92
Tricalcium Aluminate (%)	6.69
Tetracalcium Aluminoferrite (%)	9.87

† Note:

Sample Disposition: Meets Requirements

Copies To: Jon Erickson, Mark Kosmalski

Test Results Reviewed By: David Larson, Jason Krogman

CE20-0115 Charge Out:

Specification Requirements

Maximum

Minimum

B1.2: Fly Ash Test Report

Bill of Lading:

809565439

Lab No: FA20-0159 Authorization Date: 07/21/2020 09:48 Report Date: 07/28/2020

Test Report on Fly Ash Sample

Sample ID:	MnAd\Lars4Dav20200507030227	Field ID:	4
Sampled By:	Mark Kosmalski	Project Number:	2782-327
Engineer Rep:		Billed Agency:	
Requested By:		Bridge Number:	
Source:	Oak Creek Power Plant at Oak Creek, WI	Sampled From:	Truck, 398
Brand:		Sample Type:	
Additional Sources:	Shafer - X425	Sample Date:	04/21/2020
Material Type:	3115-Class C	Received Date:	05/07/2020
Material Description	Class C Fly Ash		

MnDOT Results Specification Requirements **Physical Tests** Minimum Maximum Reported SpG (g/cm3) 2.71 34 Retained on #325 (%) 7.58 Autocl Expan (%) 75 Activity Index 7 Day (% of control) 100 Activity Index 28 Day (% of Control) **Chemical Analysis** Silicon Dioxide (%) 34.62 Aluminum Oxide (%) 19.49 Iron Oxide (%) 6.25 Sum of 3 (%) 60.4 50 50 Calcium Oxide (%) 6.25 Magnesium Oxide (%) 5.53 Sulfur Trioxide (%) 5.53 Sodium Oxide (%) 1.65 Potassium Oxide (%) 0.56 Avail Sodium Oxide (%) Avail Potassium Oxide (%) Avail Alkali (%) 3.50 Loss of Ignition (%) 0.4 Chem Lab Disposition Pass Foam Index

ASTM Test Methods: C311, C188, C430, C151, C109, C114

Sample Disposition: Meets Requirements

Test Results Reviewed By: David Larson, Jason Krogman

B1.3: Type A Additive Test Report

CO-Maplewood Mat Lab 1400 Gervais Avenue Maplewood, MN 55109-5592

DEPARTMENT OF TRANSPORTATION

Lab No: CO-CX20-0365 Date: 04/29/2020 Report Version: 202004290828

Concrete Additive Test Report

Sample ID:	MnAd\Krog1Jas20200423010215	Field ID:	1
Sampled By:	Mark Kosmalski	Project Number:	2782-327
Engineer Rep:		Billed Agency:	
Requested By:	Jon Erickson	Bridge Number:	
Source:	GRT	Sampled From:	,
Brand:	AGRTPLYPP	Sample Type:	
Additional Sources:	Shafer - X433	Sample Date:	04/21/2020
Material Type:	3113-Type A	Received Date:	04/23/2020
Material Description	Type A - Water Reducing and Mid Range Wate	er Reducing	

	MnDOT Results	Specification	Requirements
		Minimum	Maximum
Total Percent Solids	44.3	42	52
рН			
Specific Gravity	1.190	1.167	1.204
Infra Red Spectrum			

Test Procedures: ASTM - C260, C494, C1017, E1252

Sample Disposition: Meets Requirements

Copies To:Test Results Reviewed By: Kayla KuhlmanCO-CX20-0365Charge Out: 1103

CO-Maplewood Mat Lab 1400 Gervais Avenue Maplewood, MN 55109-5592

DEPARTMENT OF TRANSPORTATION

Lab No: CO-CX20-0397 Date: 04/29/2020 Report Version: 202004290840

Concrete Additive Test Report

Sample ID:	MnAd\Krog1Jas20200427030841	Field ID:	2
Sampled By:	Mark Kosmalski	Project Number:	2782-327
Engineer Rep:		Billed Agency:	
Requested By:	Jon Erickson	Bridge Number:	
Source:	GRT	Sampled From:	,
Brand:	AGRTPLYPP	Sample Type:	
Additional Sources:	Shafer - X433	Sample Date:	04/25/2020
Material Type:	3113-Type A	Received Date:	04/27/2020
Material Description	Type A - Water Reducing and Mid Range Wate	er Reducing	

	MnDOT Results	Specification	Requirements
		Minimum	Maximum
Total Percent Solids	44.8	42	52
рН			
Specific Gravity	1.192	1.167	1.204
Infra Red Spectrum			

Test Procedures: ASTM - C260, C494, C1017, E1252

Sample Disposition: Meets Requirements

Copies To:Test Results Reviewed By: Kayla KuhlmanCO-CX20-0397Charge Out: 1103

B1.4: Type AEA Additive Test Report

CO-Maplewood Mat Lab 1400 Gervais Avenue Maplewood, MN 55109-5592

DEPARTMENT OF TRANSPORTATION

Lab No: CO-CX20-0364 Date: 04/29/2020 Report Version: 202004290828

Concrete Additive Test Report

Sample ID:	MnAd\Krog1Jas20200423125358	Field ID:	3
Sampled By:	Mark Kosmalski	Project Number:	2782-327
Engineer Rep:		Billed Agency:	
Requested By:	Jon Erickson	Bridge Number:	
Source:	GRT	Sampled From:	,
Brand:	GRTPOLYSA	Sample Type:	
Additional Sources:	Shafer - X433	Sample Date:	04/21/2020
Material Type:	3113-Type AEA	Received Date:	04/23/2020
Material Description	Type AEA - Air Entrainment		

	MnDOT Results	Specification Requirements	
		Minimum	Maximum
Total Percent Solids	7.3	3.4	9.4
рН	7.0	5.1	8.1
Specific Gravity	1.020	1.008	1.028

Test Results Reviewed By: Kayla Kuhlman

Infra Red Spectrum

Test Procedures: ASTM - C260, C494, C1017, E1252

Sample Disposition: Meets Requirements

Copies To: CO-CX20-0364

Charge Out: 1103

B2.1: Aggregates: JMF Worksheets

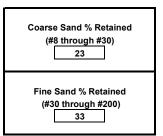
S.P.	2782-327	Plant:	Shafer	Date:		Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:08 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	1	Test #:		JMF #:	20-018	Contractor only - QA or Verification	n Test # corres	ponding to the	nis test:		
						Agency only - QC or Verification C	ompanion Tes	t # correspor	iding to this t	est:	

Sieve Analysis of Coarse Aggregate

	Sample Wt.	13	.43	0	Sample Wt.	22	2.50	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparisor Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.		2%	restricesuite	Mix Prop.			
Sieve Sizes	Weigł	ghts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.4	100		0.4	22.6	100					
1 1/2" - 1 1/4"	0.0	13.4	100		3.8	22.2	98					
1 1/4" - 1"	0.0	13.4	100		8.3	18.4	81					
1" - 3/4"	0.6	13.4	100		9.2	10.1	45					
3/4" - 5/8"	0.0	12.9	96		0.0	0.9	4					
* 5/8" - 1/2"	5.7	12.9	-	-	0.7	0.9	-	-			-	-
1/2" - 3/8"	3.4	7.2	53		0.1	0.2	1					
3/8" - 1/4"	0.0	3.8	28		0.0	0.1	0					
* 1/4" - #4	3.0	3.8	-	-	0.0	0.1	-	-			-	-
#4 - Btm	0.8	0.8	6		0.1	0.1	0					
Check Total	13.4	± 0.2 lb of S	ample Wt		22.6	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate


	Sample Wt.	54	4.3		Sample Wt.			
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	Test Results	Mix Prop.			Test Results
Sieve Sizes	Weigl	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	543.5	100					
3/8" - #4	2.7	543.5	100					
#4 - #6	0.0	540.8	100					
* #6 - #8	34.4	540.8	-	-			-	-
#8 - #16	86.2	506.4	93					
#16 - #30	139.6	420.2	77					
#30 - #50	199.5	280.6	52					
#50 - #100	72.4	81.1	15					
#100 - #200	5.8	8.7	2					
#200 - Btm	1.3	2.9	0.5					
Loss by Washing	1.6							
Check Total	543.5	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	3037.8	5413.4	
(B) Dry weight of washed sample	3023.9	5406.1	
(C) Loss by washing (A-B)	13.9	7.3	
(D) % Passing #200 (C/A)*100	0.5	0.1	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	544.3		
(B) Dry weight of washed sample	542.7		
(C) Loss by washing (A-B)	1.6		
(D) % Passing #200 (C/A)*100	0.3		
Comparison Test Results			

Additional Remarks or Comments

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2	l l	Combined		.IN	ΛF	
Fraction	3/4"	1-12"	0,110	Sand	17(112	Total %	Gradation	Working	Wor		Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	34	1		43		77	78	± 5	73	83	11
1/2"	19	0		43		62	64	± 5	59	69	15
3/8"	10	0		43		53	56	± 5	51	61	9
#4	2	0		43		45	44	± 5	39	49	8
#8				40		40	39	± 4	35	43	5
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				1		1	0	± 2	0	2	5
#200	0.2	0.0		0.2		0.4	0.4	± 1.6% max	0.0	1.6	0.6

S.P.	2782-327	Plant:	Shafer	Date:	4/21/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	5:04 AM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	1	Test #:	1	JMF #:	20 010	Contractor only - QA or Verification		1 3			
						Agency only - QC or Verification Companion Test # corresponding to this test:					

Sieve Analysis of Coarse Aggregate

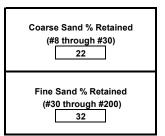
DOT

	Sample Wt.	1;	3.2	0	Sample Wt.	2	8.1	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	35%		Mix Prop. 22%		restresuits	Mix Prop.			1 OOC 1 COOUND	
Sieve Sizes	Weigł	nts (lb)	(lb)		Weigł	nts (lb)			Weights (lb)			
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.2	100		1.4	28.2	100					
1 1/2" - 1 1/4"	0.0	13.2	100		4.7	26.7	95					
1 1/4" - 1"	0.0	13.2	100		12.2	22.0	78					
1" - 3/4"	1.0	13.2	100		8.6	9.9	35					
3/4" - 5/8"	0.0	12.3	93		0.0	1.3	4					
* 5/8" - 1/2"	5.4	12.3	-	-	1.0	1.3	-	-			-	-
1/2" - 3/8"	3.5	6.9	52		0.1	0.3	1					
3/8" - 1/4"	0.0	3.4	26		0.0	0.2	1					
* 1/4" - #4	2.8	3.4	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.6	0.6	4		0.1	0.1	0					Ī
Check Total	13.2	± 0.2 lb of S	ample Wt		28.2	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	54	0.4	Comparison	Sample Wt.			Companian
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	541.3	100					
3/8" - #4	1.4	541.3	100					
#4 - #6	0.0	539.9	100					
* #6 - #8	34.2	539.9	-	-			-	-
#8 - #16	86.9	505.7	93					
#16 - #30	139.7	418.8	77					
#30 - #50	202.2	279.1	52					
#50 - #100	68.5	76.9	14					
#100 - #200	5.6	8.4	2					
#200 - Btm	1.6	2.8	0.5					
Loss by Washing	1.2							
Check Total	541.3	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
			0,1110
(A) Dry weight of original sample	2749.0	5151.8	
(B) Dry weight of washed sample	2724.1	5118.8	
(C) Loss by washing (A-B)	24.9	33.0	
(D) % Passing #200 (C/A)*100	0.9	0.6	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	540.4		
(B) Dry weight of washed sample	539.2		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

Mix 3A21-43

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	21		43		99	100	± 5	95	100	1
1"	35	8		43		86	89	± 5	84	94	13
3/4"	33	1		43		76	78	± 5	73	83	10
1/2"	18	0		43		61	64	± 5	59	69	15
3/8"	9	0		43		52	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	8
#8				40		40	39	± 4	35	43	4
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				1		1	0	± 2	0	2	5
#200	0.3	0.1		0.2		0.7	0.4	± 1.6% max	0.0	1.6	0.3

S.P.	2782-327	Plant:	Shafer	Date:	4/21/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:			
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:09 PM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:	
Lot #:	1	Test #:	2	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	is test:			
						Agency only - QC or Verification Companion Test # corresponding to this test:						

Sieve Analysis of Coarse Aggregate

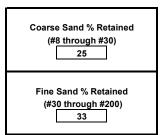
DOT

	Sample Wt.	1;	3.6	0	Sample Wt.	2	5.3	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	3	5%	Mix Prop		22%		restressats	Mix Prop.			. set i toodito
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.6	100		0.0	25.3	100					
1 1/2" - 1 1/4"	0.0	13.6	100		2.6	25.3	100					
1 1/4" - 1"	0.0	13.6	100		10.2	22.7	90					
1" - 3/4"	0.7	13.6	100		11.2	12.5	49					
3/4" - 5/8"	0.0	12.9	95		0.0	1.3	5					
* 5/8" - 1/2"	3.8	12.9	-	-	1.1	1.3	-	-			-	-
1/2" - 3/8"	3.2	9.1	67		0.1	0.2	1					
3/8" - 1/4"	0.0	5.9	43		0.0	0.1	0					
* 1/4" - #4	4.5	5.9	-	-	0.0	0.1	-	-			-	-
#4 - Btm	1.4	1.4	10		0.1	0.1	0					
Check Total	13.6	± 0.2 lb of S	ample Wt		25.3	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	7.1		Sample Wt.			
Aggregate	FA #1	Sa	and	Comparison	EA #2			Comparison
Fraction	Mix Prop.		3%	Test Results	Mix Prop.			Test Results
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	536.0	100					
3/8" - #4	2.6	536.0	100					
#4 - #6	0.0	533.4	100					
* #6 - #8	36.0	533.4	-	-			-	-
#8 - #16	84.1	497.4	93					
#16 - #30	138.4	413.3	77					
#30 - #50	198.1	274.9	51					
#50 - #100	68.8	76.8	14					
#100 - #200	5.6	8.0	1					
#200 - Btm	0.8	2.4	0.4					
Loss by Washing	1.6							
Check Total	536.0	± 0.3% of Sa	ample Wt		± 0.3% of Sample Wt			


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	537.1		
(B) Dry weight of washed sample	535.5		
(C) Loss by washing (A-B)	1.6		
(D) % Passing #200 (C/A)*100	0.3		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	33	1		43		77	78	± 5	73	83	12
1/2"	23	0		43		67	64	± 5	59	69	10
3/8"	15	0		43		58	56	± 5	51	61	9
#4	4	0		43		47	44	± 5	39	49	11
#8				40		40	39	± 4	35	43	7
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				0		0	0	±2	0	2	6
#200				0.2		0.2	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	4/22/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:			
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:15 AM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:	
Lot #:	2	Test #:	3	JMF #:	20-018	Contractor only - QA or Verification Test # corresponding to this test:						
						Agency only - QC or Verification Companion Test # corresponding to this test:						

Sieve Analysis of Coarse Aggregate

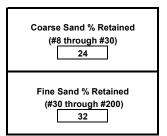
DOT

	Sample Wt.	14	4.6		Sample Wt.	20	6.8		Sample Wt.			
Aggregate	CA #1		/4"	Comparison Test Results	CA #2		12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	35	5%	Test Results	Mix Prop.	22	2%	Test Results	Mix Prop.			Test Results
Sieve Sizes	Weigł	nts (lb)			Weigł	nts (lb)			Weights (lb)			
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	14.6	100		1.2	26.9	100					
1 1/2" - 1 1/4"	0.0	14.6	100		3.1	25.7	96					
1 1/4" - 1"	0.0	14.6	100		11.6	22.6	84					
1" - 3/4"	0.7	14.6	100		9.8	11.0	41					
3/4" - 5/8"	0.0	13.9	95		0.0	1.2	4					
* 5/8" - 1/2"	4.1	13.9	-	-	0.9	1.2	-	-			-	-
1/2" - 3/8"	3.7	9.8	67		0.1	0.3	1					
3/8" - 1/4"	0.0	6.1	42		0.0	0.2	1					
* 1/4" - #4	4.7	6.1	-	-	0.1	0.2	-	-			-	-
#4 - Btm	1.4	1.4	10		0.1	0.1	0					
Check Total	14.6	± 0.2 lb of S	ample Wt		26.9	± 0.2 lb of S	ample Wt	± 0.2 lb of Sample Wt				

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	5.9	Comparison	Sample Wt.			Comparison
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricedute
Sieve Sizes	Weigl	hts (g)			Weigl	nts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	2.2	536.1	100					
3/8" - #4	4.7	533.9	100					
#4 - #6	0.0	529.2	99					
* #6 - #8	35.3	529.2	-	-			-	-
#8 - #16	86.3	493.9	92					
#16 - #30	140.0	407.6	76					
#30 - #50	190.8	267.6	50					
#50 - #100	67.3	76.8	14					
#100 - #200	5.6	9.5	2					
#200 - Btm	1.2	3.9	0.7					
Loss by Washing	2.7							
Check Total	536.1	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2821.6	5241.4	
(B) Dry weight of washed sample	2800.5	5220.9	
(C) Loss by washing (A-B)	21.1	20.5	
(D) % Passing #200 (C/A)*100	0.7	0.4	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	535.9		
(B) Dry weight of washed sample	533.2		
(C) Loss by washing (A-B)	2.7		
(D) % Passing #200 (C/A)*100	0.5		
Comparison Test Results			

Additional Remarks or Comments

Mix 3A21-43

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retaine
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	21		43		99	100	± 5	95	100	1
1"	35	9		43		87	89	± 5	84	94	12
3/4"	33	1		43		77	78	± 5	73	83	10
1/2"	23	0		43		67	64	± 5	59	69	10
3/8"	15	0		43		58	56	± 5	51	61	9
#4	4	0		43		46	44	± 5	39	49	12
#8				40		40	39	± 4	35	43	6
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				1		1	0	±2	0	2	5
#200	0.2	0.1		0.3		0.6	0.4	± 1.6% max	0.0	1.6	0.4

S.P.	2782-327	Plant:	Shafer	Date:	4/22/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:			
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	3:35 PM	Aggregate Sources (Fit #):	CA #1:	19129	CA #2:	19129	CA #3:	
Lot #:	2	Test #:	4	JMF #:	20-018	Contractor only - QA or Verification Test # corresponding to this test:						
						Agency only - QC or Verification Companion Test # corresponding to this test:						

Sieve Analysis of Coarse Aggregate

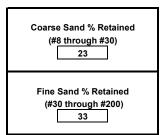
DOT

	Sample Wt.	1;	3.6	0	Sample Wt.	2	8.0	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	22	2%	restricesand	Mix Prop.			rootricount
Sieve Sizes	Weigł	nts (lb)			Weigh	its (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.6	100		0.5	28.2	100					
1 1/2" - 1 1/4"	0.0	13.6	100		3.5	27.7	98					
1 1/4" - 1"	0.0	13.6	100		11.7	24.2	86					
1" - 3/4"	1.0	13.6	100		10.6	12.5	44					
3/4" - 5/8"	0.0	12.6	92		0.0	1.9	7					
* 5/8" - 1/2"	5.1	12.6	-	-	1.2	1.9	-	-			-	-
1/2" - 3/8"	3.9	7.5	55		0.2	0.7	2					
3/8" - 1/4"	0.0	3.6	26		0.0	0.5	2					
* 1/4" - #4	3.1	3.6	-	-	0.2	0.5	-	-			-	-
#4 - Btm	0.5	0.5	4		0.3	0.3	1					
Check Total	13.6	± 0.2 lb of S	ample Wt		28.2	± 0.2 lb of S	ample Wt	le Wt		± 0.2 lb of Sample Wt		

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	9.5		Sample Wt.			
Aggregate	FA #1	Sa	and	Comparison	EA #2			Comparison
Fraction	Mix Prop.		3%	Test Results	Mix Prop.			Test Results
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	538.7	100					
3/8" - #4	1.8	538.7	100					
#4 - #6	0.0	536.9	100					
* #6 - #8	33.6	536.9	-	-			-	-
#8 - #16	87.8	503.3	93					
#16 - #30	142.5	415.5	77					
#30 - #50	194.8	273.0	51					
#50 - #100	68.5	78.2	15					
#100 - #200	5.6	9.7	2					
#200 - Btm	1.1	4.1	0.8					
Loss by Washing	3.0							
Check Total	538.7	± 0.3% of Sa	ample Wt		± 0.3% of Sample Wt			

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	539.5		
(B) Dry weight of washed sample	536.5		
(C) Loss by washing (A-B)	3.0		
(D) % Passing #200 (C/A)*100	0.6		
Comparison Test Results			

Additional Remarks or Comments

3A21-43 & 3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		.IN	ΛF	
Fraction Mix Prop.	3/4" 35%	1-12" 22%		Sand 43%		Total % Passing	Gradation JMF	Working Range	Wor	king nge	Total % Retaine
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	32	2		43		77	78	± 5	73	83	11
1/2"	19	0		43		63	64	± 5	59	69	14
3/8"	9	0		43		53	56	± 5	51	61	10
#4	1	0		43		45	44	± 5	39	49	8
#8				40		40	39	± 4	35	43	5
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				 1		 1	0	± 2	0	2	5
#200				0.3		0.3	0.4	± 1.6% max	0.0	1.6	0.7

* Recommended Filler Sieve

S.P.	2782-327	Plant:	Shafer	Date:	4/23/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:25 AM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	3	Test #:	5	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	is test:		
						Agency only - QC or Verification Co	mpanion Tes	t # correspon	ding to this t	test:	

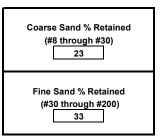
Sieve Analysis of Coarse Aggregate

DOT

	Sample Wt.	1:	2.1	0	Sample Wt.	2	7.1	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	3	5%	restricsuits	Mix Prop.	2	2%	restricsuits	Mix Prop.			restricsult
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.0	100		0.4	27.2	100					
1 1/2" - 1 1/4"	0.0	12.0	100		6.1	26.8	99					
1 1/4" - 1"	0.0	12.0	100		11.3	20.7	76					
1" - 3/4"	1.2	12.0	100		8.5	9.4	34					
3/4" - 5/8"	0.0	10.8	90		0.0	0.9	3					
* 5/8" - 1/2"	5.1	10.8	-	-	0.6	0.9	-	-			-	-
1/2" - 3/8"	3.2	5.7	48		0.1	0.3	1					
3/8" - 1/4"	0.0	2.5	21		0.0	0.2	1					
* 1/4" - #4	2.1	2.5	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.4	0.4	3		0.1	0.1	0					
Check Total	12.0	± 0.2 lb of S	ample Wt		27.2	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	54	3.2		Sample Wt.			
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	Test Results	Mix Prop.			Test Results
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	543.3	100					
3/8" - #4	2.3	543.3	100					
#4 - #6	0.0	541.0	100					
* #6 - #8	37.4	541.0	-	-			-	-
#8 - #16	92.7	503.6	93					
#16 - #30	143.3	410.9	76					
#30 - #50	190.1	267.6	49					
#50 - #100	69.6	77.5	14					
#100 - #200	5.9	7.9	1					
#200 - Btm	0.9	2.0	0.4					
Loss by Washing	1.1							
Check Total	543.3	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2822.5	5199.8	
(B) Dry weight of washed sample	2808.2	5181.2	
(C) Loss by washing (A-B)	14.3	18.6	
(D) % Passing #200 (C/A)*100	0.5	0.4	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	543.2		
(B) Dry weight of washed sample	542.1		
(C) Loss by washing (A-B)	1.1		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

Composite Gradation for Job Mix Formula

Composite	Gradation to	or Jod Wilx F	ormula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		١L	٨F	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	rking	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	7		43		85	89	± 5	84	94	15
3/4"	32	1		43		75	78	± 5	73	83	10
1/2"	17	0		43		60	64	± 5	59	69	15
3/8"	7	0		43		51	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	7
#8				40		40	39	± 4	35	43	4
#16				33		33	34	± 4	30	38	7
#30				21		21	22	± 4	18	26	12
#50				6		6	6	± 3	3	9	15
#100				0		0	0	± 2	0	2	6
#200	0.2	0.1		0.2		0.4	0.4	± 1.6% max	0.0	1.6	0.0

* Recommended Filler Sieve

S.P.	2782-327	Plant:	Shafer	Date:	4/23/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:15 PM	Aggregate Sources (i it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	3	Test #:	6	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	is test:		
						Agency only - QC or Verification Co	mpanion Tes	t # correspon	ding to this t	test:	

Sieve Analysis of Coarse Aggregate

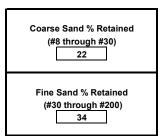
DOT

	Sample Wt.	1:	2.1	0	Sample Wt.	2	8.1	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	22	2%	restresuits	Mix Prop.			T CSL T CSUILS
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	its (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.1	100		0.4	28.2	100					
1 1/2" - 1 1/4"	0.0	12.1	100		3.4	27.8	99					
1 1/4" - 1"	0.0	12.1	100		10.1	24.4	87					
1" - 3/4"	1.6	12.1	100		12.7	14.3	51					
3/4" - 5/8"	0.0	10.5	86		0.0	1.6	6					
* 5/8" - 1/2"	5.5	10.5	-	-	1.3	1.6	-	-			-	-
1/2" - 3/8"	2.8	5.0	41		0.1	0.3	1					
3/8" - 1/4"	0.0	2.2	18		0.0	0.2	1					
* 1/4" - #4	1.8	2.2	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.4	0.4	3		0.1	0.1	0					
Check Total	12.1	± 0.2 lb of S	ample Wt		28.2	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	7.7	Comparison	Sample Wt.			Comparison
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricedute
Sieve Sizes	Weigl	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	536.8	100					
3/8" - #4	3.1	536.8	100					
#4 - #6	0.0	533.7	99					
* #6 - #8	31.7	533.7	-	-			-	-
#8 - #16	83.2	502.0	94					
#16 - #30	143.2	418.8	78					
#30 - #50	199.8	275.6	51					
#50 - #100	68.5	75.8	14					
#100 - #200	5.0	7.3	1					
#200 - Btm	0.9	2.3	0.4					
Loss by Washing	1.4							
Check Total	536.8	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	537.7		
(B) Dry weight of washed sample	536.3		
(C) Loss by washing (A-B)	1.4		
(D) % Passing #200 (C/A)*100	0.3		
Comparison Test Results			

Additional Remarks or Comments

3A21-52

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	30	1		43		74	78	± 5	73	83	15
1/2"	14	0		43		58	64	± 5	59	69	16
3/8"	6	0		43		50	56	± 5	51	61	8
#4	1	0		43		44	44	± 5	39	49	6
#8				40		40	39	± 4	35	43	4
#16				34		34	34	± 4	30	38	6
#30				22		22	22	± 4	18	26	12
#50				6		6	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	6
#200				0.2		0.2	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	4/24/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:35 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	4	Test #:	7	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	is test:		
						Agency only - QC or Verification Cor	mpanion Test	# correspon	ding to this t	est:	

Sieve Analysis of Coarse Aggregate

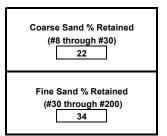
DOT

	Sample Wt.	1:	2.2	0	Sample Wt.	3	2.4	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	3	5%	% Mix Prop.		2	2%	restricesand	Mix Prop.			1000 Hobdillo
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.3	100		0.3	32.4	100					
1 1/2" - 1 1/4"	0.0	12.3	100		3.4	32.1	99					
1 1/4" - 1"	0.0	12.3	100		12.3	28.8	89					
1" - 3/4"	1.3	12.3	100		14.2	16.5	51					
3/4" - 5/8"	0.0	11.0	89		0.0	2.3	7					
* 5/8" - 1/2"	5.3	11.0	-	-	1.8	2.3	-	-			-	-
1/2" - 3/8"	3.1	5.7	46		0.2	0.5	2					
3/8" - 1/4"	0.0	2.6	21		0.0	0.3	1					
* 1/4" - #4	2.1	2.6	-	-	0.1	0.3	-	-			-	-
#4 - Btm	0.5	0.5	4		0.2	0.2	1					
Check Total	12.3	± 0.2 lb of S	ample Wt		32.4	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	54	1.8	Comparison	Sample Wt.			Companioon
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restressats
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	2.4	541.4	100					
3/8" - #4	4.0	539.0	100					
#4 - #6	0.0	535.0	99					
* #6 - #8	29.6	535.0	-	-			-	-
#8 - #16	83.2	505.4	93					
#16 - #30	146.2	422.2	78					
#30 - #50	206.2	276.0	51					
#50 - #100	63.4	69.8	13					
#100 - #200	4.6	6.4	1					
#200 - Btm	1.0	1.8	0.3					
Loss by Washing	0.8							
Check Total	541.4	± 0.3% of Sa	ample Wt			± 0.3% of Sample Wt		

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2816.1	5238.3	
(B) Dry weight of washed sample	2800.6	5212.4	
(C) Loss by washing (A-B)	15.5	25.9	
(D) % Passing #200 (C/A)*100	0.6	0.5	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	541.8		
(B) Dry weight of washed sample	541.0		
(C) Loss by washing (A-B)	0.8		
(D) % Passing #200 (C/A)*100	0.1		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Composite	Shauation it		Jinnula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retaine
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	31	2		43		76	78	± 5	73	83	13
1/2"	16	0		43		60	64	± 5	59	69	16
3/8"	7	0		43		51	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	7
#8				40		40	39	± 4	35	43	4
#16				34		34	34	± 4	30	38	6
#30				22		22	22	± 4	18	26	12
#50				6		6	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	6
#200	0.2	0.1		0.1		0.4	0.4	± 1.6% max	0.0	1.6	0.0

* Recommended Filler Sieve

S.P.	2782-327	Plant:	Shafer	Date:	4/24/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:				
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:42 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:		
Lot #:	4	Test #:	8	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	is test:				
						Agency only - QC or Verification Companion Test # corresponding to this test:							

Sieve Analysis of Coarse Aggregate

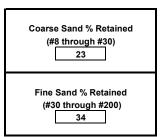
DOT

	Sample Wt.	14	4.0	0	Sample Wt.	2	7.9	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	22%		restricesand	Mix Prop.			100t Hobdato
Sieve Sizes	Weigh	nts (lb)			Weigł	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	14.0	100		0.4	27.9	100					
1 1/2" - 1 1/4"	0.0	14.0	100		4.8	27.5	99					
1 1/4" - 1"	0.0	14.0	100		11.0	22.7	81					
1" - 3/4"	1.1	14.0	100		10.6	11.7	42					
3/4" - 5/8"	0.0	12.9	92		0.0	1.1	4					
* 5/8" - 1/2"	5.9	12.9	-	-	0.8	1.1	-	-			-	-
1/2" - 3/8"	3.8	7.0	50		0.1	0.3	1					
3/8" - 1/4"	0.0	3.2	23		0.0	0.2	1					
* 1/4" - #4	2.5	3.2	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.7	0.7	5		0.1	0.1	0					
Check Total	14.0	± 0.2 lb of S	ample Wt		27.9	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	8.3	0	Sample Wt.			0
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	538.3	100					
3/8" - #4	1.7	538.3	100					
#4 - #6	0.0	536.6	100					
* #6 - #8	30.1	536.6	-	-			-	-
#8 - #16	85.6	506.5	94					
#16 - #30	145.6	420.9	78					
#30 - #50	204.0	275.3	51					
#50 - #100	63.5	71.3	13					
#100 - #200	4.7	7.8	1					
#200 - Btm	0.8	3.1	0.6					
Loss by Washing	2.3							
Check Total	538.3	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	538.3		
(B) Dry weight of washed sample	536.0		
(C) Loss by washing (A-B)	2.3		
(D) % Passing #200 (C/A)*100	0.4		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JI	ЛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	9		43		87	89	± 5	84	94	13
3/4"	32	1		43		76	78	± 5	73	83	11
1/2"	18	0		43		61	64	± 5	59	69	15
3/8"	8	0		43		51	56	± 5	51	61	10
#4	2	0		43		45	44	± 5	39	49	6
#8				40		40	39	± 4	35	43	5
#16				34		34	34	± 4	30	38	6
#30				22		22	22	± 4	18	26	12
#50				6		6	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	6
#200				0.3		0.3	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	4/25/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:				
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:10 AM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:		
Lot #:	5	Test #:	9	JMF #:	20-018	Contractor only - QA or Verification	n Test # corres	sponding to th	iis test:				
						Agency only - QC or Verification Companion Test # corresponding to this test:							

Sieve Analysis of Coarse Aggregate

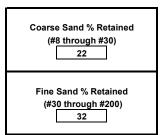
DOT

	Sample Wt.	1:	3.5	0	Sample Wt.	3	1.0	0	Sample Wt.			0
Aggregate	CA #1	3,	/4"	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	35	5%	restricedute	Mix Prop.	Mix Prop. 22%		restricesand	Mix Prop.			restricedute
Sieve Sizes	Weigł	nts (lb)			Weigh	its (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.5	100		0.3	31.0	100					
1 1/2" - 1 1/4"	0.0	13.5	100		4.5	30.7	99					
1 1/4" - 1"	0.0	13.5	100		11.6	26.2	84					
1" - 3/4"	1.0	13.5	100		13.0	14.6	47					
3/4" - 5/8"	0.0	12.5	93		0.0	1.6	5					
* 5/8" - 1/2"	6.4	12.5	-	-	1.2	1.6	-	-			-	-
1/2" - 3/8"	3.2	6.2	46		0.1	0.4	1					
3/8" - 1/4"	0.0	3.0	22		0.0	0.3	1					
* 1/4" - #4	2.5	3.0	-	-	0.1	0.3	-	-			-	-
#4 - Btm	0.5	0.5	3		0.2	0.2	1					
Check Total	13.5	± 0.2 lb of S	ample Wt		31.0	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	33 3							
	Sample Wt.	54	1.2	Comparison	Sample Wt.			Companian
Aggregate	FA #1	Sa	and	Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricesuits	Mix Prop.			restricesuite
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	541.0	100					
3/8" - #4	2.3	541.0	100					
#4 - #6	0.0	538.7	100					
* #6 - #8	39.9	538.7	-	-			-	-
#8 - #16	85.3	498.8	92					
#16 - #30	143.4	413.5	76					
#30 - #50	194.7	270.1	50					
#50 - #100	67.1	75.4	14					
#100 - #200	5.4	8.3	2					
#200 - Btm	0.6	2.9	0.5					
Loss by Washing	2.3							
Check Total	541.0	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2844.4	5156.7	
(B) Dry weight of washed sample	2824.1	5122.5	
(C) Loss by washing (A-B)	20.3	34.2	
(D) % Passing #200 (C/A)*100	0.7	0.7	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	541.2		
(B) Dry weight of washed sample	538.9		
(C) Loss by washing (A-B)	2.3		
(D) % Passing #200 (C/A)*100	0.4		
Comparison Test Results			

Additional Remarks or Comments

Mix 3A21-42

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ЛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	33	1		43		77	78	± 5	73	83	11
1/2"	16	0		43		59	64	± 5	59	69	18
3/8"	8	0		43		51	56	± 5	51	61	8
#4	1	0		43		44	44	± 5	39	49	7
#8				40		40	39	± 4	35	43	4
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				1		1	0	±2	0	2	5
#200	0.2	0.2		0.2		0.6	0.4	± 1.6% max	0.0	1.6	0.4

* Recommended Filler Sieve

S.P.	2782-327	Plant:	Shafer	Date:	4/25/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:15 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	5	Test #:	10	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to the	iis test:		
						Agency only - QC or Verification Co	mpanion Test	t # correspon	ding to this t	est:	

Sieve Analysis of Coarse Aggregate

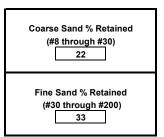
DOT

	Sample Wt.	1:	2.7	0	Sample Wt.	2	8.5	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	2	2%	restresuits	Mix Prop.			restresults
Sieve Sizes	Weigł	nts (lb)			Weigł	nts (lb)			Weights (lb)			
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.6	100		0.0	28.5	100					
1 1/2" - 1 1/4"	0.0	12.6	100		4.7	28.5	100					
1 1/4" - 1"	0.0	12.6	100		11.2	23.8	84					
1" - 3/4"	1.2	12.6	100		11.0	12.6	44					
3/4" - 5/8"	0.0	11.4	90		0.0	1.6	6					
* 5/8" - 1/2"	5.0	11.4	-	-	1.2	1.6	-	-			-	-
1/2" - 3/8"	3.4	6.4	51		0.1	0.4	1					
3/8" - 1/4"	0.0	3.0	24		0.0	0.3	1					
* 1/4" - #4	2.6	3.0	-	-	0.1	0.3	-	-			-	-
#4 - Btm	0.4	0.4	3		0.2	0.2	1					
Check Total	12.6	± 0.2 lb of S	ample Wt		28.5	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	8.6	Comparison	Sample Wt.			Companioon
Aggregate	FA #1	Sa	ind	Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	1 COL 1 COULO	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	539.4	100					
3/8" - #4	3.7	539.4	100					
#4 - #6	0.0	535.7	99					
* #6 - #8	37.8	535.7	-	-			-	-
#8 - #16	85.2	497.9	92					
#16 - #30	139.7	412.7	77					
#30 - #50	193.7	273.0	51					
#50 - #100	71.1	79.3	15					
#100 - #200	5.8	8.2	2					
#200 - Btm	1.1	2.4	0.4					
Loss by Washing	1.3							
Check Total	539.4	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	


Percent Passing #200 Sieve Test

Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	538.6		
(B) Dry weight of washed sample	537.3		
(C) Loss by washing (A-B)	1.3		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-42

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JL	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	32	1		43		76	78	± 5	73	83	12
1/2"	18	0		43		61	64	± 5	59	69	15
3/8"	8	0		43		52	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	8
#8				40		40	39	± 4	35	43	4
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				1		1	0	± 2	0	2	5
#200				0.2		0.2	0.4	± 1.6% max	0.0	1.6	0.8

S.P.	2782-327	Plant:	Shafer	Date:	4/27/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:35 AM	Aggregate Sources (i it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	6	Test #:	11	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	iis test:		
						Agency only - QC or Verification Co	mpanion Test	# correspon	ding to this t	est:	

Sieve Analysis of Coarse Aggregate

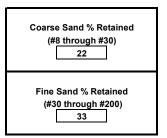
DOT

	Sample Wt.	10	0.5	· ·	Sample Wt.	2	3.0	· ·	Sample Wt.			· ·
Aggregate	CA #1	3,	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparisor Test Results
Fraction	Mix Prop.	35	5%	i cot i coulto	Mix Prop.	22	2%	restricsuits	Mix Prop.			restricsuit
Sieve Sizes	Weigł	nts (lb)			Weigl	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	10.5	100		0.7	28.0	100					
1 1/2" - 1 1/4"	0.0	10.5	100		4.9	27.3	97					
1 1/4" - 1"	0.0	10.5	100		10.8	22.4	80					
1" - 3/4"	0.8	10.5	100		9.9	11.6	41					
3/4" - 5/8"	0.0	9.7	92		0.0	1.7	6					
* 5/8" - 1/2"	4.3	9.7	-	-	1.2	1.7	-	-			-	-
1/2" - 3/8"	2.9	5.4	51		0.2	0.5	2					
3/8" - 1/4"	0.0	2.5	24		0.0	0.3	1					
* 1/4" - #4	2.2	2.5	-	-	0.1	0.3	-	-			-	-
#4 - Btm	0.3	0.3	3		0.2	0.2	1					
Check Total	10.5	± 0.2 lb of S	ample Wt		28.0	± 0.2 lb of S	ample Wt	-		± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	9.1	Comparison	Sample Wt.			Companioon
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restressats
Sieve Sizes	Weigl	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	539.5	100					
3/8" - #4	4.4	539.5	100					
#4 - #6	0.0	535.1	99					
* #6 - #8	39.7	535.1	-	-			-	-
#8 - #16	82.6	495.4	92					
#16 - #30	139.5	412.8	77					
#30 - #50	196.2	273.3	51					
#50 - #100	69.3	77.1	14					
#100 - #200	5.7	7.8	1					
#200 - Btm	0.9	2.1	0.4					
Loss by Washing	1.2							
Check Total	539.5	5 ± 0.3% of Sample Wt				± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2751.9	5192.7	
(B) Dry weight of washed sample	2726.4	5155.3	
(C) Loss by washing (A-B)	25.5	37.4	
(D) % Passing #200 (C/A)*100	0.9	0.7	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	539.1		
(B) Dry weight of washed sample	537.9		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

composite				-		-	-	-	-				
Aggregate	CA #1	CA #2	CA #3		FA #1	FA #2			Combined		JN	ЛF	
Fraction	3/4"	1-12"			Sand			Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%			43%			Passing	JMF	Range	Ra	nge	Retained
2"	35	22			43			100	100	± 5	95	100	0
1 1/2"	35	21			43			99	100	± 5	95	100	1
1"	35	9			43			87	89	± 5	84	94	12
3/4"	32	1			43			77	78	± 5	73	83	10
1/2"	18	0			43			61	64	± 5	59	69	16
3/8"	8	0			43			52	56	± 5	51	61	9
#4	1	0			43			44	44	± 5	39	49	8
#8					40			40	39	± 4	35	43	4
#16					33			33	34	± 4	30	38	7
#30					22			22	22	± 4	18	26	11
#50					6			6	6	± 3	3	9	16
#100					0			0	0	± 2	0	2	6
#200	0.3	0.2			0.2			0.6	0.4	± 1.6% max	0.0	1.6	0.0

* Recommended Filler Sieve

S.P.	2782-327	Plant:	Shafer	Date:	4/27/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:						
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:35 PM	Aggregate Sources (i it #).	CA #1:	19129	CA #2:	19129	CA #3:				
Lot #:	6	Test #:	12	JMF #:	20-018	Contractor only - QA or Verification Test # corresponding to this test:									
						Agency only - QC or Verification Companion Test # corresponding to this test:									

Sieve Analysis of Coarse Aggregate

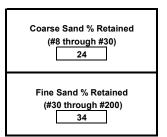
DOT

	Sample Wt.	1:	3.6	0	Sample Wt.	20	5.9	· ·	Sample Wt.			· ·
Aggregate	CA #1	3/4"		Comparison Test Results		<u>1-12"</u> 22%		Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.		5%		Mix Prop.			restresuits				
Sieve Sizes	Weigh	hts (lb)			Weigh	nts (lb)			Weights (lb)			
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.6	100		0.8	26.9	100					
1 1/2" - 1 1/4"	0.0	13.6	100		3.3	26.2	97					
1 1/4" - 1"	0.0	13.6	100		9.2	22.9	85					
1" - 3/4"	0.9	13.6	100		12.0	13.7	51					
3/4" - 5/8"	0.0	12.7	93		0.0	1.7	6					
* 5/8" - 1/2"	6.0	12.7	-	-	1.2	1.7	-	-			-	-
1/2" - 3/8"	3.6	6.7	49		0.2	0.5	2					
3/8" - 1/4"	0.0	3.1	23		0.0	0.3	1					
* 1/4" - #4	2.5	3.1	-	-	0.1	0.3	-	-			-	-
#4 - Btm	0.6	0.6	4		0.2	0.2	1					
Check Total	13.6 ± 0.2 lb of Sample Wt			-	26.9	± 0.2 lb of S	ample Wt	± 0.2 lb of Sa		ample Wt		

Sieve Analysis of Fine Aggregate

	Sample Wt.	54	0.6		Sample Wt.				
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2	FA #2 Mix Prop.		Comparison Test Results	
Fraction	Mix Prop.	43	3%		Mix Prop.				
Sieve Sizes	Weig	hts (g)			Weights (g)				
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	
1/2" - 3/8"	0.0	539.7	100						
3/8" - #4	2.0	539.7	100						
#4 - #6	0.0	537.7	100						
* #6 - #8	20.7	537.7	-	-			-	-	
#8 - #16	98.5	517.0	96						
#16 - #30	160.8	418.5	78						
#30 - #50	200.8	257.7	48						
#50 - #100	50.5	56.9	11						
#100 - #200	3.7	6.4	1						
#200 - Btm	0.4	2.7	0.5						
Loss by Washing	2.3								
Check Total	539.7	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt		

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	540.6		
(B) Dry weight of washed sample	538.3		
(C) Loss by washing (A-B)	2.3		
(D) % Passing #200 (C/A)*100	0.4		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JMF		
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	Range	
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	21		43		99	100	± 5	95	100	1
1"	35	11		43		89	89	± 5	84	94	10
3/4"	33	1		43		77	78	± 5	73	83	12
1/2"	17	0		43		61	64	± 5	59	69	16
3/8"	8	0		43		51	56	± 5	51	61	10
#4	1	0		43		45	44	± 5	39	49	6
#8				41		41	39	± 4	35	43	4
#16				34		34	34	± 4	30	38	7
#30				21		21	22	± 4	18	26	13
#50				5		5	6	± 3	3	9	16
#100				0		0	0	±2	0	2	5
#200				0.2		0.2	0	± 1.6% max	0.0	1.6	0.0

* Recommended Filler Sieve

S.P.	2782-327	Plant:	Shafer	Date:	4/29/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:19 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	7	Test #:	13	JMF #:	20-018	Contractor only - QA or Verification	n Test # corres	ponding to t	his test:		
						Agency only - QC or Verification C	ompanion Tes	t # correspo	nding to this	test:	

Sieve Analysis of Coarse Aggregate

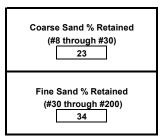
DOT

	Sample Wt.	1;	3.8	0	Sample Wt.	31	0.4	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results	CA #2	1-	12"	Comparison Test Results	CA #3			Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	22	2%	restricsuits	Mix Prop.	Prop.		restricsuite
Sieve Sizes	Weigh	nts (lb)			Weigh	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	14.0	100		0.4	30.5	100					
1 1/2" - 1 1/4"	0.0	14.0	100		2.9	30.1	99					
1 1/4" - 1"	0.0	14.0	100		11.7	27.2	89					
1" - 3/4"	1.3	14.0	100		13.4	15.5	51					
3/4" - 5/8"	0.0	12.7	91		0.0	2.1	7					
* 5/8" - 1/2"	6.0	12.7	-	-	1.8	2.1	-	-			-	-
1/2" - 3/8"	3.8	6.7	48		0.1	0.3	1					
3/8" - 1/4"	0.0	2.9	21		0.0	0.2	1					
* 1/4" - #4	2.5	2.9	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.4	0.4	3		0.1	0.1	0					
Check Total	14.0	± 0.2 lb of S	ample Wt		30.5	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	_

Sieve Analysis of Fine Aggregate

	Sample Wt.	52	1.4	Comparison	Sample Wt.			Companioon
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricesuite	Mix Prop.			restricesuits
Sieve Sizes	Weigl	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	521.2	100					
3/8" - #4	0.4	521.2	100					
#4 - #6	0.0	520.8	100					
* #6 - #8	17.1	520.8	-	-			-	-
#8 - #16	95.7	503.7	97					
#16 - #30	155.0	408.0	78					
#30 - #50	194.8	253.0	49					
#50 - #100	50.7	58.2	11					
#100 - #200	4.6	7.5	1					
#200 - Btm	1.1	2.9	0.6					
Loss by Washing	1.8							
Check Total	521.2	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2758.0	5198.1	
(B) Dry weight of washed sample	2736.9	5165.5	
(C) Loss by washing (A-B)	21.1	32.6	
(D) % Passing #200 (C/A)*100	0.8	0.6	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	521.4		
(B) Dry weight of washed sample	519.6		
(C) Loss by washing (A-B)	1.8		
(D) % Passing #200 (C/A)*100	0.3		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Composite	Grauation		orniula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JL	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	32	2		43		76	78	± 5	73	83	13
1/2"	17	0		43		60	64	± 5	59	69	16
3/8"	7	0		43		51	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	7
#8				42		42	39	± 4	35	43	2
#16				34		34	34	± 4	30	38	8
#30				21		21	22	± 4	18	26	13
#50				5		5	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	5
#200	0.3	0.1		0.3		0.7	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	4/29/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:55 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	7	Test #:	14	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	t # correspoi	nding to this	test:	

Sieve Analysis of Coarse Aggregate

DOT

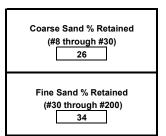
	Sample Wt.	1;	3.8	0	Sample Wt.	2	8.1	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	2	2%	restresuits	Mix Prop.			Test Results
Sieve Sizes	Weigł	nts (lb)			Weigł	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.9	100		0.0	28.2	100					
1 1/2" - 1 1/4"	0.0	13.9	100		2.2	28.2	100					
1 1/4" - 1"	0.0	13.9	100		10.4	26.0	92					
1" - 3/4"	0.9	13.9	100		13.3	15.6	55					
3/4" - 5/8"	0.0	13.0	94		0.0	2.3	8					
* 5/8" - 1/2"	4.7	13.0	-	-	1.8	2.3	-	-			-	-
1/2" - 3/8"	3.9	8.3	60		0.3	0.5	2					
3/8" - 1/4"	0.0	4.4	32		0.0	0.2	1					
* 1/4" - #4	3.3	4.4	-	-	0.1	0.2	-	-			-	-
#4 - Btm	1.1	1.1	8		0.1	0.1	0					
Check Total	13.9	± 0.2 lb of S	ample Wt		28.2	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	1.7	Comparison	Sample Wt.			Comparison
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricedute
Sieve Sizes	Weigl	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	532.2	100					
3/8" - #4	0.6	532.2	100					
#4 - #6	0.0	531.6	100					
* #6 - #8	16.2	531.6	-	-			-	-
#8 - #16	99.5	515.4	97					
#16 - #30	163.7	415.9	78					
#30 - #50	198.1	252.2	47					
#50 - #100	48.6	54.1	10					
#100 - #200	3.8	5.5	1					
#200 - Btm	0.5	1.7	0.3					
Loss by Washing	1.2							
Check Total	532.2	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	531.7		
(B) Dry weight of washed sample	530.5		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JL	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	12		43		90	89	± 5	84	94	10
3/4"	33	2		43		78	78	± 5	73	83	12
1/2"	21	0		43		64	64	± 5	59	69	14
3/8"	11	0		43		54	56	± 5	51	61	10
#4	3	0		43		46	44	± 5	39	49	8
#8				42		42	39	± 4	35	43	4
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200				0.1		0.1	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	4/30/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:15 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	8	Test #:	15	JMF #:	20-018	Contractor only - QA or Verification	n Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	ompanion Tes	t # correspo	nding to this	test:	

Sieve Analysis of Coarse Aggregate

DOT

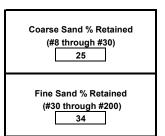
	Sample Wt.	1	3.0	0	Sample Wt.	2	9.1	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	2	2%	restresuits	Mix Prop.	rop.		T CSL T CSUILS
Sieve Sizes	Weigh	nts (lb)			Weigh	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.1	100		0.3	29.2	100					
1 1/2" - 1 1/4"	0.0	13.1	100		2.7	28.9	99					
1 1/4" - 1"	0.0	13.1	100		11.9	26.2	90					
1" - 3/4"	1.1	13.1	100		12.2	14.3	49					
3/4" - 5/8"	0.0	12.0	92		0.0	2.1	7					
* 5/8" - 1/2"	5.8	12.0	-	-	1.8	2.1	-	-			-	-
1/2" - 3/8"	3.3	6.2	47		0.1	0.3	1					
3/8" - 1/4"	0.0	2.9	22		0.0	0.2	1					
* 1/4" - #4	2.3	2.9	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.6	0.6	5		0.1	0.1	0					
Check Total	13.1	± 0.2 lb of S	ample Wt		29.2	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	5.8	Comparison	Sample Wt.			Comparison
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricedite
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	535.2	100					
3/8" - #4	1.7	535.2	100					
#4 - #6	0.0	533.5	100					
* #6 - #8	17.1	533.5	-	-			-	-
#8 - #16	100.0	516.4	96					
#16 - #30	165.5	416.4	78					
#30 - #50	196.0	250.9	47					
#50 - #100	49.1	54.9	10					
#100 - #200	4.1	5.8	1					
#200 - Btm	0.5	1.7	0.3					
Loss by Washing	1.2							
Check Total	535.2	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2782.0	5557.4	
(B) Dry weight of washed sample	2767.6	5529.3	
(C) Loss by washing (A-B)	14.4	28.1	
(D) % Passing #200 (C/A)*100	0.5	0.5	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	535.8		
(B) Dry weight of washed sample	534.6		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A41-43 & 3A41-53

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JL	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	32	2		43		77	78	± 5	73	83	12
1/2"	16	0		43		60	64	± 5	59	69	17
3/8"	8	0		43		51	56	± 5	51	61	9
#4	2	0		43		45	44	± 5	39	49	6
#8				41		41	39	± 4	35	43	4
#16				34		34	34	± 4	30	38	7
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200	0.2	0.1		0.1		0.4	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	4/30/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:			
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:45 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:	
Lot #:	8	Test #:	16	JMF #:	20-018	Contractor only - QA or Verification Test # corresponding to this test:						
1						Agency only - QC or Verification Companion Test # corresponding to this test:						

Sieve Analysis of Coarse Aggregate

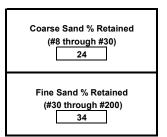
DOT

	Sample Wt.	1;	3.4	0	Sample Wt.	2	7.9	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	22	2%	restricsuits	Mix Prop.			T CSt T CSuite
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.5	100		0.0	28.0	100					
1 1/2" - 1 1/4"	0.0	13.5	100		1.3	28.0	100					
1 1/4" - 1"	0.0	13.5	100		12.4	26.7	95					
1" - 3/4"	1.2	13.5	100		12.4	14.3	51					
3/4" - 5/8"	0.0	12.3	91		0.0	1.9	7					
* 5/8" - 1/2"	6.0	12.3	-	-	1.5	1.9	-	-			-	-
1/2" - 3/8"	3.5	6.3	47		0.2	0.4	1					
3/8" - 1/4"	0.0	2.8	21		0.0	0.2	1					
* 1/4" - #4	2.2	2.8	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.6	0.6	4		0.1	0.1	0					
Check Total	13.5	± 0.2 lb of S	ample Wt		28.0	± 0.2 lb of S	ample Wt		± 0.2 lb of Sample Wt			

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	3.7	Comparison	Sample Wt.			Composioon
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricesuite	Mix Prop.			restricedute
Sieve Sizes	Weigl	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	533.9	100					
3/8" - #4	0.0	533.9	100					
#4 - #6	0.0	533.9	100					
* #6 - #8	14.0	533.9	-	-			-	-
#8 - #16	102.7	519.9	97					
#16 - #30	167.7	417.2	78					
#30 - #50	193.4	249.5	47					
#50 - #100	49.8	56.1	11					
#100 - #200	4.5	6.3	1					
#200 - Btm	0.6	1.8	0.3					
Loss by Washing	1.2							
Check Total	533.9	± 0.3% of Sa	ample Wt		± 0.3% of Sample Wt			

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	533.7		
(B) Dry weight of washed sample	532.5		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A41-53

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JI	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	32	2		43		76	78	± 5	73	83	13
1/2"	16	0		43		60	64	± 5	59	69	16
3/8"	7	0		43		51	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	7
#8				42		42	39	± 4	35	43	2
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				5		5	6	± 3	3	9	15
#100				0		0	0	±2	0	2	5
#200				0.1		0.1	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/1/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:				
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:02 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:		
Lot #:	9	Test #:	17	JMF #:	20-018	Contractor only - QA or Verification Test # corresponding to this test:							
						Agency only - QC or Verification Companion Test # corresponding to this test:							

Sieve Analysis of Coarse Aggregate

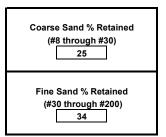
DOT

	Sample Wt.	1;	3.2	0	Sample Wt.	2	7.8	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	2	2%	restricedute	Mix Prop.			rootricount
Sieve Sizes	Weigł	nts (lb)			Weigh	its (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.2	100		0.0	27.8	100					
1 1/2" - 1 1/4"	0.0	13.2	100		3.4	27.8	100					
1 1/4" - 1"	0.0	13.2	100		11.8	24.4	88					
1" - 3/4"	1.2	13.2	100		11.5	12.6	45					
3/4" - 5/8"	0.0	12.0	91		0.0	1.1	4					
* 5/8" - 1/2"	4.6	12.0	-	-	0.9	1.1	-	-			-	-
1/2" - 3/8"	3.7	7.4	56		0.1	0.2	1					
3/8" - 1/4"	0.0	3.7	28		0.0	0.1	0					
* 1/4" - #4	2.9	3.7	-	-	0.0	0.1	-	-			-	-
#4 - Btm	0.8	0.8	6		0.1	0.1	0					
Check Total	13.2 ± 0.2 lb of Sample Wt				27.8	± 0.2 lb of S	ample Wt	±		± 0.2 lb of Sample Wt		

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	2.6	Comparison	Sample Wt.			Companioon
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restressats
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	532.9	100					
3/8" - #4	1.7	532.9	100					
#4 - #6	0.0	531.2	100					
* #6 - #8	13.3	531.2	-	-			-	-
#8 - #16	101.4	517.9	97					
#16 - #30	169.8	416.5	78					
#30 - #50	193.3	246.7	46					
#50 - #100	47.9	53.4	10					
#100 - #200	4.0	5.5	1					
#200 - Btm	0.4	1.5	0.3					
Loss by Washing	1.1							
Check Total	532.9	± 0.3% of Sa	ample Wt		± 0.3% of Sample Wt			

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2763.9	5610.7	
(B) Dry weight of washed sample	2748.2	5578.0	
(C) Loss by washing (A-B)	15.7	32.7	
(D) % Passing #200 (C/A)*100	0.6	0.6	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	532.6		
(B) Dry weight of washed sample	531.5		
(C) Loss by washing (A-B)	1.1		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

composite	Shauation it		Jinnula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ЛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	32	1		43		76	78	± 5	73	83	12
1/2"	20	0		43		63	64	± 5	59	69	13
3/8"	10	0		43		53	56	± 5	51	61	10
#4	2	0		43		45	44	± 5	39	49	8
#8				42		42	39	± 4	35	43	3
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200	0.2	0.1		0.1		0.5	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/1/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:35 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	9	Test #:	18	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	t # correspoi	nding to this t	test:	

Sieve Analysis of Coarse Aggregate

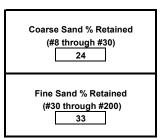
DOT

	Sample Wt.	1:	3.1		Sample Wt.	3	0.8	· ·	Sample Wt.			
Aggregate	CA #1	3,	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	35	5%	restricsuits	Mix Prop.	22	2%	restricsuits	Mix Prop.			restricsult
Sieve Sizes	Weigh	nts (lb)			Weigh	its (lb)			Weigh	its (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.1	100		0.0	30.8	100					
1 1/2" - 1 1/4"	0.0	13.1	100		2.9	30.8	100					
1 1/4" - 1"	0.0	13.1	100		15.2	28.0	91					
1" - 3/4"	1.1	13.1	100		11.7	12.8	42					
3/4" - 5/8"	0.0	12.0	92		0.0	1.1	4					
* 5/8" - 1/2"	5.7	12.0	-	-	0.9	1.1	-	-			-	-
1/2" - 3/8"	3.3	6.3	48		0.1	0.2	1					
3/8" - 1/4"	0.0	3.0	23		0.0	0.1	0					
* 1/4" - #4	2.3	3.0	-	-	0.0	0.1	-	-			-	-
#4 - Btm	0.7	0.7	5		0.1	0.1	0					
Check Total	13.1	± 0.2 lb of S	ample Wt	-	30.8	± 0.2 lb of S	ample Wt	-		± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	3.2	0	Sample Wt.			0
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricesuite	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	532.1	100					
3/8" - #4	3.4	532.1	100					
#4 - #6	0.0	528.7	99					
* #6 - #8	15.4	528.7	-	-			-	-
#8 - #16	101.8	513.3	96					
#16 - #30	161.7	411.5	77					
#30 - #50	193.4	249.8	47					
#50 - #100	49.1	56.4	11					
#100 - #200	4.7	7.3	1					
#200 - Btm	0.3	2.6	0.5					
Loss by Washing	2.3							
Check Total	532.1	± 0.3% of Sa	0.3% of Sample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	533.2		
(B) Dry weight of washed sample	530.9		
(C) Loss by washing (A-B)	2.3		
(D) % Passing #200 (C/A)*100	0.4		
Comparison Test Results			

Additional Remarks or Comments

3A21-43 & 3A41-49

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	9		43		87	89	± 5	84	94	13
3/4"	32	1		43		76	78	± 5	73	83	11
1/2"	17	0		43		60	64	± 5	59	69	16
3/8"	8	0		43		51	56	± 5	51	61	9
#4	2	0		43		44	44	± 5	39	49	7
#8				41		41	39	± 4	35	43	3
#16				33		33	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	13
#50				5		5	6	± 3	3	9	15
#100				0		0	0	±2	0	2	5
#200				0.2		0.2	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/2/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	5:52 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	10	Test #:	19	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	conding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	# correspor	nding to this t	est:	

Sieve Analysis of Coarse Aggregate

DOT

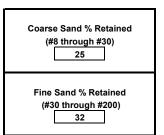
	Sample Wt.	1:	2.3	0	Sample Wt.	2	7.8	O	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	22	2%	restricesdite	Mix Prop.			restriceans
Sieve Sizes	Weigł	nts (lb)			Weigł	nts (lb)			Weights (lb)			
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.4	100		0.0	27.8	100					
1 1/2" - 1 1/4"	0.0	12.4	100		2.6	27.8	100					
1 1/4" - 1"	0.0	12.4	100		12.4	25.2	91					
1" - 3/4"	0.8	12.4	100		11.3	12.9	46					
3/4" - 5/8"	0.0	11.6	94		0.0	1.6	6					
* 5/8" - 1/2"	4.5	11.6	-	-	1.4	1.6	-	-			-	-
1/2" - 3/8"	3.2	7.1	57		0.1	0.2	1					
3/8" - 1/4"	0.0	3.9	31		0.0	0.1	0					
* 1/4" - #4	2.9	3.9	-	-	0.0	0.1	-	-			-	-
#4 - Btm	1.0	1.0	8		0.1	0.1	0					
Check Total	12.4	± 0.2 lb of S	ample Wt		27.8	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	4.6	Comparison	Sample Wt.			Compania
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	535.1	100					
3/8" - #4	1.5	535.1	100					
#4 - #6	0.0	533.6	100					
* #6 - #8	28.5	533.6	-	-			-	-
#8 - #16	96.1	505.1	94					
#16 - #30	151.9	409.0	76					
#30 - #50	187.8	257.1	48					
#50 - #100	60.4	69.3	13					
#100 - #200	5.8	8.9	2					
#200 - Btm	1.0	3.1	0.6					
Loss by Washing	2.1							
Check Total	535.1	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2790.8	5628.8	
(B) Dry weight of washed sample	2769.6	5615.6	
(C) Loss by washing (A-B)	21.2	13.2	
(D) % Passing #200 (C/A)*100	0.8	0.2	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	534.6		
(B) Dry weight of washed sample	532.5		
(C) Loss by washing (A-B)	2.1		
(D) % Passing #200 (C/A)*100	0.4		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JI	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	33	1		43		77	78	± 5	73	83	11
1/2"	20	0		43		63	64	± 5	59	69	14
3/8"	11	0		43		54	56	± 5	51	61	9
#4	3	0		43		46	44	± 5	39	49	8
#8				40		40	39	± 4	35	43	6
#16				33		33	34	± 4	30	38	7
#30				21		21	22	± 4	18	26	12
#50				6		6	6	± 3	3	9	15
#100				1		1	0	± 2	0	2	5
#200	0.3	0.0		0.3		0.6	0.4	± 1.6% max	0.0	1.6	0.4

S.P.	2782-327	Plant:	Shafer	Date:	5/2/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:05 PM	Aggregate Sources (i it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	10	Test #:	20	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	t # correspoi	nding to this t	test:	

Sieve Analysis of Coarse Aggregate

DOT

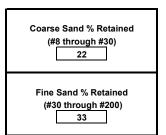
	Sample Wt.	1	4.3	0	Sample Wt.	2	9.2	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results	CA #2	1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	22	2%	restricesand	Mix Prop.	ix Prop.		restricedute
Sieve Sizes	Weigl	nts (lb)			Weigh	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	14.3	100		0.0	29.3	100					
1 1/2" - 1 1/4"	0.0	14.3	100		2.8	29.3	100					
1 1/4" - 1"	0.0	14.3	100		11.7	26.5	90					
1" - 3/4"	1.7	14.3	100		13.0	14.8	51					
3/4" - 5/8"	0.0	12.6	88		0.0	1.8	6					
* 5/8" - 1/2"	6.3	12.6	-	-	1.4	1.8	-	-			-	-
1/2" - 3/8"	3.3	6.3	44		0.2	0.4	1					
3/8" - 1/4"	0.0	3.0	21		0.0	0.2	1					
* 1/4" - #4	2.3	3.0	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.7	0.7	5		0.1	0.1	0					
Check Total	14.3	± 0.2 lb of S	ample Wt	_	29.3	± 0.2 lb of S	ample Wt	-		± 0.2 lb of S	ample Wt	

* Recommended Filler Sieve

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	0.1	Comparison	Sample Wt.			Companian
Aggregate	FA #1	Sa	ind	Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	1 COL 1 COULO	Mix Prop.			restressats
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	529.8	100					
3/8" - #4	3.2	529.8	100					
#4 - #6	0.0	526.6	99					
* #6 - #8	34.1	526.6	-	-			-	-
#8 - #16	82.1	492.5	93					
#16 - #30	133.3	410.4	77					
#30 - #50	197.3	277.1	52					
#50 - #100	67.6	79.8	15					
#100 - #200	6.5	12.2	2					
#200 - Btm	1.0	5.7	1.1					
Loss by Washing	4.7							
Check Total	529.8	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	530.1		
(B) Dry weight of washed sample	525.4		
(C) Loss by washing (A-B)	4.7		
(D) % Passing #200 (C/A)*100	0.9		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	31	1		43		75	78	± 5	73	83	14
1/2"	15	0		43		59	64	± 5	59	69	16
3/8"	7	0		43		51	56	± 5	51	61	8
#4	2	0		43		44	44	± 5	39	49	7
#8				40		40	39	± 4	35	43	4
#16				33		33	34	± 4	30	38	7
#30				22		22	22	± 4	18	26	11
#50				6		6	6	± 3	3	9	16
#100				1		1	0	± 2	0	2	5
#200				0.5		0.5	0.4	± 1.6% max	0.0	1.6	0.5

S.P.	2782-327	Plant:	Shafer	Date:	5/4/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:			
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:15 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:	
Lot #:	11	Test #:	21	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:			
						Agency only - QC or Verification Companion Test # corresponding to this test:						

Sieve Analysis of Coarse Aggregate

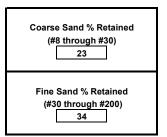
DOT

	Sample Wt.	1:	2.5	0	Sample Wt.	2	7.1	0	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	22	2%	restresuits	Mix Prop.			Test Results
Sieve Sizes	Weigh	nts (lb)			Weigł	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.4	100		0.2	27.1	100					
1 1/2" - 1 1/4"	0.0	12.4	100		2.1	26.9	99					
1 1/4" - 1"	0.0	12.4	100		12.3	24.8	91					
1" - 3/4"	0.4	12.4	100		10.7	12.4	46					
3/4" - 5/8"	0.0	12.0	97		0.0	1.7	6					
* 5/8" - 1/2"	5.3	12.0	-	-	1.4	1.7	-	-			-	-
1/2" - 3/8"	3.3	6.7	54		0.1	0.3	1					
3/8" - 1/4"	0.0	3.4	27		0.0	0.2	1					
* 1/4" - #4	3.0	3.4	-	-	0.0	0.2	-	-			-	-
#4 - Btm	0.4	0.4	3		0.2	0.2	1					Ī
Check Total	12.4	± 0.2 lb of S	ample Wt		27.1	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	33 3							
	Sample Wt.	53	7.5	Companian	Sample Wt.			Companian
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	539.1	100					
3/8" - #4	0.9	539.1	100					
#4 - #6	0.0	538.2	100					
* #6 - #8	16.5	538.2	-	-			-	-
#8 - #16	96.8	521.7	97					
#16 - #30	165.8	424.9	79					
#30 - #50	199.8	259.1	48					
#50 - #100	52.3	59.3	11					
#100 - #200	4.3	7.0	1					
#200 - Btm	1.1	2.7	0.5					
Loss by Washing	1.6							
Check Total	539.1	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2787.7	5172.9	
(B) Dry weight of washed sample	2764.5	5147.3	
(C) Loss by washing (A-B)	23.2	25.6	
(D) % Passing #200 (C/A)*100	0.8	0.5	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	537.7		
(B) Dry weight of washed sample	536.1		
(C) Loss by washing (A-B)	1.6		
(D) % Passing #200 (C/A)*100	0.3		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JL	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Ra	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	10		43		88	89	± 5	84	94	12
3/4"	34	1		43		78	78	± 5	73	83	10
1/2"	19	0		43		62	64	± 5	59	69	16
3/8"	9	0		43		53	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	9
#8				42		42	39	± 4	35	43	2
#16				34		34	34	± 4	30	38	8
#30				21		21	22	± 4	18	26	13
#50				5		5	6	± 3	3	9	16
#100				0		0	0	±2	0	2	5
#200	0.3	0.1		0.2		0.6	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/4/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:			
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:35 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:	
Lot #:	11	Test #:	22	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:			
						Agency only - QC or Verification Companion Test # corresponding to this test:						

Sieve Analysis of Coarse Aggregate

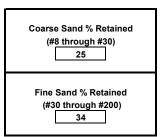
DOT

	Sample Wt.	1:	2.2	0	Sample Wt.	20	6.6	0	Sample Wt.			0
Aggregate	CA #1	3,	4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	35	5%	restricsuits	Mix Prop.	22	2%	restresuits	Mix Prop.			T CSt T CSuite
Sieve Sizes	Weigh	nts (lb)			Weigl	nts (lb)			Weigh	Weights (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.3	100		0.7	26.7	100					
1 1/2" - 1 1/4"	0.0	12.3	100		4.0	26.0	97					
1 1/4" - 1"	0.0	12.3	100		10.4	22.0	82					
1" - 3/4"	0.7	12.3	100		10.2	11.6	43					
3/4" - 5/8"	0.0	11.6	94		0.0	1.4	5					
* 5/8" - 1/2"	4.4	11.6	-	-	1.1	1.4	-	-			-	-
1/2" - 3/8"	3.2	7.2	59		0.1	0.3	1					
3/8" - 1/4"	0.0	4.0	33		0.0	0.2	1					
* 1/4" - #4	3.4	4.0	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.6	0.6	5		0.1	0.1	0					
Check Total	12.3	± 0.2 lb of Sample Wt		-	26.7	± 0.2 lb of Sample Wt			± 0.2 lb of Sample Wt			

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	3.4	Comparison	Sample Wt.			Companioon
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restressats
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	532.9	100					
3/8" - #4	0.8	532.9	100					
#4 - #6	0.0	532.1	100					
* #6 - #8	13.0	532.1	-	-			-	-
#8 - #16	105.5	519.1	97					
#16 - #30	164.6	413.6	78					
#30 - #50	195.3	249.0	47					
#50 - #100	48.0	53.7	10					
#100 - #200	4.0	5.7	1					
#200 - Btm	0.4	1.7	0.3					
Loss by Washing	1.3							
Check Total	532.9	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	533.4		
(B) Dry weight of washed sample	532.1		
(C) Loss by washing (A-B)	1.3		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	21		43		99	100	± 5	95	100	1
1"	35	9		43		87	89	± 5	84	94	12
3/4"	33	1		43		77	78	± 5	73	83	10
1/2"	21	0		43		64	64	± 5	59	69	13
3/8"	12	0		43		55	56	± 5	51	61	9
#4	2	0		43		45	44	± 5	39	49	10
#8				42		42	39	± 4	35	43	3
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	±2	0	2	4
#200				0.1		0.1	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/5/2020	Addredate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:26 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	12	Test #:	23	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	# correspor	nding to this	test:	

Sieve Analysis of Coarse Aggregate

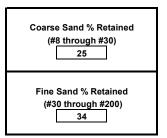
DOT

	Sample Wt.	1:	2.0	0	Sample Wt.	2	7.4	0	Sample Wt.			0
Aggregate	CA #1	3	/4''	Comparison Test Results		1-	12"	Comparison Test Results				Comparisor Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.	0. 22%		restricsuits	Mix Prop.			restriceduts
Sieve Sizes	Weigl	nts (lb)			Weigh	nts (lb)			Weights (lb)			
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	11.9	100		1.1	27.4	100					
1 1/2" - 1 1/4"	0.0	11.9	100		5.2	26.2	96					
1 1/4" - 1"	0.0	11.9	100		13.0	21.0	77					
1" - 3/4"	0.5	11.9	100		7.5	8.0	29					
3/4" - 5/8"	0.0	11.4	96		0.0	0.5	2					
* 5/8" - 1/2"	4.1	11.4	-	-	0.3	0.5	-	-			-	-
1/2" - 3/8"	3.3	7.3	61		0.1	0.2	1					
3/8" - 1/4"	0.0	4.0	34		0.0	0.1	0					
* 1/4" - #4	3.4	4.0	-	-	0.0	0.1	-	-			-	-
#4 - Btm	0.6	0.6	5		0.1	0.1	0					
Check Total	11.9	± 0.2 lb of S	ample Wt		27.4	± 0.2 lb of S	ample Wt	-		± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	5.6	Companian	Sample Wt.			Comparison
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	536.3	100					
3/8" - #4	0.1	536.3	100					
#4 - #6	0.0	536.2	100					
* #6 - #8	13.9	536.2	-	-			-	-
#8 - #16	103.5	522.3	97					
#16 - #30	171.3	418.8	78					
#30 - #50	194.3	247.5	46					
#50 - #100	47.2	53.2	10					
#100 - #200	4.3	6.0	1					
#200 - Btm	0.7	1.7	0.3					
Loss by Washing	1.0							
Check Total	536.3	± 0.3% of Sa	ample Wt		± 0.3% of Sample Wt			

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2806.6	5160.5	
(B) Dry weight of washed sample	2788.2	5133.5	
(C) Loss by washing (A-B)	18.4	27.0	
(D) % Passing #200 (C/A)*100	0.7	0.5	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	535.6		
(B) Dry weight of washed sample	534.6		
(C) Loss by washing (A-B)	1.0		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-43

Composite Gradation for Job Mix Formula

Composite	Shauation it		ormula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ЛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	21		43		99	100	± 5	95	100	1
1"	35	6		43		84	89	± 5	84	94	15
3/4"	34	0		43		77	78	± 5	73	83	7
1/2"	21	0		43		65	64	± 5	59	69	12
3/8"	12	0		43		55	56	± 5	51	61	10
#4	2	0		43		45	44	± 5	39	49	10
#8				42		42	39	± 4	35	43	3
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200	0.2	0.1		0.1		0.5	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/5/2020	Addredate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:11 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	12	Test #:	24	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to th	is test:		
						Agency only - QC or Verification Cor	mpanion Test	# correspon	ding to this t	est:	

Sieve Analysis of Coarse Aggregate

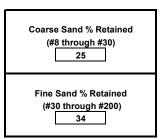
DOT

	Sample Wt.	1:	2.3	0	Sample Wt.	2	7.9	0	Sample Wt.			0
Aggregate	CA #1	3	/4''	Comparison Test Results		1-	12"	Comparison Test Results	CA #2			Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	2	2%	restricesand	Mix Prop.			rootricount
Sieve Sizes	Weigl	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	12.3	100		0.2	27.9	100					
1 1/2" - 1 1/4"	0.0	12.3	100		3.2	27.7	99					
1 1/4" - 1"	0.0	12.3	100		10.7	24.5	88					
1" - 3/4"	1.0	12.3	100		11.6	13.7	49					
3/4" - 5/8"	0.0	11.4	92		0.0	2.2	8					
* 5/8" - 1/2"	5.7	11.4	-	-	1.8	2.2	-	-			-	-
1/2" - 3/8"	3.0	5.7	46		0.1	0.3	1					
3/8" - 1/4"	0.0	2.6	21		0.0	0.2	1					
* 1/4" - #4	2.1	2.6	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.5	0.5	4		0.1	0.1	1					
Check Total	12.3	± 0.2 lb of S	ample Wt		27.9	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	7.9	Comparison	Sample Wt.			Companian
Aggregate	FA #1	Sa	and	Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	1 COL 1 COULO	Mix Prop.			restressats
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	537.8	100					
3/8" - #4	0.0	537.8	100					
#4 - #6	0.0	537.8	100					
* #6 - #8	12.9	537.8	-	-			-	-
#8 - #16	104.1	524.9	98					
#16 - #30	172.1	420.8	78					
#30 - #50	196.5	248.7	46					
#50 - #100	46.0	52.2	10					
#100 - #200	4.5	6.2	1					
#200 - Btm	0.4	1.7	0.3					
Loss by Washing	1.3							
Check Total	537.8	± 0.3% of Sample Wt			± 0.3% of Sample Wt		ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	537.9		
(B) Dry weight of washed sample	536.6		
(C) Loss by washing (A-B)	1.3		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

Mix 3A21-43

Composite Gradation for Job Mix Formula

Composite	Grauation		orniula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JL	ИF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	11		43		89	89	± 5	84	94	11
3/4"	32	2		43		77	78	± 5	73	83	12
1/2"	16	0		43		59	64	± 5	59	69	18
3/8"	7	0		43		51	56	± 5	51	61	8
#4	1	0		43		45	44	± 5	39	49	6
#8				42		42	39	± 4	35	43	3
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200				0.1		0.1	0	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/6/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	5:59 AM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	13	Test #:	25	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	# correspor	nding to this	test:	

Sieve Analysis of Coarse Aggregate

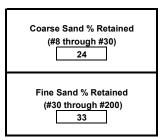
DOT

	Sample Wt.	14	4.2	0	Sample Wt.	2	9.3	0	Sample Wt.			0
Aggregate	CA #1	3	/4''	Comparison Test Results		1-	12"	Comparison Test Results				Comparisor Test Results
Fraction	Mix Prop.	3	5%	i cot i coulto	Mix Prop.			restricsuits	Mix Prop.			
Sieve Sizes	Weigl	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	14.2	100		0.0	29.2	100					
1 1/2" - 1 1/4"	0.0	14.2	100		2.3	29.2	100					
1 1/4" - 1"	0.0	14.2	100		14.5	26.9	92					
1" - 3/4"	1.1	14.2	100		11.1	12.4	43					
3/4" - 5/8"	0.0	13.1	92		0.0	1.3	5					
* 5/8" - 1/2"	6.2	13.1	-	-	1.1	1.3	-	-			-	-
1/2" - 3/8"	3.9	6.9	49		0.1	0.2	1					
3/8" - 1/4"	0.0	3.0	21		0.0	0.2	1					
* 1/4" - #4	2.5	3.0	-	-	0.1	0.2	-	-			-	-
#4 - Btm	0.6	0.6	4		0.1	0.1	0					
Check Total	14.2	± 0.2 lb of S	ample Wt		29.2	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	6.1		Sample Wt.			
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	Test Results	Mix Prop.			Test Results
Sieve Sizes	Weig	hts (g)			Weigl	nts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	535.6	100					
3/8" - #4	0.6	535.6	100					
#4 - #6	0.0	535.0	100					
* #6 - #8	15.1	535.0	-	-			-	-
#8 - #16	105.7	519.9	97					
#16 - #30	168.7	414.2	77					
#30 - #50	191.3	245.5	46					
#50 - #100	47.8	54.2	10					
#100 - #200	4.6	6.4	1					
#200 - Btm	0.6	1.8	0.3					
Loss by Washing	1.2							
Check Total	535.6	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2789.0	5222.2	
(B) Dry weight of washed sample	2775.9	5203.3	
(C) Loss by washing (A-B)	13.1	18.9	
(D) % Passing #200 (C/A)*100	0.5	0.4	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	536.1		
(B) Dry weight of washed sample	534.9		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-49

Composite Gradation for Job Mix Formula

composite	Shauation it		Jinnula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	9		43		87	89	± 5	84	94	13
3/4"	32	1		43		76	78	± 5	73	83	11
1/2"	17	0		43		60	64	± 5	59	69	16
3/8"	7	0		43		51	56	± 5	51	61	9
#4	1	0		43		44	44	± 5	39	49	7
#8				42		42	39	± 4	35	43	2
#16				33		33	34	± 4	30	38	9
#30				20		20	22	± 4	18	26	13
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200	0.2	0.1		0.1		0.4	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/6/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	2:34 PM	Aggregate Sources (Fit #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	13	Test #:	26	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Test	# correspor	nding to this t	est:	

Sieve Analysis of Coarse Aggregate

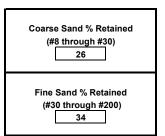
DOT

	Sample Wt.	14	4.0	0	Sample Wt.	30	0.0	0	Sample Wt.			0
Aggregate	CA #1	3/	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	35	5%	Mix Pro		o. 22%		restricsuits	Mix Prop.			restricsuits
Sieve Sizes	Weigh	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	14.0	100		0.0	30.1	100					
1 1/2" - 1 1/4"	0.0	14.0	100		3.5	30.1	100					
1 1/4" - 1"	0.0	14.0	100		13.9	26.6	88					
1" - 3/4"	0.7	14.0	100		11.2	12.8	42					
3/4" - 5/8"	0.0	13.3	95		0.0	1.6	5					
* 5/8" - 1/2"	5.4	13.3	-	-	1.2	1.6	-	-			-	-
1/2" - 3/8"	3.7	7.9	56		0.1	0.4	1					
3/8" - 1/4"	0.0	4.2	30		0.0	0.3	1					
* 1/4" - #4	3.2	4.2	-	-	0.1	0.3	-	-			-	-
#4 - Btm	1.0	1.0	7		0.2	0.2	1					
Check Total	14.0	± 0.2 lb of S	ample Wt		30.1	± 0.2 lb of S	ample Wt			± 0.2 lb of S	ample Wt	

Sieve Analysis of Fine Aggregate

	33 3							
	Sample Wt.	53	2.8	Companian	Sample Wt.			Companiasa
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restriceduits	Mix Prop.			restricesuits
Sieve Sizes	Weig	hts (g)			Weigl	nts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	532.5	100					
3/8" - #4	1.4	532.5	100					
#4 - #6	0.0	531.1	100					
* #6 - #8	13.1	531.1	-	-			-	-
#8 - #16	101.6	518.0	97					
#16 - #30	171.7	416.4	78					
#30 - #50	192.8	244.7	46					
#50 - #100	46.3	51.9	10					
#100 - #200	4.3	5.6	1					
#200 - Btm	0.3	1.3	0.2					
Loss by Washing	1.0							
Check Total	532.5	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	532.8		
(B) Dry weight of washed sample	531.8		
(C) Loss by washing (A-B)	1.0		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A21-49

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	9		43		87	89	± 5	84	94	13
3/4"	33	1		43		77	78	± 5	73	83	10
1/2"	20	0		43		63	64	± 5	59	69	14
3/8"	11	0		43		54	56	± 5	51	61	9
#4	2	0		43		46	44	± 5	39	49	8
#8				42		42	39	± 4	35	43	4
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	±2	0	2	4
#200				0.1		0.1	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/7/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	6:32 AM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	14	Test #:	27	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	ponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Tes	t # correspoi	nding to this	test:	

Sieve Analysis of Coarse Aggregate

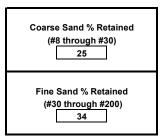
DOT

	Sample Wt.	1;	3.4	0	Sample Wt.	2	6.4	O	Sample Wt.			0
Aggregate	CA #1	3	/4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	restricedute	Mix Prop.	2	2%	restricesdite	Mix Prop.			restriceuns
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	13.3	100		0.4	26.4	100					
1 1/2" - 1 1/4"	0.0	13.3	100		4.3	26.0	98					
1 1/4" - 1"	0.0	13.3	100		11.9	21.6	82					
1" - 3/4"	0.9	13.3	100		8.5	9.8	37					
3/4" - 5/8"	0.0	12.4	93		0.0	1.3	5					
* 5/8" - 1/2"	4.9	12.4	-	-	1.2	1.3	-	-			-	-
1/2" - 3/8"	3.3	7.5	56		0.0	0.1	0					
3/8" - 1/4"	0.0	4.2	32		0.0	0.1	0					
* 1/4" - #4	3.4	4.2	-	-	0.0	0.1	-	-			-	-
#4 - Btm	0.8	0.8	6		0.1	0.1	0					
Check Total	13.3	± 0.2 lb of S	ample Wt		26.4	± 0.2 lb of S	ample Wt	-		± 0.2 lb of S	ample Wt	-

Sieve Analysis of Fine Aggregate

	Sample Wt.	53	3.1	Companian	Sample Wt.			Companian
Aggregate	FA #1	Sa	and	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	43	3%	restricedute	Mix Prop.			restressats
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	534.5	100					
3/8" - #4	0.2	534.5	100					
#4 - #6	0.0	534.3	100					
* #6 - #8	14.2	534.3	-	-			-	-
#8 - #16	103.6	520.1	97					
#16 - #30	171.8	416.5	78					
#30 - #50	192.7	244.7	46					
#50 - #100	46.7	52.0	10					
#100 - #200	4.4	5.3	1					
#200 - Btm	0.4	0.9	0.2					
Loss by Washing	0.5							
Check Total	534.5	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample	2795.5	5223.7	
(B) Dry weight of washed sample	2771.9	5190.6	
(C) Loss by washing (A-B)	23.6	33.1	
(D) % Passing #200 (C/A)*100	0.8	0.6	
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	533.1		
(B) Dry weight of washed sample	532.6		
(C) Loss by washing (A-B)	0.5		
(D) % Passing #200 (C/A)*100	0.1		
Comparison Test Results			

Additional Remarks or Comments

3A41-49

Composite Gradation for Job Mix Formula

composite	Shauation it		onnula								
Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	8		43		86	89	± 5	84	94	14
3/4"	33	1		43		77	78	± 5	73	83	9
1/2"	20	0		43		63	64	± 5	59	69	14
3/8"	11	0		43		54	56	± 5	51	61	9
#4	2	0		43		45	44	± 5	39	49	9
#8				42		42	39	± 4	35	43	3
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	± 2	0	2	4
#200	0.3	0.1		0.1		0.5	0.4	± 1.6% max	0.0	1.6	0.0

S.P.	2782-327	Plant:	Shafer	Date:	5/7/2020	Aggregate Sources (Pit #):	FA #1:	19129	FA #2:		
Engineer:	Jon Erickson	Tester:	Nick Speckman	Time:	1:15 PM	Aggregate Sources (1 it #).	CA #1:	19129	CA #2:	19129	CA #3:
Lot #:	14	Test #:	28	JMF #:	20-018	Contractor only - QA or Verification	Test # corres	sponding to t	his test:		
						Agency only - QC or Verification Co	mpanion Tes	t # correspo	nding to this	test:	

Sieve Analysis of Coarse Aggregate

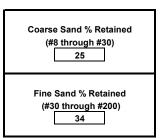
DOT

	Sample Wt.	1	1.7	0	Sample Wt.	2	5.3	0	Sample Wt.			0
Aggregate	CA #1	3.	4"	Comparison Test Results		1-	12"	Comparison Test Results				Comparison Test Results
Fraction	Mix Prop.	3	5%	1 COL I COULO	Mix Prop.	22	2%	restricedute	Mix Prop.			restricedute
Sieve Sizes	Weigł	nts (lb)			Weigh	nts (lb)			Weigh	nts (lb)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
2" - 1 1/2"	0.0	11.7	100		0.3	25.3	100					
1 1/2" - 1 1/4"	0.0	11.7	100		2.4	25.0	99					
1 1/4" - 1"	0.0	11.7	100		11.8	22.6	89					
1" - 3/4"	0.4	11.7	100		9.9	10.8	43					
3/4" - 5/8"	0.0	11.3	97		0.0	0.9	4					
* 5/8" - 1/2"	4.1	11.3	-	-	0.7	0.9	-	-			-	-
1/2" - 3/8"	3.1	7.2	62		0.1	0.2	1					
3/8" - 1/4"	0.0	4.1	35		0.0	0.1	0					
* 1/4" - #4	3.4	4.1	-	-	0.0	0.1	-	-			-	-
#4 - Btm	0.7	0.7	6		0.1	0.1	0					
Check Total	11.7	± 0.2 lb of S	ample Wt	-	25.3	± 0.2 lb of S	ample Wt	-		± 0.2 lb of S	ample Wt	_

Sieve Analysis of Fine Aggregate

	33 3							
	Sample Wt.	53	6.7	Companian	Sample Wt.			Companian
Aggregate	FA #1	Sa	and	Comparison Test Results	FA #2			Comparison Test Results
Fraction	Mix Prop.	43	3%	restriceduits	Mix Prop.			restricesuite
Sieve Sizes	Weig	hts (g)			Weigl	hts (g)		
Pass - Ret.	Ind.	Cum.	% Pass	% Pass	Ind.	Cum.	% Pass	% Pass
1/2" - 3/8"	0.0	535.8	100					
3/8" - #4	1.0	535.8	100					
#4 - #6	0.0	534.8	100					
* #6 - #8	13.5	534.8	-	-			-	-
#8 - #16	101.9	521.3	97					
#16 - #30	172.5	419.4	78					
#30 - #50	193.0	246.9	46					
#50 - #100	48.1	53.9	10					
#100 - #200	4.3	5.8	1					
#200 - Btm	0.3	1.5	0.3					
Loss by Washing	1.2							
Check Total	535.8	± 0.3% of Sa	ample Wt			± 0.3% of Sa	ample Wt	

Percent Passing #200 Sieve Test


Coarse Aggregate	CA #1	CA #2	CA #3
(A) Dry weight of original sample			
(B) Dry weight of washed sample			
(C) Loss by washing (A-B)			
(D) % Passing #200 (C/A)*100			
Comparison Test Results			
Fine Aggregate	FA #1	FA #2	
(A) Dry weight of original sample	536.7		
(B) Dry weight of washed sample	535.5		
(C) Loss by washing (A-B)	1.2		
(D) % Passing #200 (C/A)*100	0.2		
Comparison Test Results			

Additional Remarks or Comments

3A41-49

Composite Gradation for Job Mix Formula

Aggregate	CA #1	CA #2	CA #3	FA #1	FA #2		Combined		JN	ΛF	
Fraction	3/4"	1-12"		Sand		Total %	Gradation	Working	Wor	king	Total %
Mix Prop.	35%	22%		43%		Passing	JMF	Range	Rai	nge	Retained
2"	35	22		43		100	100	± 5	95	100	0
1 1/2"	35	22		43		100	100	± 5	95	100	0
1"	35	9		43		87	89	± 5	84	94	13
3/4"	34	1		43		78	78	± 5	73	83	9
1/2"	22	0		43		65	64	± 5	59	69	13
3/8"	12	0		43		55	56	± 5	51	61	10
#4	2	0		43		45	44	± 5	39	49	10
#8				42		42	39	± 4	35	43	3
#16				34		34	34	± 4	30	38	8
#30				20		20	22	± 4	18	26	14
#50				4		4	6	± 3	3	9	16
#100				0		0	0	±2	0	2	4
#200				0.1		0.1	0.4	± 1.6% max	0.0	1.6	0.0

B2.2: Aggregates: Moving Average

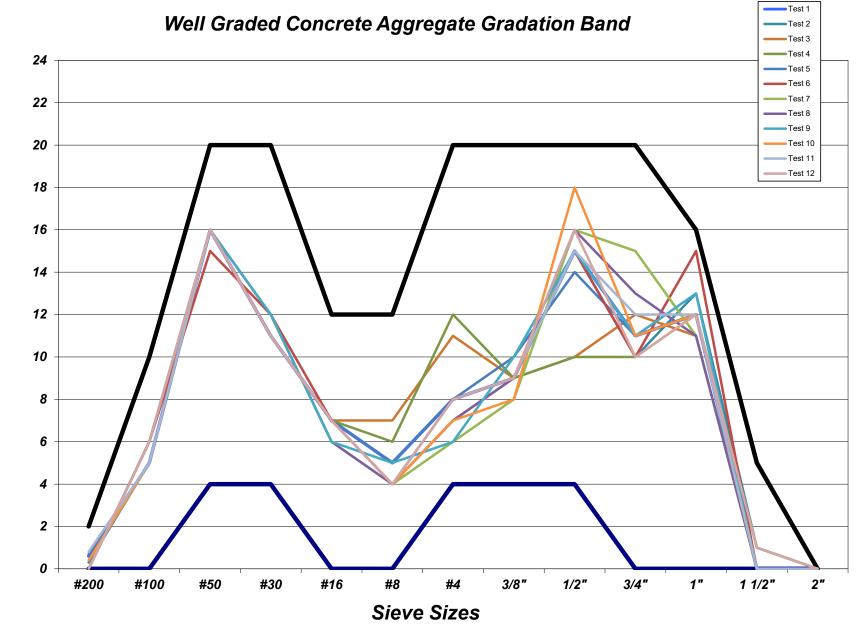
	Plant:						Shafer											SP:			2782	-327		
Test #:									:	1					Ĩ	2					:	3		
JMF #:			20-0	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range
2"	100			100	95	100	100			100	95	100	100			100	95	100	100		100	100	95	100
1 1/2"	100			100	95	100	99			100	95	100	100			100	95	100	99		100	100	95	100
1"	88			89	84	94	86			89	84	94	89			89	84	94	87		88	89	84	94
3/4"	77			78	73	83	76			78	73	83	77			78	73	83	77		77	78	73	83
1/2"	62			64	59	69	61			64	59	69	67			64	59	69	67		64	64	59	69
3/8"	53			56	51	61	52			56	51	61	58			56	51	61	58		55	56	51	61
#4	45			44	39	49	44			44	39	49	47			44	39	49	46		46	44	39	49
#8	40			39	35	43	40			39	35	43	40			39	35	43	40		40	39	35	43
#16	33			34	30	38	33			34	30	38	33			34	30	38	33		33	34	30	38
#30	22			22	18	26	22			22	18	26	22			22	18	26	22		22	22	18	26
#50	6			6	3	9	6			6	3	9	6			6	3	9	6		6	6	3	9
#100	1			0	0	2	1			0	0	2	0			0	0	2	1		1	0	0	2
#200	0.4			0	0.0	1.6	0.7			0	0.0	1.6	0.2			0	0.0	1.6	0.6		0.5	0	0.0	1.6
Remarks or Comments																								

		Plant:						Shafer										SP:			2782	2-327		
Test #:			2	1					!	5					(6					-	7		
JMF #:			20-	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range
2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1 1/2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1"	88		88	89	84	94	85		87	89	84	94	89		87	89	84	94	89		88	89	84	94
3/4"	77		77	78	73	83	75		77	78	73	83	74		76	78	73	83	76		76	78	73	83
1/2"	63		65	64	59	69	60		64	64	59	69	58		62	64	59	69	60		60	64	59	69
3/8"	53		55	56	51	61	51		55	56	51	61	50		53	56	51	61	51		51	56	51	61
#4	45		46	44	39	49	44		46	44	39	49	44		45	44	39	49	44		44	44	39	49
#8	40		40	39	35	43	40		40	39	35	43	40		40	39	35	43	40		40	39	35	43
#16	33		33	34	30	38	33		33	34	30	38	34		33	34	30	38	34		34	34	30	38
#30	22		22	22	18	26	21		22	22	18	26	22		22	22	18	26	22		22	22	18	26
#50	6		6	6	3	9	6		6	6	3	9	6		6	6	3	9	6		6	6	3	9
#100	1		1	0	0	2	0		1	0	0	2	0		1	0	0	2	0		0	0	0	2
#200	0.3		0.5	0	0.0	1.6	0.4		0.4	0	0.0	1.6	0.2		0.4	0	0.0	1.6	0.4		0.3	0	0.0	1.6
Remarks or Comments																								

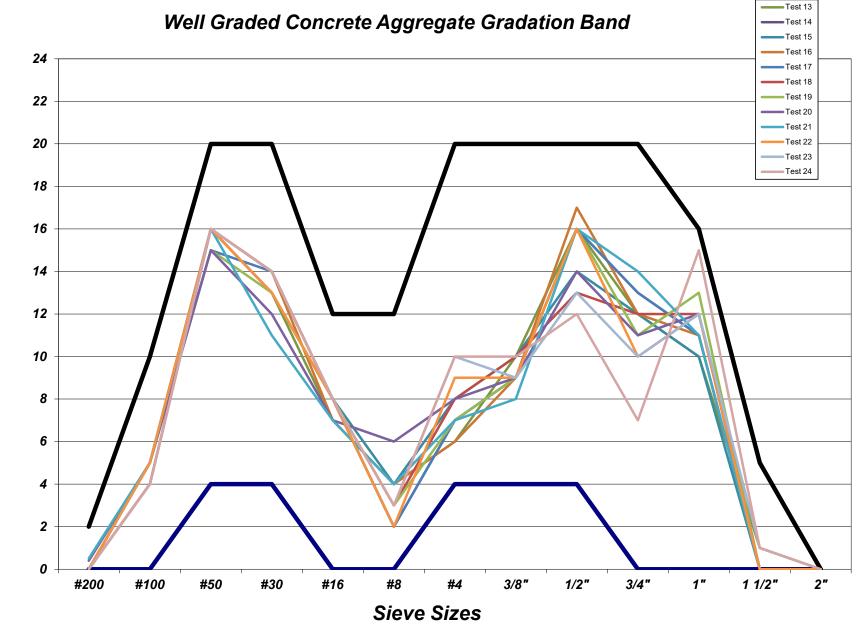
		Plant:						Shafer										SP:			2782	2-327		
Test #:			٤	3					!	9					1	0					1	.1		
JMF #:			20-	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range
2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1 1/2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	99		100	100	95	100
1"	87		88	89	84	94	88		88	89	84	94	88		88	89	84	94	87		88	89	84	94
3/4"	76		75	78	73	83	77		76	78	73	83	76		76	78	73	83	77		77	78	73	83
1/2"	61		60	64	59	69	59		60	64	59	69	61		60	64	59	69	61		61	64	59	69
3/8"	51		51	56	51	61	51		51	56	51	61	52		51	56	51	61	52		52	56	51	61
#4	45		44	44	39	49	44		44	44	39	49	44		44	44	39	49	44		44	44	39	49
#8	40		40	39	35	43	40		40	39	35	43	40		40	39	35	43	40		40	39	35	43
#16	34		34	34	30	38	33		34	34	30	38	33		34	34	30	38	33		33	34	30	38
#30	22		22	22	18	26	22		22	22	18	26	22		22	22	18	26	22		22	22	18	26
#50	6		6	6	3	9	6		6	6	3	9	6		6	6	3	9	6		6	6	3	9
#100	0		0	0	0	2	1		0	0	0	2	1		1	0	0	2	0		1	0	0	2
#200	0.3		0.3	0	0.0	1.6	0.6		0.4	0	0.0	1.6	0.2		0.4	0	0.0	1.6	0.6		0.4	0	0.0	1.6
Remarks or Comments																								

		Plant:						Shafer										SP:			2782	2-327		
Test #:			1	2					1	.3					1	4					1	.5		
JMF #:			20-	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range
2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1 1/2"	99		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1"	89		88	89	84	94	89		88	89	84	94	90		89	89	84	94	89		89	89	84	94
3/4"	77		77	78	73	83	76		77	78	73	83	78		77	78	73	83	77		77	78	73	83
1/2"	61		61	64	59	69	60		61	64	59	69	64		62	64	59	69	60		61	64	59	69
3/8"	51		52	56	51	61	51		52	56	51	61	54		52	56	51	61	51		52	56	51	61
#4	45		44	44	39	49	44		44	44	39	49	46		45	44	39	49	45		45	44	39	49
#8	41		40	39	35	43	42		41	39	35	43	42		41	39	35	43	41		42	39	35	43
#16	34		33	34	30	38	34		34	34	30	38	34		34	34	30	38	34		34	34	30	38
#30	21		22	22	18	26	21		22	22	18	26	20		21	22	18	26	20		21	22	18	26
#50	5		6	6	3	9	5		6	6	3	9	4		5	6	3	9	4		5	6	3	9
#100	0		1	0	0	2	0		0	0	0	2	0		0	0	0	2	0		0	0	0	2
#200	0.2		0.4	0	0.0	1.6	0.7		0.4	0	0.0	1.6	0.1		0.4	0	0.0	1.6	0.4		0.4	0	0.0	1.6
Remarks or Comments																								

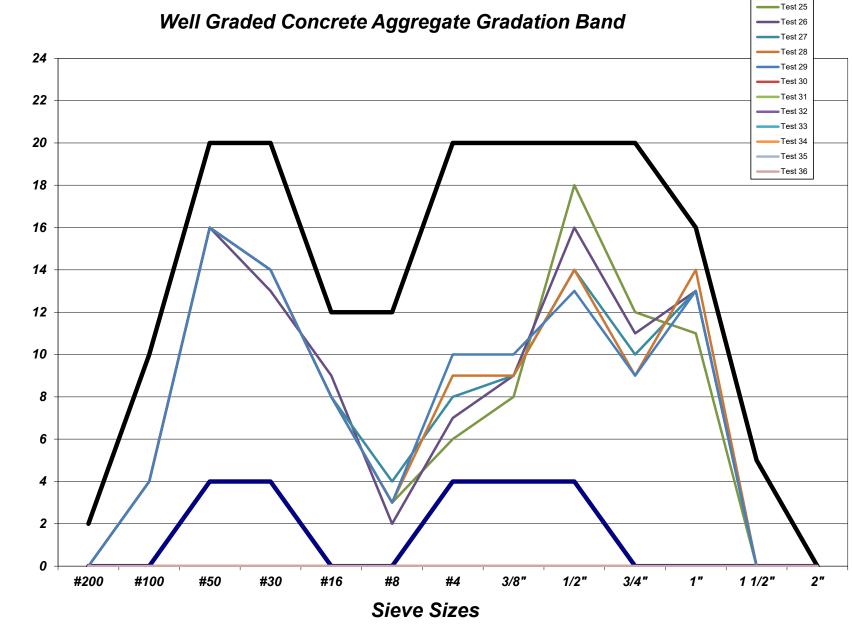
		Plant:						Shafer										SP:			2782	2-327		
Test #:			1	6					1	.7					1	.8					1	.9		
JMF #:			20-	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range
2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1 1/2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1"	89		89	89	84	94	88		89	89	84	94	87		88	89	84	94	88		88	89	84	94
3/4"	76		77	78	73	83	76		77	78	73	83	76		76	78	73	83	77		76	78	73	83
1/2"	60		61	64	59	69	63		62	64	59	69	60		61	64	59	69	63		62	64	59	69
3/8"	51		52	56	51	61	53		52	56	51	61	51		52	56	51	61	54		52	56	51	61
#4	44		45	44	39	49	45		45	44	39	49	44		45	44	39	49	46		45	44	39	49
#8	42		42	39	35	43	42		42	39	35	43	41		42	39	35	43	40		41	39	35	43
#16	34		34	34	30	38	34		34	34	30	38	33		34	34	30	38	33		34	34	30	38
#30	20		20	22	18	26	20		20	22	18	26	20		20	22	18	26	21		20	22	18	26
#50	5		5	6	3	9	4		4	6	3	9	5		5	6	3	9	6		5	6	3	9
#100	0		0	0	0	2	0		0	0	0	2	0		0	0	0	2	1		0	0	0	2
#200	0.1		0.3	0	0.0	1.6	0.5		0.3	0	0.0	1.6	0.2		0.3	0	0.0	1.6	0.6		0.4	0	0.0	1.6
Remarks or Comments																								


		Plant:						Shafer										SP:			2782	-327		
Test #:			2	0					2	1					2	2					2	3		
JMF #:			20-	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	vorking Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range
2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1 1/2"	100		100	100	95	100	100		100	100	95	100	99		100	100	95	100	99		100	100	95	100
1"	89		88	89	84	94	88		88	89	84	94	87		88	89	84	94	84		87	89	84	94
3/4"	75		76	78	73	83	78		77	78	73	83	77		77	78	73	83	77		77	78	73	83
1/2"	59		61	64	59	69	62		61	64	59	69	64		62	64	59	69	65		63	64	59	69
3/8"	51		52	56	51	61	53		52	56	51	61	55		53	56	51	61	55		54	56	51	61
#4	44		45	44	39	49	44		45	44	39	49	45		45	44	39	49	45		45	44	39	49
#8	40		41	39	35	43	42		41	39	35	43	42		41	39	35	43	42		42	39	35	43
#16	33		33	34	30	38	34		33	34	30	38	34		34	34	30	38	34		34	34	30	38
#30	22		21	22	18	26	21		21	22	18	26	20		21	22	18	26	20		21	22	18	26
#50	6		5	6	3	9	5		6	6	3	9	4		5	6	3	9	4		5	6	3	9
#100	1		1	0	0	2	0		1	0	0	2	0		1	0	0	2	0		0	0	0	2
#200	0.5		0.5	0	0.0	1.6	0.6		0.5	0	0.0	1.6	0.1		0.5	0	0.0	1.6	0.5		0.4	0	0.0	1.6
Remarks or Comments																								

		Plant:						Shafer										SP:			2782	2-327		
Test #:			2	4					2	.5					2	6					2	.7		
JMF #:			20-	018					20-	018					20-	018					20-	018		
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JML	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range
2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1 1/2"	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100	100		100	100	95	100
1"	89		87	89	84	94	87		87	89	84	94	87		87	89	84	94	86		87	89	84	94
3/4"	77		77	78	73	83	76		77	78	73	83	77		77	78	73	83	77		77	78	73	83
1/2"	59		63	64	59	69	60		62	64	59	69	63		62	64	59	69	63		61	64	59	69
3/8"	51		54	56	51	61	51		53	56	51	61	54		53	56	51	61	54		53	56	51	61
#4	45		45	44	39	49	44		45	44	39	49	46		45	44	39	49	45		45	44	39	49
#8	42		42	39	35	43	42		42	39	35	43	42		42	39	35	43	42		42	39	35	43
#16	34		34	34	30	38	33		34	34	30	38	34		34	34	30	38	34		34	34	30	38
#30	20		20	22	18	26	20		20	22	18	26	20		20	22	18	26	20		20	22	18	26
#50	4		4	6	3	9	4		4	6	3	9	4		4	6	3	9	4		4	6	3	9
#100	0		0	0	0	2	0		0	0	0	2	0		0	0	0	2	0		0	0	0	2
#200	0.1		0.3	0	0.0	1.6	0.4		0.3	0	0.0	1.6	0.1		0.3	0	0.0	1.6	0.5		0.3	0	0.0	1.6
Remarks or Comments																								


		Plant:						Shafer										SP:			2782	-327		
Test #:			2	8																				
JMF #:			20-	018																				
Sieve	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Working Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF	Range	Gradation Results	Comparison Test Results	Moving Average	Total % Passing	JMF Working	Range
2"	100		100	100	95	100																		
1 1/2"	100		100	100	95	100																		
1"	87		87	89	84	94																		
3/4"	78		77	78	73	83																		
1/2"	65		63	64	59	69																		
3/8"	55		54	56	51	61																		
#4	45		45	44	39	49																		
#8	42		42	39	35	43																		
#16	34		34	34	30	38																		
#30	20		20	22	18	26																		
#50	4		4	6	3	9																		
#100	0		0	0	0	2																		
#200	0.1		0.3	0	0.0	1.6																		
Remarks or Comments																								

B2.3: Aggregates: QA test reports


B2.4: Aggregates: Tarantula Curves

% Retained

% Retained

% Retained

B2.5: Aggregates: Moisture Content

Aggregates Moisture Content

TES	т#	1	2	3	4	5	6	7	8	9
DA		4/21/20	4/21/20	4/21/20	4/22/20	4/22/20	4/22/20	4/23/20	4/23/20	4/23/20
		4/21/20 8:15 AM				4/22/20 11:00 AM	4/22/20 1:25PM	4/23/20 8:55 AM	2:00 PM	
			10:55 AM	3:20 PM	7:45 AM					4:45PM
Moisture	Sand	3.5	3.3	3.2	3.1	3.2	3.1	2.8	3.2	2.6
Content	3/4-	1.9	1.8	2.1	1.8	2.6	2.3	2.3	2.0	2.3
(%)	(1 1/2)	1.2	1.6	0.9	1.5	1.1	1.5	1.2	0.8	1.0
TES	ST #	10	11	12	13	14	15	16	17	18
DA	TE	4/24/20	4/24/20	4/24/20	4/25/20	4/25/20	4/27/20	4/27/20	4/27/20	4/29/20
TIM	ΛE	7:50 AM	11:30 AM	3:05 PM	7:55 AM	11:20 AM	8:40 AM	12:40 PM	3:30 AM	8:55 AM
Moisture	Sand	2.9	3.0	3.4	3.2	2.6	2.8	3.0	3.4	4.5
Content	3/4-	2.0	2.3	2.1	2.2	1.9	2.7	1.9	2.0	2.7
(%)	(1 1/2)	1.2	1.3	1.7	1.3	0.9	0.9	0.8	0.8	1.7
TES	ST #	19	20	21	22	23	24	25	26	27
DA	TE	4/29/20	4/29/20	4/30/20	4/29/20	5/1/20	5/1/20	5/1/20	5/2/20	5/2/20
TIM	ΛE	11:35 AM	3:35 PM	9:35 AM	1:45 PM	8:45 AM	11:40 AM	3:35 PM	7:55 AM	10:30 AM
Moisture	Sand	4.0	4.0	3.7	3.7	4.0	3.6	3.9	3.8	4.1
Content	3/4-	2.3	2.3	2.1	2.2	2.3	2.2	2.1	2.2	2.3
(%)	(1 1/2)	1.9	1.8	1.5	1.7	1.5	1.4	1.6	0.9	2.0
TES	ST #	28	29	30	31	32	33	34	35	36
DA	TE	5/4/20	5/4/20	5/4/20	4/5/20	5/5/20	5/5/20	5/6/20	5/6/20	5/6/20
TIM	ΛE	7:42 AM	11:00 AM	3:00 PM	8:45 AM	12:50PM	3:25 PM	7:40 AM	11:15 AM	3:20 PM
Moisture	Sand	3.5	3.2	3.2	3.7	3.5	3.9	3.5	3.2	3.3
Content	3/4-	2.2	2.2	2.3	1.6	2.1	2.0	1.8	1.6	1.9
(%)	(1 1/2)	0.9	1.0	0.9	0.9	0.8	0.8	0.8	0.7	1.2

B3.1: Concrete: Water/ Cementitious Ratio

W/C ratios

TEST #	1	2	3	4	5	6	7	8
DATE	4/21/2020	4/21/2020	4/21/2020	4/22/2020	4/22/2020	4/22/2020	4/23/2020	4/23/2020
TIME	8:15 AM	10:55 AM	3:20 PM	7:45 AM	11:00 AM	1:25PM	8:55 AM	2:00 PM
Calculated average w/cm	0.36	0.35	0.35	0.35	0.35	0.36	0.32	0.30
Measured w/cm (microwave test)	0.32	0.34			0.35		0.32	
TEST #	9	10	11	12	13	14	15	16
DATE	4/23/2020	4/24/2020	4/24/2020	4/24/2020	4/25/2020	4/25/2020	4/27/2020	4/27/2020
TIME	4:45PM	7:50 AM	11:30 AM	3:05 PM	7:55 AM	11:20 AM	8:40 AM	12:40 PM
Calculated average w/cm	0.29	0.36	0.35	0.35	0.36	0.35	0.34	0.33
Measured w/cm (microwave test)		0.33	0.35		0.34		0.36	
TEST #	17	18	19	20	21	22	23	24
DATE	4/27/2020	4/29/2020	4/29/2020	4/29/2020	4/30/2020	4/29/2020	5/1/2020	5/1/2020
TIME	3:30 AM	8:55 AM	11:35 AM	3:35 PM	9:35 AM	1:45 PM	8:45 AM	11:40 AM
Calculated average w/cm	0.35	0.33	0.34	0.36	0.3	0.31	0.36	0.37
Measured w/cm (microwave test)		0.33	0.37		0.31		0.36	
TEST #	25	26	27	28	29	30	31	32
DATE	5/1/2020	5/2/2020	5/2/2020	5/4/2020	5/4/2020	5/4/2020	4/5/2020	5/5/2020
TIME	3:35 PM	7:55 AM	10:30 AM	7:42 AM	11:00 AM	3:00 PM	8:45 AM	12:50PM
Calculated average w/cm	0.38	0.35	0.36	0.35	0.36	0.37	0.35	0.36
Measured w/cm (microwave test)		0.36	0.34	0.34			0.36	0.36
TEST #	33	34	35	36	37			
DATE	5/5/2020	5/6/2020	5/6/2020	5/6/2020	5/7/2020			
TIME	3:25 PM	7:40 AM	11:15 AM	3:20 PM	7:50 AM			
Calculated average w/cm	0.37	0.36	0.37	0.39	0.35			
Measured w/cm (microwave test)		0.37			0.33			

Minnesota Department of Transportation

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/21/2020
TIME	8:15 AM
TICKET #	25
LOT #	1
TEST #	1
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

	i i
FA #1	FA #2
Sand	
742	
722.6	
174.9	
0.035	
0.005	
0.030	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
21	145	9	3185	1365
22	145	0	3185	1360
23	145	9	3195	1355
24	144	5	3205	1380
25	146	2	3190	1350
26	146	7	3185	1380
27	145	7	3175	1350
28	146	11	3170	1350
29	143	10	3190	1355
30	144	4	3180	1360
AVE.	144.9	6.4	3186	1360.5
		AVE. CM	454	46.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3048	3054.6	
2998	3021.5	
379.7	249.3	
0.019	0.012	
0.012	0.012	
0.007	0.000	

TOTAL

1080	679			
21	8	=	75	(C)
8	0	=	48	(D)
12.96	8.15	=	27.72	(E)

151.3	(F)
157.5	(G)
172.2	(H)
205.5	(I)
0.36	(J)
233.2	(K)
	157.5 172.2 205.5 0.36

UNIT WEIGHT TEST
VOLUME OF UNIT WEIGHT BUC
MASS OF LINIT WT BLICKET B

VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.9	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.2	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.8	lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1377.7	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3189.6	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3083.9	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	228.1	lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT_A Sum of Absorbed Moistures (E)	27.72	_lb/cy
ESTIMATED MIXING WATER CONTENT, \mbox{MW} WT_M - WT_A	200.4	_lb/cy

% PASSING #4 SIEVE

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	743.1	g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	963.1	g
(WD - WR4) - WS		
% PASSING #4, P4	56.4	%
WP4 / (WD-WS)		_
% PASSING #4 FROM JMF, P4JMF	44.0	%
% PASSING #4 FROM TOTAL MIX, P4TM	52.7	%
[((∑ Agg. Design WT.) x (P4JMF/100))+ (AVE CM / A))]	– x100
[(∑ Agg. Design WT.) + (AVE CM / A)]		- X100
CORRECTION FACTOR, CF	0.92	
(100 - P4 / 100 - P4TM)		
ADJUSTED TOTAL WATER CONTENT, \mathbf{AWT}_{M}	209.9	lb/cy
WT _M X CF	COMPAR	E TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	182.2	lb/cy
AWT _M - WT _A		_
ADJUSTED W/C RATIO	0.32	
((AMW) / (AVE CM / A))	COMPAR	E TO (J)

Minnesota Department of Transportation

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/21/2020
TIME	10:55 AM
TICKET #	112
LOT #	2
TEST #	2
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION		
WT OF SAMPLE + PAN (WET), (g)		
WT OF SAMPLE + PAN (DRY), (g)		
WT OF PAN, (g)		
TOTAL MOISTURE FACTOR		
ABSORPTION FACTOR		
FREE MOISTURE FACTOR		

FA #1	FA #2
Sand	
785.3	
766	
174.6	
0.033	
0.005	
0.028	

DESIGN WT (OVEN DRY), (lb/cy)
TOTAL MOISTURE, (lb/cy)
FREE MOISTURE, (lb/cy)
ABSORBED MOISTURE, (lb/cy)

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
108	145	8	3195	1375
109	145	5	3235	1360
110	145	0	3220	1370
111	145	4	3235	1380
112	145	0	3195	1365
113	145	0	3175	1365
114	145	0	3200	1380
115	145	0	3215	1360
116	145	1	3170	1350
117	145	0	3175	1365
AVE.	145.0	1.8	3201.5	1367
		AVE. CM	450	68.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

1	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	3064.9	3102.5	
	3016.6	3058.7	
	379.3	248.7	
	0.018	0.016	
	0.012	0.012	
	0.006	0.004	

TOTAL

1080	679			
19	11	=	74	(C)
6	3	=	46	(D)
12.96	8.15	=	27.72	(E)

146.8	(F)
152.9	(G)
175.2	(H)
198.9	(I)
0.35	(J)
226.6	(K)
	152.9 175.2 198.9 0.35

MASS OF UNIT WT. BUCKET, BWT MASS OF UNIT WT. BUCKET & CONCRETE, CBWT MASS OF CONCRETE, (CBWT - BWT), CWT UNIT WT. OF CONCRETE, CWT / VOL, UW <u>1</u> <u>MICROWAVE OVEN TEST</u>		
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT MASS OF CONCRETE, (CBWT - BWT), CWT UNIT WT. OF CONCRETE, CWT / VOL, UW MICROWAVE OVEN TEST).25	ft ³
MASS OF CONCRETE, (CBWT - BWT), CWT UNIT WT. OF CONCRETE, CWT / VOL, UW <u>1</u> MICROWAVE OVEN TEST	7.7	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW 1 MICROWAVE OVEN TEST	13.9	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW 1 MICROWAVE OVEN TEST		
MICROWAVE OVEN TEST	36.2	lb
MICROWAVE OVEN TEST		
	44.8	lb/cf
MASS OF TRAY & CLOTH, WS 13	376.1	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF 32	214.7	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD 3	105	g
TOTAL MEASURED WATER CONTENT, WT _M 2	33.3	lb/cy
(WF - WD / WF - WS) x 27 x UW		
ESTIMATED ABSORBED WATER CONTENT, WT _A 2	7.72	lb/cy
Sum of Absorbed Moistures (E)		
· · · · · · · · · · · · · · · · · · ·		

205.6 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

% PASSING #4 SIEVE

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	<u>786.6</u> g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	942.3 g
(WD - WR4) - WS	
% PASSING #4, P4	54.5 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	52.8 %
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	—x 100
[(∑ Agg. Design WT.) + (AVE CM / A)]	-x 100
CORRECTION FACTOR, CF	0.96
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M	224 lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	196.3 lb/cy
AWT _M - E	
ADJUSTED W/C RATIO	0.34
((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/21/2020
TIME	3:20 PM
TICKET #	248
LOT #	2
TEST #	3
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
777.8	
759	
174.8	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)
TOTAL MOISTURE, (lb/cy)
FREE MOISTURE, (lb/cy)
ABSORBED MOISTURE, (lb/cy)

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
244	144	5	3210	1360
245	144	0	3220	1350
246	144	0	3210	1365
247	143	4	3225	1350
248	143	7	3215	1350
249	143	4	3185	1370
250	144	4	3225	1370
251	144	4	3200	1365
252	144	6	3215	1350
253	144	10	3215	1350
AVE.	143.7	4.4	3212	1358
		AVE. CM	45	570

MIX DESIGN	3A21-43	BATCH SIZE, (cy)	<u> 8 (</u> A)
WATER, (lb/cy)	222		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL (CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>570</u> (B)
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
2948.3	3057.6	
2894.5	3031.4	
379.6	249.3	
0.021	0.009	
0.012	0.012	
0.009	-0.003	

TOTAL

1080	679			
23	6	=	71	(C)
10	-2	=	44	(D)
12.96	8.15	=	27.72	(E)

148.1 (F)
154.2 (G)
177.2 (H)
198.2 (I)
0.35 (J)
225.9 (K)

UNIT WEIGHT TEST			% PASSING #4 SI
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPL
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.9	lb	(WD - WR4) - WS
			% PASSING #4, P 4
MASS OF CONCRETE, (CBWT - BWT), CWT	36.2	lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.8	lb/cf	% PASSING #4 FR
			% PASSING #4 FR
MICROWAVE OVEN TEST			[((∑ Agg. Design W
			[(∑ Agg. Design W
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FAC
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUSTED TOTAL
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT_A		lb/cy	ADJUSTED MIXIN
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C R
			((A B B A ()) ((A)) (F O B A

IEVE

T

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS	g
% PASSING #4, P4	%
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/22/2020
TIME	7:45 AM
TICKET #	30
LOT #	2
TEST #	4
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
781.6	
763.4	
174.6	
0.031	
0.005	
0.026	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	41
FREE MOISTURE, (lb/cy)	34
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
26	146	6	3210	1360
27	146	8	3220	1355
28	146	12	3215	1360
29	146	4	3230	1350
30	147	0	3220	1385
31	147	4	3210	1360
32	147	7	3215	1360
33	147	4	3200	1385
34	147	0	3210	1380
35	147	1	3210	1380
AVE.	146.6	4.6	3214	1367.5
		AVE. CM	458	31.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3023.5	2987.2	
2976.8	2947.9	
379.7	249	
0.018	0.015	
0.012	0.012	
0.006	0.003	

TOTAL

1080	679			
19	10	=	70	(C)
6	2	=	42	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	151.2	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	157.4	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	179.7	(H)
TOTAL MIX WATER USED, (lb/cy)	199.4	(I)
(D + G)		
W/C RATIO	0.35	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (lb/cy)	227.1	(K)
(E+I)		

UNIT WEIGHT TEST			% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	_ft ³	MASS OF SAMPLE RET
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PA
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT		lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT		lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW		lb/cf	% PASSING #4 FROM
			% PASSING #4 FROM
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x
			[(∑ Agg. Design WT.) +
MASS OF TRAY & CLOTH, WS	1375.6	g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3096.8	g	CORRECTION FACTOR
MASS OF PAN, CLOTH & DRY CONCRETE, WD	2998.6	g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, WT_M	#VALUE!	lb/cy	ADJUSTED TOTAL WA
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WTA	27.72	lb/cy	ADJUSTED MIXING WA
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW	#VALUE!	lb/cy	ADJUSTED W/C RATIC
		_	I

T

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	9 9 %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>%</u> -x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/22/2020
TIME	11:00 AM
TICKET #	143
LOT #	2
TEST #	5
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
779.8	
760.9	
174.8	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	42
FREE MOISTURE, (lb/cy)	36
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
139	144	3	3175	1365
140	144	0	3195	1355
141	144	0	3170	1365
142	142	0	3225	1360
143	139	3	3215	1365
144	140	4	3230	1350
145	140	3	3220	1370
146	140	0	3200	1355
147	140	6	3210	1365
148	140	3	3230	1360
AVE.	141.3	2.2	3207	1361
		AVE. CM	45	68

MIX DESIGN	3A21-43	BATCH SIZE, (cy)	<u> 8 (</u> A)
WATER, (lb/cy)	222		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL	CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u> </u>
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
3044	3008.4	
2977.4	2978.3	
379.7	249.3	
0.026	0.011	
0.012	0.012	
0.014	-0.001	

TOTAL

1080	679			
28	7	=	77	(C)
15	-1	=	50	(D)
12.96	8.15	=	27.72	(E)

143.5	(F)
149.4	(G)
171.3	(H)
199.4	(I)
0.35	(J)
227.1	(K)
	149.4 171.3 199.4 0.35

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.3	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.6	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.4	lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1375.8	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3155.2	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3053	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	227.0	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT_A Sum of Absorbed Moistures (E)	27.72	_lb/cy

199.3 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	892.3 g
(WD - WR4) - WS	
% PASSING #4, P4	53.2 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	<u> </u>
$[((\Sigma \text{ Agg. Design WT.}) \times \text{P4JMF})+ (AVE CM / A)]$	
$\frac{[(\sum \text{Agg. Design W1.}) \times 140\text{W1})^{1}}{[(\sum \text{Agg. Design W1.}) + (\text{AVE CM} / \text{A})]}$	—x 100
CORRECTION FACTOR, CF	0.99
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWTM	224.7 lb/cy
WT _M X CF	COMPARE TO (K)
ivi -	
ADJUSTED MIXING WATER CONTENT, AMW	197 lb/cy
AWT _M - E	<u> </u>
191	
ADJUSTED W/C RATIO	0.35
((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/22/2020
TIME	1:25PM
TICKET #	217
LOT #	2
TEST #	6
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
735.7	
719	
174.8	
0.031	
0.005	
0.026	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

	1			1
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
213	142	1	3205	1375
214	142	2	3170	1355
215	142	4	3195	1360
216	142	6	3210	1365
217	142	6	3210	1365
218	142	3	3200	1375
219	142	5	3195	1365
220	142	6	3200	1360
221	142	15	3210	1355
222	142	26	3230	1390
AVE.	142.0	7.4	3202.5	1366.5
		AVE. CM	45	69

MIX DESIGN	3A21-43	BATCH SIZE, (cy)	8	(A)
WATER, (lb/cy)	222			
CEMENT, (lb/cy)	400			
FLY ASH, (lb/cy)	170	TOTAL C	EMENTITIO	US, (lb/cy)
SLAG, (lb/cy)		=	570	(B)
DESIGN W/C	0.39			

CA #1	CA #2	CA #3
3/4-	1 1/2	
3032.5	2976.3	
2973.1	2936.2	
379.8	249.2	
0.023	0.015	
0.012	0.012	
0.011	0.003	

TOTAL

1080	679			
25	10	=	76	(C)
12	2	=	48	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	149.4	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	155.6	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	173.3	(H)
TOTAL MIX WATER USED, (lb/cy)	203.6	(I)
TOTAL MIX WATER USED, (Ib/cy) (D + G)	203.6	_(I)
	203.6 0.36	_(l) _(J)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.36	_(J)

UNIT WEIGHT TEST		% PASSING #4 SIEV
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25 ft ³	MASS OF SAMPLE F
MASS OF UNIT WT. BUCKET, BWT	<u>7.7</u> lb	MASS. OF SAMPLE
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.3 lb	(WD - WR4) - WS
		% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT	<u>36.6</u> lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.4 lb/cf	% PASSING #4 FRO
		% PASSING #4 FRO
MICROWAVE OVEN TEST		[((∑ Agg. Design WT
		[(∑ Agg. Design WT.)
MASS OF TRAY & CLOTH, WS	g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF	g	CORRECTION FACT
MASS OF PAN, CLOTH & DRY CONCRETE, WD	g	(100 - P4 / 100 - P4T
TOTAL MEASURED WATER CONTENT, WT_M	lb/cy	ADJUSTED TOTAL V
(WF - WD / WF - WS) x 27 x UW		WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT_A	lb/cy	ADJUSTED MIXING
Sum of Absorbed Moistures (E)		AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW	lb/cy	ADJUSTED W/C RA

VE RETAINED #4 SIEVE, WR4 g PASSING #4 SIEVE, WP4 g % OM JMF, **P4JMF** 44.0 % OM TOTAL MIX, **P4TM** % T.) x P4JMF)+ (AVE CM / A)] T.) + (AVE CM / A)] -x 100 TOR, CF TM) WATER CONTENT, AWTM lb/cy COMPARE TO (K) WATER CONTENT, AMW lb/cy ADJUSTED W/C RATIO

((AMW) / (AVE CM / A))

ESTIMATED MIXING WATER CONTENT, MW WT_{M} - WT_{A}

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/23/2020
TIME	8:55 AM
TICKET #	11
LOT #	3
TEST #	7
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
757.6	
741.9	
174.8	
0.028	
0.005	
0.023	

DESIGN WT (OVEN DRY), (lb/cy)	1324
TOTAL MOISTURE, (lb/cy)	37
FREE MOISTURE, (lb/cy)	30
ABSORBED MOISTURE, (lb/cy)	6.62

WATER/CEMENT CALCULATION

	I.			1
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
7	116	7	3195	1360
8	116	6	3185	1360
9	124	15	3210	1355
10	134	0	3215	1360
11	136	10	3220	1355
12	136	9	3180	1355
13	136	0	3215	1350
14	132	0	3230	1355
15	132	0	3220	1350
16	128	0	3200	1350
AVE.	129.0	4.7	3207	1355
		AVE. CM	45	62

MIX DESIGN	3A21-52COL	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	220	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
2951.9	3003.9	
2894.7	2970.4	
379.9	249.2	
0.023	0.012	
0.012	0.012	
0.011	0.000	

TOTAL

1082	680			
25	8	=	70	(C)
12	0	=	42	(D)
12.98	8.16	=	27.76	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	133.7 (F)	
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	<u>139.2</u> (G)	1
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	<u>178.7</u> (H)	
TOTAL MIX WATER USED, (Ib/cy)	181.2 (I)	
(D + G)		
W/C RATIO	0.32 (J)	
(1/AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	209.0 (K)	
(E+I)		

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.9	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.2	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.8	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1376.9	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3170.8	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3069.6	_g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	220.6	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.76	_lb/cy

192.8 lb/cy

ESTIMATED MIXING WATER CONTENT, \boldsymbol{MW} WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS	<u>771.6</u> g <u>921.1</u> g
% PASSING #4, P4 WP4 / (WD-WS)	<u>54.4</u> %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>52.7</u> % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.96
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	211.8 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	184Ib/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.32 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/23/2020
TIME	2:00 PM
TICKET #	44
LOT #	3
TEST #	8
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
751	
733.4	
174.7	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION	

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
40	107	9	3195	1350
41	105	13	3180	1355
42	111	12	3200	1355
43	119	12	3205	1365
44	126	4	3205	1360
45	126	7	3215	1355
46	129	0	3200	1355
47	119	4	3225	1360
48	123	7	3215	1365
49	123	5	3210	1360
AVE.	118.8	7.3	3205	1358
		AVE. CM	45	63

MIX DESIGN	3A21-52COL	BATCH SIZE, (cy) 8 (A)	
WATER, (lb/cy)	220		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS,	(lb/cy)
SLAG, (lb/cy)		= <u>570 (B)</u>	
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
3016.1	3048.7	
2963.2	3026.6	
379.8	249.1	
0.02	0.008	
0.012	0.012	
0.008	-0.004	

TOTAL

1082	680			
22	5	=	69	(C)
9	-3	=	42	(D)
12.98	8.16	=	27.76	(E)

126.1	(F)
131.3	(G)
178.8	(H)
173.3	(I)
0.30	(J)
201.1	(K)
	131.3 178.8 173.3 0.30

UNIT WEIGHT TEST			% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE RETA
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PAS
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.9	lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT	36.2	lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.8	lb/cf	% PASSING #4 FROM JM
			% PASSING #4 FROM TO
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x P
			[(∑ Agg. Design WT.) + (A
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FACTOR,
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, WTM		lb/cy	ADJUSTED TOTAL WAT
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WTA		lb/cy	ADJUSTED MIXING WAT
Sum of Absorbed Moistures (E)		15/0y	AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RATIO

T

((AMW) / (AVE CM / A))

% PASSING #4 SIEVE	
MASS OF SAMPLE RETAINED #4 SIEVE, WR4	g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	g
(WD - WR4) - WS	
% PASSING #4, P4	%
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	%
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	—x 100
[(∑ Agg. Design WT.) + (AVE CM / A)]	X 100
CORRECTION FACTOR, CF	
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT _M	lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	lb/cy
AWT _M - E	
ADJUSTED W/C RATIO	

ESTIMATED MIXING WATER CONTENT, $\boldsymbol{M}\boldsymbol{W}$ $WT_M - WT_A$

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/23/2020
TIME	4:45PM
TICKET #	61
LOT #	3
TEST #	9
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
782.6	
767.1	
174.7	
0.026	
0.005	
0.021	

DESIGN WT (OVEN DRY), (lb/cy)	1324
TOTAL MOISTURE, (lb/cy)	34
FREE MOISTURE, (lb/cy)	28
ABSORBED MOISTURE, (lb/cy)	6.62

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
57	124	1	3215	1350
58	124	0	3185	1380
59	124	0	3195	1370
60	124	6	3225	1360
61	124	0	3215	1355
62	116	11	3195	1355
63	120	0	3205	1355
64	112	11	3210	1355
65	112	0	3180	1355
66	112	17	3205	1350
AVE.	119.2	4.6	3203	1358.5
		AVE. CM	456	61.5

MIX DESIGN	3A21-52COL	BATCH SIZE, (cy)	8	(A)
WATER, (lb/cy)	220			_
CEMENT, (lb/cy)	400			_
FLY ASH, (lb/cy)	170	TOTAL CI	EMENTITIC	US, (lb/cy)
SLAG, (lb/cy)		=	570	(B)
DESIGN W/C	0.39			

CA #1	CA #2	CA #3
3/4-	1 1/2	
3036.2	2990	
2976.2	2962.2	
379.8	249.3	
0.023	0.01	
0.012	0.012	
0.011	-0.002	

TOTAL

1082	680				
25	7		=	66	(C)
12	-1		=	39	(D)
12.98	8.16		=	27.76	(E)
	25 12	25 7 12 -1	25 7 12 -1	25 7 = 12 -1 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

123.8	(F)
128.9	(G)
181.6	(H)
167.9	_(I)
0.29	(J)
195.7	(K)
	128.9 181.6 167.9 0.29

UNIT WEIGHT TEST			% PASSING #4
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAM
MASS OF UNIT WT. BUCKET, BWT	7.7	Ib	MASS. OF SAM
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.9	Ib	(WD - WR4) - W
		_	% PASSING #4
MASS OF CONCRETE, (CBWT - BWT), CWT	36.2	lb	WP4 / (WD-WS
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.8	lb/cf	% PASSING #4
		_	% PASSING #4
MICROWAVE OVEN TEST			[((∑ Agg. Desigr
			[(∑ Agg. Design
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 -
TOTAL MEASURED WATER CONTENT, WT _M		lb/cy	ADJUSTED TO
(WF - WD / WF - WS) x 27 x UW			$WT_M X CF$
ESTIMATED ABSORBED WATER CONTENT, WTA		lb/cy	ADJUSTED MIX
Sum of Absorbed Moistures (E)			AWT _M - E
		lb/ov/	ADJUSTED W/0
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	

Τ 4 SIEVE MPLE RETAINED #4 SIEVE, WR4 g MPLE PASSING #4 SIEVE, **WP4** g ws 4, **P4** % S) 4 FROM JMF, P4JMF 44.0 % 4 FROM TOTAL MIX, **P4TM** % gn WT.) x P4JMF)+ (AVE CM / A)] -x 100 n WT.) + (AVE CM / A)] FACTOR, CF - P4TM) OTAL WATER CONTENT, AWTM lb/cy COMPARE TO (K) IXING WATER CONTENT, AMW lb/cy ADJUSTED W/C RATIO COMPARE TO (J) ((AMW) / (AVE CM / A))

 $WT_M - WT_A$

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327	
DATE	4/24/2020	
TIME	7:50 AM	
TICKET #	14	
LOT #	4	
TEST #	10	
TESTER	Mark Kosmalski	
ENGINEER	Jon Erickson	

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

Î.	1
FA #1	FA #2
Sand	
778.2	
761.4	
174.8	
0.029	
0.005	
0.024	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	38
FREE MOISTURE, (lb/cy)	32
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

	I		I	1
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
10	154	0	3215	1350
11	154	0	3215	1355
12	152	0	3195	1360
13	152	0	3190	1355
14	156	14	3230	1360
15	156	30	3200	1365
16	153	0	3200	1360
17	150	10	3210	1350
18	151	6	3215	1365
19	151	10	3210	1380
AVE.	152.9	7.0	3208	1360
		AVE. CM	45	568

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3001.9	2957.1	
2951.7	2925.8	
379.9	249.2	
0.02	0.012	
0.012	0.012	
0.008	0.000	

TOTAL

1080	679			
22	8	=	68	(C)
9	0	=	41	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	159.9	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	166.5	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	180.0	(H)
TOTAL MIX WATER USED, (Ib/cy)	207.5	(I)
(D + G)		
W/C RATIO	0.36	(J)
(1/AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	235.2	(K)
(E+I)		

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.2	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.5	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.0	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1378	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3356.4	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3241.9	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	228.1	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	lb/cy

200.4 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS	<u>829.6</u> g <u>1034.3</u> g
% PASSING #4, P4 WP4 / (WD-WS)	<u> 55.5 </u> %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>52.8</u> % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.94
ADJUSTED TOTAL WATER CONTENT, \mathbf{AWT}_{M} WT_{M} X CF	214.4 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	<u>186.7</u> lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.33 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/24/2020
TIME	11:30 AM
TICKET #	74
LOT #	4
TEST #	11
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
755.9	
739.1	
174.8	
0.03	
0.005	
0.025	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	40
FREE MOISTURE, (lb/cy)	33
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
70	147	0	3180	1355
71	147	0	3220	1350
72	147	0	3200	1360
73	146	0	3180	1350
74	146	1	3220	1375
75	146	15	3200	1360
76	146	7	3210	1370
77	147	0	3210	1360
78	147	5	3225	1365
79	147	0	3220	1375
AVE.	146.6	2.8	3206.5	1362
		AVE. CM	450	68.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3062.2	2946.3	
3001.2	2911.1	
379.8	249.4	
0.023	0.013	
0.012	0.012	
0.011	0.001	

TOTAL

1080	679			
25	9	=	74	(C)
12	1	=	46	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	149.4	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	155.6	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	175.2	(H)
TOTAL MIX WATER USED, (lb/cy)	201.6	(I)
(D + G)		
W/C RATIO	0.35	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (lb/cy)	229.3	(K)
(E+I)		

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.2	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.5	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.0	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1375	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3153.4	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3046.5	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	237.0	lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	_lb/cy

209.3 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS	<u>758.3</u> g <u>913.2</u> g
% PASSING #4, P4 WP4 / (WD-WS)	<u>54.6</u> %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>52.8</u> % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.96
ADJUSTED TOTAL WATER CONTENT, $\mathbf{AWT}_{\mathbf{M}}$ WT _M X CF	227.5 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	<u>199.8</u> lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.35 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/24/2020
TIME	3:05 PM
TICKET #	180
LOT #	4
TEST #	12
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

1	1
FA #1	FA #2
Sand	
754.3	
735.2	
174.6	
0.034	
0.005	
0.029	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	45
FREE MOISTURE, (lb/cy)	38
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
176	144	0	3225	1360
177	142	0	3215	1360
178	140	6	3220	1360
179	140	0	3200	1360
180	142	1	3210	1350
181	141	3	3220	1365
182	141	2	3200	1365
183	141	5	3220	1355
184	141	0	3215	1360
185	140	2	3175	1365
AVE.	141.2	1.9	3210	1360
		AVE. CM	45	570

MIX DESIGN	3A21-43	BATCH SIZE, (cy)	<u> 8 (</u> A)
WATER, (lb/cy)	222		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL	CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>570</u> (B)
DESIGN W/C	0.39		

1	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	3052.2	2979.7	
	2997.4	2934.9	
	379.7	249.3	
	0.021	0.017	
	0.012	0.012	
	0.009	0.005	

TOTAL

1080	679			
23	12	=	80	(C)
10	3	=	51	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	143.1 (F	;)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	149.0 (0	3)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	170.5 (H	I)
TOTAL MIX WATER USED, (lb/cy)	200.0 (I))
TOTAL MIX WATER USED, (lb/cy) (D + G)	(I))
	<u>200.0</u> (I) <u>0.35</u> (J	
(D+G)	()	
(D+G) W/C RATIO	())
(D+G) W/C RATIO (1/AVE. CM)	0.35 (J)

UNIT WEIGHT TEST		% PASSING #
VOLUME OF UNIT WEIGHT BUCKET, VOL	<u>0.25</u> ft ³	MASS OF SAM
MASS OF UNIT WT. BUCKET, BWT	7.7 lb	MASS. OF SA
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.2 lb	(WD - WR4) -
		% PASSING #
MASS OF CONCRETE, (CBWT - BWT), CWT	36.5 lb	WP4 / (WD-W
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.0 lb/cf	% PASSING #
		% PASSING #
MICROWAVE OVEN TEST		[((∑ Agg. Desi
		[(∑ Agg. Desig
MASS OF TRAY & CLOTH, WS	g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF	g	CORRECTION
MASS OF PAN, CLOTH & DRY CONCRETE, WD	g	(100 - P4 / 100
TOTAL MEASURED WATER CONTENT, \mathbf{WT}_{M}	lb/cy	ADJUSTED T
(WF - WD / WF - WS) x 27 x UW		WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT_A	lb/cy	ADJUSTED M
Sum of Absorbed Moistures (E)		AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW	lb/cy	ADJUSTED W

ESTIMATED MIXING WATER CONTENT, MW $WT_M - WT_A$

#4 SIEVE

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	9 9 %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % % — x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/25/2020
TIME	7:55 AM
TICKET #	16
LOT #	5
TEST #	13
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

ОТ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
759	
740.7	
174.8	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

	1	1	l	1
TICKET # BATCH TEMPI		TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
12	146	3	3220	1280
13	146	0	3175	1270
14	146	3	3205	1280
15	146	0	3175	1280
16	146	7	3215	1295
17	146	0	3200	1280
18	146	4	3230	1280
19	146	3	3170	1275
20	146	3	3175	1295
21	146	3	3200	1285
AVE.	146.0	2.6	3196.5	1282
		AVE. CM	447	78.5

MIX DESIGN	3A21-42	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	218	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	160	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>560</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
2984.5	3007.2	
2929.2	2972.8	
379.7	249.6	
0.022	0.013	
0.012	0.012	
0.010	0.001	

TOTAL

1087	683			
24	9	=	76	(C)
11	1	=	48	(D)
13.04	8.20	=	27.89	(E)

148.6	_(F)
154.7	(G)
169.0	(H)
202.7	(I)
0.36	(J)
230.6	(K)
	154.7 169.0 202.7 0.36

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.04	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.34	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.4	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1373.9	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3298.3	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3184	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	233.2	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, $\mathbf{WT}_{\mathbf{A}}$	27.89	lb/cy

ESTIMATED MIXING WATER CONTENT, $\boldsymbol{M}\boldsymbol{W}$ WT_M - WT_A

(E)

205.3 lb/cy

Sum of Absorbed Moistures

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS	<u>798.6</u> g <u>1011.5</u> g
% PASSING #4, P4	55.9 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	44.0 % 52.6 %
[(∑ Agg. Design WT.) + (AVE CM / A)] CORRECTION FACTOR, CF	0.93
(100 - P4 / 100 - P4TM)	0.93
ADJUSTED TOTAL WATER CONTENT, \mathbf{AWT}_{M} WT_M X CF	216.9 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	189lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.34 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/25/2020
TIME	11:20 AM
TICKET #	41
LOT #	5
TEST #	14
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
752.3	
737.6	
174.7	
0.026	
0.005	
0.021	

DESIGN WT (OVEN DRY), (lb/cy)	1330
TOTAL MOISTURE, (lb/cy)	35
FREE MOISTURE, (lb/cy)	28
ABSORBED MOISTURE, (lb/cy)	6.65

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
37	148	4	3195	1275
38	149	10	3210	1280
39	150	8	3220	1280
40	150	8	3195	1275
41	150	7	3210	1280
42	150	10	3195	1310
43	150	6	3210	1285
44	150	9	3170	1275
45	150	8	3195	1280
46	150	9	3195	1290
AVE.	149.7	7.9	3199.5	1283
		AVE. CM	448	32.5

MIX DESIGN	3A21-42	BATCH SIZE, (cy)	<u>8</u> (A)	
WATER, (lb/cy)	218			
CEMENT, (lb/cy)	400			
FLY ASH, (lb/cy)	160	TOTAL C	EMENTITIOUS, (II	b/cy)
SLAG, (lb/cy)		=	<u>560</u> (B)	
DESIGN W/C	0.39			

CA #1	CA #2	CA #3
3/4-	1 1/2	
3004.7	3042.9	
2955.3	3017.1	
379.8	249.3	
0.019	0.009	
0.012	0.012	
0.007	-0.003	

TOTAL

1087	683			
21	6	=	62	(C)
8	-2	=	34	(D)
13.04	8.20	=	27.89	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	157.6	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	164.1	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	182.6	(H)
TOTAL MIX WATER USED, (Ib/cy)	198.1	(I)
(D + G)		
W/C RATIO	0.35	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (lb/cy)	226.0	(K)
		- · ·

UNIT WEIGHT TEST			% PASS
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS C
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS.
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.04	lb	(WD - W
			% PASS
MASS OF CONCRETE, (CBWT - BWT), CWT	36.34	lb	WP4 / (
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.4	lb/cf	% PASS
			% PASS
MICROWAVE OVEN TEST			[((∑ Ago
			[(∑ Agg
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRE
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUS
(WF - WD / WF - WS) x 27 x UW			WT _M X
ESTIMATED ABSORBED WATER CONTENT, WT A		lb/cy	ADJUS
Sum of Absorbed Moistures (E)			AWT _M -
ESTIMATED MIXING WATER CONTENT, MW		_lb/cy	ADJUS

SING #4 SIEVE OF SAMPLE RETAINED #4 SIEVE, WR4 g OF SAMPLE PASSING #4 SIEVE, **WP4** g WR4) - WS SING #4, **P4** % (WD-WS) SING #4 FROM JMF, P4JMF 44.0 % SING #4 FROM TOTAL MIX, P4TM % g. Design WT.) x P4JMF)+ (AVE CM / A)] -x 100 g. Design WT.) + (AVE CM / A)] ECTION FACTOR, CF P4 / 100 - P4TM) STED TOTAL WATER CONTENT, AWTM lb/cy CF COMPARE TO (K) STED MIXING WATER CONTENT, AMW lb/cy - E ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/27/2020
TIME	8:40 AM
TICKET #	11
LOT #	6
TEST #	15
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

ОТ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
1032.3	
1008.7	
174.8	
0.028	
0.005	
0.023	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	37
FREE MOISTURE, (lb/cy)	30
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TIOKET #	ВАТСН	TEMPER	OFMENT	
TICKET #	BAICH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
7	145	2	3210	1375
8	145	1	3240	1350
9	145	1	3185	1365
10	145	1	3190	1370
11	145	0	3210	1360
12	145	2	3210	1355
13	145	0	3170	1350
14	145	0	3180	1365
15	145	5	3230	1360
16	145	2	3210	1355
AVE.	145.0	1.4	3203.5	1360.5
		AVE. CM	45	64

MIX DESIGN 3a21-43 BATCH SIZE, (cy) 8 (A) 222 WATER, (lb/cy) CEMENT, (lb/cy) 400 FLY ASH, (lb/cy) 170 TOTAL CEMENTITIOUS, (lb/cy) <u>570</u>(B) SLAG, (lb/cy) = DESIGN W/C 0.39

CA #1	CA #2	CA #3
3/4-	1 1/2	
3316	3860.2	
3239.7	3827.1	
379.8	249.2	
0.027	0.009	
0.012	0.012	
0.015	-0.003	

TOTAL

1080	679			
29	6	=	72	(C)
16	-2	=	44	(D)
12.96	8.15	=	27.72	(E)

146.4	(F)
152.4	(G)
176.9	(H)
196.4	(I)
0.34	(J)
224.1	(K)
	152.4 176.9 196.4 0.34

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.4	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.7	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.8	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1373.7	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3243.3	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3132.8	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	234.3	lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	_lb/cy

206.6 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	834.6 g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	924.5 g
(WD - WR4) - WS	0
% PASSING #4, P4	52.6 %
	<u> </u>
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	52.7 %
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	100
[(∑ Agg. Design WT.) + (AVE CM / A)]	—x 100
CORRECTION FACTOR, CF	1
	<u> </u>
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWTM	234.3 lb/cv
, 	
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	206.6 lb/cy
AWT _M - E	
ADJUSTED W/C RATIO	0.36
((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/27/2020
TIME	12:40 PM
TICKET #	51
LOT #	6
TEST #	16
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

ОТ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
949.1	
926.6	
175	
0.03	
0.005	
0.025	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

1322	
40	
33	
6.61	

WATER/CEMENT CALCULATION

1		1		
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
47	140	4	3205	1360
48	140	4	3220	1355
49	141	6	3215	1360
50	141	5	3300	1370
51	142	4	3205	1365
52	142	2	3220	1355
53	142	2	3225	1370
54	142	2	3210	1365
55	142	2	3200	1390
56	142	3	3175	1370
AVE.	141.4	3.4	3217.5	1366
		AVE. CM	458	33.5

MIX DESIGN	3a21-43	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3136.1	3654.9	
3085.6	3628.9	
380.4	249.3	
0.019	0.008	
0.012	0.012	
0.007	-0.004	

TOTAL

1080	679				
21	5		=	66	(C)
8	-3		=	38	(D)
12.96	8.15		=	27.72	(E)
	21 8	21 5 8 -3	21 5 8 -3	21 5 = 8 -3 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

144.8	(F)
150.8	(G)
183.6	(H)
188.8	(I)
0.33	(J)
216.5	(K)
	150.8 183.6 188.8 0.33

UNIT WEIGHT TEST			% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE RETAINED #4 SIEVE, WR4
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PASSING #4 SIEVE, WP4
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT		lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT		lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW		Ib/cf	% PASSING #4 FROM JMF, P4JMF
			% PASSING #4 FROM TOTAL MIX, P4TM
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]
			[(∑ Agg. Design WT.) + (AVE CM / A)]
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FACTOR, CF
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, \mathbf{WT}_{M}		lb/cy	ADJUSTED TOTAL WATER CONTENT, AWT _M
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WTA		lb/cy	ADJUSTED MIXING WATER CONTENT, AMW
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RATIO
WT _M - WT _A			((AMW) / (AVE CM / A))

COMPARE TO (K)

g

__g

%

44.0 %

-x 100

%

lb/cy

lb/cy

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/27/2020
TIME	3:30 AM
TICKET #	89
LOT #	6
TEST #	17
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
903	
879.3	
175.1	
0.034	
0.005	
0.029	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	45
FREE MOISTURE, (lb/cy)	38
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
85	142	3	3185	1360
86	142	8	3230	1355
87	142	6	3230	1365
88	142	6	3210	1350
89	142	9	3230	1355
90	144	5	3200	1350
91	144	3	3180	1350
92	144	6	3205	1355
93	144	9	3210	1355
94	144	4	3180	1375
AVE.	143.0	5.9	3206	1357
		AVE. CM	45	63

MIX DESIGN	3a21-43	BATCH SIZE, (cy)	<u>8</u> (A)
WATER, (lb/cy)	222		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL C	EMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>570</u> (B)
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
3268.7	3342.9	
3212.4	3319.1	
380.2	349.5	
0.02	0.008	
0.012	0.012	
0.008	-0.004	

TOTAL

1080	679			
22	5	=	72	(C)
9	-3	=	44	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	148.9	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	155.0	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	176.9	(H)
TOTAL MIX WATER USED, (lb/cy)	199.0	(I)
TOTAL MIX WATER USED, (Ib/cy) (D + G)	199.0	(I)
		(I) _(J)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.35	_(J)

UNIT WEIGHT TEST	% PASSING #4 SIEVE		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE RETA
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PASS
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT		lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT		lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW		lb/cf	% PASSING #4 FROM JM
			% PASSING #4 FROM TO
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x P
			[(∑ Agg. Design WT.) + (A
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FACTOR,
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, $\mathbf{WT}_{\mathbf{M}}$		lb/cy	ADJUSTED TOTAL WATE
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, $\mathbf{WT}_{\mathbf{A}}$		lb/cy	ADJUSTED MIXING WAT
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RATIO

ESTIMATED MIXING WATER CONTENT, MW $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	g g %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>%</u> -x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, \mathbf{AWT}_{M} WT _M X CF	Ib/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327		
DATE	4/29/2020		
TIME	8:55 AM		
TICKET #	28		
LOT #	7		
TEST #	18		
TESTER	Mark Kosmalski		
ENGINEER	Jon Erickson		

BATCH REPORT

ОТ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

i	1
FA #1	FA #2
Sand	
741.4	
717.1	
175	
0.045	
0.005	
0.040	

DESIGN WT (OVEN DRY), (lb/cy)
TOTAL MOISTURE, (lb/cy)
FREE MOISTURE, (lb/cy)
ABSORBED MOISTURE, (lb/cy)

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
24	115	0	3190	1350
25	113	0	3230	1355
26	111	3	3220	1360
27	111	0	3225	1355
28	111	2	3180	1355
29	111	3	3195	1360
30	111	3	3225	1350
31	111	2	3200	1350
32	111	3	3220	1355
33	111	0	3180	1355
AVE.	111.6	1.6	3206.5	1354.5
		AVE. CM	45	61

CA #1	CA #2	CA #3
3/4-	1 1/2	
2960.8	3029.9	
2893.4	2982.8	
380.3	249.3	
0.027	0.017	
0.012	0.012	
0.015	0.005	

TOTAL

1080	679			
29	12	=	100	(C)
16	3	=	72	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	113.2	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	117.9	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	149.9	(H)
TOTAL MIX WATER USED, (lb/cy)	189.9	(I)
TOTAL MIX WATER USED, (lb/cy) (D + G)	189.9	(I)
		_(l)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.33	_(J)

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.3	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.2	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1374	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3109.4	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3012.8	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	218.2	_Ib/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	_lb/cy

190.5 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4. P4	755.2 g 883.6 g 53.9 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>52.7</u> % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.98
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	213.8 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	<u>186.1</u> lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.33 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/29/2020
TIME	11:35 AM
TICKET #	69
LOT #	7
TEST #	19
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION			
WT OF SAMPLE + PAN (WET), (g)			
WT OF SAMPLE + PAN (DRY), (g)			
WT OF PAN, (g)			
TOTAL MOISTURE FACTOR			
ABSORPTION FACTOR			
FREE MOISTURE FACTOR			

FA #1	FA #2
Sand	
775	
751.7	
174.8	
0.04	
0.005	
0.035	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

	DATOU	TEMPER	OFMENIT	
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
65	117	4	3190	1360
66	114	9	3190	1350
67	117	10	3220	1360
68	121	5	3210	1350
69	121	0	3195	1350
70	121	5	3170	1355
71	122	2	3210	1350
72	122	7	3215	1355
73	122	4	3225	1375
74	122	4	3230	1355
AVE.	119.9	5.0	3205.5	1356
		AVE. CM	456	61.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
2913.4	2951.3	
2857.4	2901.2	
380.1	249.4	
0.023	0.019	
0.012	0.012	
0.011	0.007	

TOTAL

1080	679			
25	13	=	91	(C)
12	5	=	63	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	124.9	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	130.1	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	158.5	(H)
TOTAL MIX WATER USED, (lb/cy)	193.1	(I)
(D + G)		
W/C RATIO	0.34	(J)
(1/AVE. CM)		
TOTAL WATER IN CONCRETE, (lb/cy)	220.8	(K)
(E+I)		
$(= \cdot)$		

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.3	lb
		_
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.2	lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1374.5	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3021.3	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	2922.2	g
TOTAL MEASURED WATER CONTENT, \mathbf{WT}_{M}	235.9	lb/cy
(WF - WD / WF - WS) x 27 x UW		
ESTIMATED ABSORBED WATER CONTENT, WT A	27.72	lb/cy
Sum of Absorbed Moistures (E)		

208.2 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	739.4 g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	808.3 g
(WD - WR4) - WS	
% PASSING #4, P4	52.2 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	52.7 %
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	
[(∑ Agg. Design WT.) + (AVE CM / A)]	— x 100
CORRECTION FACTOR, CF	1.01
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT _M	238.3 lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	210.6 lb/cy
AWT _M - E	
ADJUSTED W/C RATIO	0.37
((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/29/2020
TIME	3:35 PM
TICKET #	91
LOT #	7
TEST #	20
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
776.9	
753.6	
174.8	
0.04	
0.005	
0.035	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	53
FREE MOISTURE, (lb/cy)	46
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

1	1			
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
87	121	0	3215	1355
88	119	13	3210	1370
89	120	21	3180	1360
90	118	18	3210	1365
91	123	12	3185	1365
92	125	13	3185	1365
93	125	13	3205	1370
94	127	12	3195	1350
95	128	11	3205	1350
96	129	13	3230	1370
AVE.	123.5	12.6	3202	1362
		AVE. CM	45	64

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3052.6	2996.2	
2993.1	2947.5	
380	249.5	
0.023	0.018	
0.012	0.012	
0.011	0.006	

TOTAL

1080	679			
25	12	=	90	(C)
12	4	=	62	(D)
12.96	8.15	=	27.72	(E)

136.1	(F)
141.7	(G)
159.6	(H)
203.7	(I)
0.36	(J)
231.4	(K)
	141.7 159.6 203.7 0.36

UNIT WEIGHT TEST			% PASSING #4
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	_ft ³	MASS OF SAMP
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAM
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44	lb	(WD - WR4) - W
			% PASSING #4,
MASS OF CONCRETE, (CBWT - BWT), CWT	36.3	lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.2	lb/cf	% PASSING #4
			% PASSING #4
MICROWAVE OVEN TEST			[((∑ Agg. Design
			[(∑ Agg. Design
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION F
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 -
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUSTED TOT
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT A		lb/cy	ADJUSTED MIX
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C

4 SIEVE

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	g g %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ</u> Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(<u>Σ</u> Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/30/2020
TIME	9:35 AM
TICKET #	9
LOT #	21
TEST #	21
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
754.9	
734.4	
174.8	
0.037	
0.005	
0.032	

DESIGN WT (OVEN DRY), (lb/cy)	1310
TOTAL MOISTURE, (lb/cy)	48
FREE MOISTURE, (lb/cy)	42
ABSORBED MOISTURE, (lb/cy)	6.55

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
5	104	12	3350	1445
6	105	17	3335	1435
7	105	19	3355	1445
8	110	15	3345	1435
9	110	4	3330	1435
10	111	9	3335	1435
11	113	10	3330	1435
12	114	8	3365	1435
13	116	7	3345	1430
14	116	6	3370	1450
AVE.	110.4	10.7	3346	1438
		AVE. CM	47	/84

MIX DESIGN	3A41-53COL	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	420	
FLY ASH, (lb/cy)	180	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>600</u> (B)
DESIGN W/C	0.37	

	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	3062.2	2969.8	
	3008.2	2929.2	
	379.9	249.5	
	0.021	0.015	
	0.012	0.012	
	0.009	0.003	

TOTAL

1070	676				
22	10		=	80	(C)
10	2		=	54	(D)
12.84	8.11		=	27.50	(E)
	22 10	22 10 10 2	22 10 10 2	22 10 = 10 2 =	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	121.1	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	126.1	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	177.9	(H)
TOTAL MIX WATER USED, (lb/cy)	180.1	(I)
TOTAL MIX WATER USED, (lb/cy) (D + G)	180.1	(I)
	180.1 0.30	(I) _(J)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.30	_(J)

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	42.9	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	35.2	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	140.8	lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1373.8	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3142.2	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3035.6	g
TOTAL MEASURED WATER CONTENT, WTM	229.2	lb/cy
(WF - WD / WF - WS) x 27 x UW		
ESTIMATED ABSORBED WATER CONTENT, WTA	27.5	lb/cy
Sum of Absorbed Moistures (E)		

201.7 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WRA	4 731.2g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	930.6 g
(WD - WR4) - WS	
% PASSING #4, P4	56.0 %
WP4 / (WD-WS)	
× ,	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	53.2 %
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]
[(∑ Agg. Design WT.) + (AVE CM / A)]	X 100
CORRECTION FACTOR, CF	0.94
(100 - P4 / 100 - P4TM)	
· · · · ·	
ADJUSTED TOTAL WATER CONTENT, AWT _N	215.4 lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	187.9 lb/cy
AWT _M - E	·
ADJUSTED W/C RATIO	0.31
((AMW) / (AVE CM / A))	COMPARE TO (J)
	(-)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/29/2020
TIME	1:45 PM
TICKET #	19
LOT #	8
TEST #	22
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

ОТ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
770.7	
749.3	
174.8	
0.037	
0.005	
0.032	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

	1			
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
15	116	6	3365	1440
16	117	1	3360	1430
17	117	5	3350	1430
18	117	5	3355	1430
19	117	6	3330	1430
20	117	7	3380	1430
21	117	4	3335	1440
22	113	6	3375	1450
23	113	23	3380	1435
24	124	15	3360	1430
AVE.	116.8	7.8	3359	1434.5
		AVE. CM	479	93.5

MIX DESIGN	3A41-53COL	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	420	
FLY ASH, (lb/cy)	180	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>600</u> (B)
DESIGN W/C	0.37	

1	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	3061.6	3009.3	
	3003.1	2962.6	
	379.9	249.4	
	0.022	0.017	
	0.012	0.012	
	0.010	0.005	

TOTAL

1070	676			
24	11	=	83	(C)
11	3	=	56	(D)
12.84	8.11	=	27.50	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	124.6	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	129.7	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	176.4	(H)
TOTAL MIX WATER USED, (lb/cy)	185.7	(I)
TOTAL MIX WATER USED, (Ib/cy) (D + G)	185.7	_(I)
		_(l)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.31	_(J)

UNIT WEIGHT TEST			% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE RETAINED #4 SIEVE, WR4
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PASSING #4 SIEVE, WP4
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT		lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT		lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW		Ib/cf	% PASSING #4 FROM JMF, P4JMF
			% PASSING #4 FROM TOTAL MIX, P4TM
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]
			[(∑ Agg. Design WT.) + (AVE CM / A)]
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FACTOR, CF
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, \mathbf{WT}_{M}		lb/cy	ADJUSTED TOTAL WATER CONTENT, AWT _M
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WTA		lb/cy	ADJUSTED MIXING WATER CONTENT, AMW
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RATIO
WT _M - WT _A			((AMW) / (AVE CM / A))

COMPARE TO (K)

g

g

%

44.0 %

-x 100

%

lb/cy

lb/cy

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/1/2020
TIME	8:45 AM
TICKET #	17
LOT #	9
TEST #	23
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
768.4	
745.3	
168.7	
0.04	
0.005	
0.035	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	53
FREE MOISTURE, (lb/cy)	46
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
13	137	5	3210	1360
14	137	3	3220	1365
15	137	5	3205	1380
16	137	4	3230	1375
17	137	2	3210	1350
18	137	5	3195	1350
19	137	0	3215	1355
20	135	0	3210	1355
21	134	2	3185	1350
22	134	0	3185	1355
AVE.	136.2	2.6	3206.5	1359.5
		AVE. CM	45	566

MIX DESIGN 3A21-43 BATCH SIZE, (cy) 8 (A) WATER, (lb/cy) 222 400 CEMENT, (lb/cy) FLY ASH, (lb/cy) 170 TOTAL CEMENTITIOUS, (lb/cy) SLAG, (lb/cy) = DESIGN W/C 0.39

CA #1	CA #2	CA #3
3/4-	1 1/2	
3036.6	3038.2	
2977.6	2997.3	
380	249.2	
0.023	0.015	
0.012	0.012	
0.011	0.003	

TOTAL

1080	679			
25	10	=	88	(C)
12	2	=	60	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	138.8	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	144.5	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	161.6	(H)
TOTAL MIX WATER USED, (lb/cy)	204.5	(I)
TOTAL MIX WATER USED, (Ib/cy) (D + G)	204.5	(I)
		_(l)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.36	_(J)

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.85	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.15	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.6	lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1372	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3105.6	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3006.2	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	223.9	lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT_A Sum of Absorbed Moistures (E)	27.72	_lb/cy

196.2 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4	<u>802.3</u> g <u>831.9</u> g 50.9 %
WP4 / (WD-WS)	76
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>52.8</u> % — x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	1.04
ADJUSTED TOTAL WATER CONTENT, $\mathbf{AWT}_{\mathbf{M}}$ WT _M X CF	232.9 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	1b/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.36 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/1/2020
TIME	11:40 AM
TICKET #	39
LOT #	9
TEST #	24
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
769.3	
748.2	
168.2	
0.036	
0.005	
0.031	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	48
FREE MOISTURE, (lb/cy)	41
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
35	135	9	3220	1360
36	136	4	3180	1355
37	136	8	3210	1370
38	137	4	3210	1365
39	137	10	3205	1350
40	136	14	3180	1360
41	141	15	3170	1365
42	142	16	3230	1375
43	144	16	3210	1360
44	146	9	3180	1360
AVE.	139.0	10.5	3199.5	1362
		AVE. CM	456	61.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy)	<u> 8 (</u> A)
WATER, (lb/cy)	222		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL C	EMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>570</u> (B)
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
3108.6	3054.6	
3048.6	3016.7	
379.6	249	
0.022	0.014	
0.012	0.012	
0.010	0.002	

TOTAL

1080	679			
24	10	=	82	(C)
11	1	=	53	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	149.5	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	155.7	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	168.1	(H)
TOTAL MIX WATER USED, (Ib/cy)	208.7	(I)
(D + G)		
W/C RATIO	0.37	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	236.4	(K)
(E+I)		

UNIT WEIGHT TEST		% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25 ft ³	MASS OF SAMPLE RETA
MASS OF UNIT WT. BUCKET, BWT	<u>7.7</u> lb	MASS. OF SAMPLE PAS
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.85 lb	(WD - WR4) - WS
		% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT	<u>36.15</u> lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.6 lb/c	f % PASSING #4 FROM JM
		% PASSING #4 FROM TO
MICROWAVE OVEN TEST		[((∑ Agg. Design WT.) x P
		[(∑ Agg. Design WT.) + (A
MASS OF TRAY & CLOTH, WS	g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF	g	CORRECTION FACTOR,
MASS OF PAN, CLOTH & DRY CONCRETE, WD	g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, \mathbf{WT}_{M}	lb/c	y ADJUSTED TOTAL WAT
(WF - WD / WF - WS) x 27 x UW		WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT A	lb/c	y ADJUSTED MIXING WAT
Sum of Absorbed Moistures (E)		AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW	lb/c	y ADJUSTED W/C RATIO

IEVE E RETAINED #4 SIEVE, WR4 g LE PASSING #4 SIEVE, **WP4** g ۷4 % ROM JMF, P4JMF 44.0 % ROM TOTAL MIX, **P4TM** % NT.) x P4JMF)+ (AVE CM / A)] -x 100 VT.) + (AVE CM / A)] ACTOR, CF P4TM) AL WATER CONTENT, AWTM lb/cy COMPARE TO (K) NG WATER CONTENT, AMW lb/cy

((AMW) / (AVE CM / A))

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/1/2020
TIME	3:35 PM
TICKET #	60
LOT #	9
TEST #	25
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
740.7	
719.2	
168.4	
0.039	
0.005	
0.034	

DESIGN WT (OVEN DRY), (lb/cy)	1296
TOTAL MOISTURE, (lb/cy)	51
FREE MOISTURE, (lb/cy)	44
ABSORBED MOISTURE, (lb/cy)	6.48

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
56	157	6	3350	1435
57	157	7	3380	1440
58	156	10	3345	1445
59	156	8	3360	1435
60	156	7	3385	1445
61	156	10	3380	1440
62	156	12	3345	1450
63	156	8	3385	1440
64	156	16	3385	1455
65	158	13	3375	1440
AVE.	156.4	9.7	3369	1442.5
		AVE. CM	48	11.5

MIX DESIGN	3A41-49	BATCH SIZE, (cy)	<u> </u>
WATER, (lb/cy)	234		
CEMENT, (lb/cy)	420		
FLY ASH, (lb/cy)	180	TOTAL	CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>600</u> (B)
DESIGN W/C	0.39		

1	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	2951.4	3030.7	
	2897.7	2986.3	
	379.9	249.1	
	0.021	0.016	
	0.012	0.012	
	0.009	0.004	

TOTAL

1059	666			
22	11	=	84	(C)
10	3	=	57	(D)
12.71	7.99	=	27.18	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	166.1	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	173.0	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	176.3	(H)
TOTAL MIX WATER USED, (Ib/cy)	230.0	(I)
(D + G)		
W/C RATIO	0.38	(J)
(1/AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	257.2	(K)
(E+I)		

UNIT WEIGHT TEST			% PASSING #4
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAM
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAM
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.85	lb	(WD - WR4) - V
		_	% PASSING #4
MASS OF CONCRETE, (CBWT - BWT), CWT	36.15	lb	WP4 / (WD-WS
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.6	lb/cf	% PASSING #4
UNIT WIT OF CONCRETE, CWITT VOL, CW	144.0		% PASSING #4
MICROWAVE OVEN TEST			[((∑ Agg. Desig
MICROWAVE OVEN TEST			[(∑ Agg. Design [(∑ Agg. Design
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100
TOTAL MEASURED WATER CONTENT, WTM		lb/cy	ADJUSTED TO
$(WF - WD / WF - WS) \times 27 \times UW$		_ib/cy	WT _M X CF
(WF - WD / WF - WS) x 2/ x 0W			
ESTIMATED ABSORBED WATER CONTENT, WTA		lb/cy	ADJUSTED MI
Sum of Absorbed Moistures (E)			AWT _M - E
(-)			, wi
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W
			····

#4 SIEVE

T

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	g g %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>%</u> x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/2/2020
TIME	7:55 AM
TICKET #	30
LOT #	10
TEST #	26
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
772.9	
750.9	
168.5	
0.038	
0.005	
0.033	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	50
FREE MOISTURE, (lb/cy)	44
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
26	136	4	3225	1380
27	136	3	3215	1370
28	136	2	3215	1355
29	136	3	3195	1350
30	136	4	3215	1350
31	136	3	3205	1370
32	136	2	3190	1350
33	136	2	3225	1360
34	137	2	3220	1370
35	137	1	3210	1355
AVE.	136.2	2.6	3211.5	1361
		AVE. CM	457	72.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	3082	3126.5	
	3022.9	3101.6	
	379.8	249.2	
	0.022	0.009	
	0.012	0.012	
	0.010	-0.003	

TOTAL

1080	679			
24	6	=	80	(C)
11	-2	=	53	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)	
(AVE. BATCH WATER + AVE. TEMPER WATER)	138.8 (F)
ACTUAL BATCH WATER USED, (lb/cy)	
((F x 8.33) / A)	144.5 (G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)	
(((AVE. CM * 0.40) - D)*A) / 8.33))	168.7 (H)
TOTAL MIX WATER USED, (lb/cy)	<u>197.5</u> (I)
(D + G)	
W/C RATIO	0.35 (J)
(I / AVE. CM)	
TOTAL WATER IN CONCRETE, (lb/cy)	225.2 (K)
	. ,
(E+I)	、,

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.25	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.55	_lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.2	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1370	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3176.5	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3064	_g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	245.8	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	_lb/cy

_____18.1 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	<u>761.1</u> g <u>932.9</u> g <u>55.1</u> %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(∑ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>52.8</u> % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.95
ADJUSTED TOTAL WATER CONTENT, $\mathbf{AWT}_{\mathbf{M}}$ WT _M X CF	233.5 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	1b/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.36 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327	
DATE	5/2/2020	
TIME	10:30 AM	
TICKET #	122	
LOT #	10	
TEST #	27	
TESTER	Mark Kosmalski	
ENGINEER	Jon Erickson	

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
779.3	
755.1	
168.6	
0.041	
0.005	
0.036	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	54
FREE MOISTURE, (lb/cy)	48
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
	` '		()	()
118	128	4	3215	1370
119	128	6	3220	1360
120	128	8	3210	1355
121	128	3	3215	1355
122	128	5	3200	1360
123	128	8	3200	1350
124	128	4	3235	1355
125	130	3	3220	1365
126	130	3	3220	1375
127	130	9	3215	1385
AVE.	128.6	5.3	3215	1363
		AVE. CM	45	578

MIX DESIGN	3A21-43	BATCH SIZE, (cy)	<u> 8 (</u> A)
WATER, (lb/cy)	222		
CEMENT, (lb/cy)	400		
FLY ASH, (lb/cy)	170	TOTAL	CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>570</u> (B)
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
3099.3	3077.8	
3039.4	3022.1	
379.9	249	
0.023	0.02	
0.012	0.012	
0.011	0.008	

TOTAL

1080	679			
25	14	=	93	(C)
12	5	=	65	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	133.9	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	139.4	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	157.4	(H)
TOTAL MIX WATER USED, (lb/cy)	204.4	(I)
(D + G)		
W/C RATIO	0.36	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	232.1	(K)
(E+I)		

VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.25	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.55	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.2	lb/cf
MICROWAVE OVEN TEST MASS OF TRAY & CLOTH, WS MASS OF TRAY, CLOTH & WET CONCRETE, WF MASS OF PAN, CLOTH & DRY CONCRETE, WD	1369.9 3189.7 3085.2	g g

TOTAL MEASURED WATER CONTENT, $\mathbf{WT}_{\mathbf{M}}$	226.7
(WF - WD / WF - WS) x 27 x UW	
ESTIMATED ABSORBED WATER CONTENT, $\mathbf{WT}_{\mathbf{A}}$	27.72
Sum of Absorbed Moistures (E)	

ESTIMATED MIXING WATER CONTENT, MW $WT_M - WT_A$

% PASSING #4 SIEVE

lb/cy

lb/cy

199 lb/cy

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	<u>791.2</u> g <u>924.1</u> g <u>53.9</u> %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((<u>Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]</u> [(<u>Σ Agg. Design WT.) + (AVE CM / A)]</u>	<u>44.0</u> % <u>52.8</u> % x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.98
ADJUSTED TOTAL WATER CONTENT, \mathbf{AWT}_{M} WT _M X CF	222.2 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	194.5lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.34 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327	
DATE	5/4/2020	
TIME	7:42 AM	
TICKET #	7	
LOT #	11	
TEST #	28	
TESTER	Mark Kosmalski	
ENGINEER	Jon Erickson	

BATCH REPORT

nn

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
1291.4	
1253.5	
168	
0.035	
0.005	
0.030	

DESIGN WT (OVEN DRY), (lb/cy)
TOTAL MOISTURE, (lb/cy)
FREE MOISTURE, (lb/cy)
ABSORBED MOISTURE, (lb/cy)

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
3	139	6	3175	1360
4	139	9	3195	1355
5	142	8	3225	1360
6	144	4	3190	1365
7	145	0	3200	1350
8	144	0	3175	1360
9	144	0	3185	1355
10	143	0	3170	1365
11	143	1	3185	1355
12	143	4	3210	1355
AVE.	142.6	3.2	3191	1358
AVE. C		AVE. CM	45	549

MIX DESIGN	3a21-43	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3100.2	3170.4	
3042.3	3144.7	
380.5	265	
0.022	0.009	
0.012	0.012	
0.010	-0.003	

TOTAL

1080	679			
24	6	=	76	(C)
11	-2	=	49	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	145.8	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	151.8	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	171.4	(H)
TOTAL MIX WATER USED, (lb/cy)	200.8	(I)
(D + G)		
W/C RATIO	0.35	(J)
(1/AVE. CM)		
TOTAL WATER IN CONCRETE, (lb/cy)	228.5	_(K)
(E+I)		

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.3	_lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.2	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1369.7	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3195.6	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3091.2	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	224.2	lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	_lb/cy

196.5 lb/cy

ESTIMATED MIXING WATER CONTENT, MW

 $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	808.8 g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	912.7 g
(WD - WR4) - WS	
% PASSING #4, P4	53.0 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	<u> </u>
,	52.7 %
$[((\sum Agg. Design WT.) \times P4JMF)+ (AVE CM / A)]$	—x 100
[(∑ Agg. Design WT.) + (AVE CM / A)]	
CORRECTION FACTOR, CF	0.99
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWTM	222 lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	194.3 lb/cy
AWT _M - E	,
ADJUSTED W/C RATIO	0.34
((AMW) / (AVE CM / A))	COMPARE TO (J)
•••••••••••••••••••••••••••••••••••••••	()

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/4/2020
TIME	11:00 AM
TICKET #	22
LOT #	11
TEST #	29
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

D O T

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
973.8	
948.8	
168.2	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	42
FREE MOISTURE, (lb/cy)	36
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
18	145	0	3170	1355
19	144	0	3200	1360
20	144	0	3190	1350
21	141	3	3215	1350
22	141	5	3190	1350
23	140	21	3210	1355
24	145	19	3180	1355
25	149	13	3175	1350
26	149	12	3195	1350
27	152	6	3185	1365
AVE.	145.0	7.9	3191	1354
		AVE. CM	45	545

MIX DESIGN	3a21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

ĺ	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	2941.1	3036.1	
	2886.4	3009.5	
	380.3	264.9	
	0.022	0.01	
	0.012	0.012	
	0.010	-0.002	

TOTAL

1080	679			
24	7	=	73	(C)
11	-1	=	46	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	152.9	(F)
ACTUAL BATCH WATER USED, (Ib/cy)		
((F x 8.33) / A)	159.2	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	174.1	(H)
TOTAL MIX WATER USED, (lb/cy)	205.2	(I)
(D + G)		
W/C RATIO	0.36	(J)
(1/AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	232.9	_(K)
(E+I)		

UNIT WEIGHT TEST			% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE RETAINED #4 SIEVE, WR4
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PASSING #4 SIEVE, WP4
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT		lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT		lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW		lb/cf	% PASSING #4 FROM JMF, P4JMF
			% PASSING #4 FROM TOTAL MIX, P4TM
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]
			[(∑ Agg. Design WT.) + (AVE CM / A)]
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FACTOR, CF
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUSTED TOTAL WATER CONTENT, AWT_M
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WTA		lb/cy	ADJUSTED MIXING WATER CONTENT, AMW
Sum of Absorbed Moistures (E)		_ `	AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RATIO
WT _M - WT _A			((AMW) / (AVE CM / A))

COMPARE TO (K)

g

g

_%

%

lb/cy

lb/cy

44.0 %

-x 100

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/4/2020
TIME	3:00 PM
TICKET #	47
LOT #	11
TEST #	30
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

D O T

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
1127.6	
1098.1	
168.1	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
43	142	3	3185	1355
44	142	3	3185	1365
45	142	3	3220	1350
46	147	18	3205	1350
47	151	15	3195	1350
48	153	7	3205	1360
49	153	16	3190	1365
50	153	11	3220	1350
51	153	11	3170	1365
52	153	10	3210	1370
AVE.	148.9	9.7	3198.5	1358
		AVE. CM	455	56.5

1	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	2973.1	3243.8	
	2914.8	3217.1	
	380.3	265.1	
	0.023	0.009	
	0.012	0.012	
	0.011	-0.003	

1080	679			
25	6	=	73	(C)
12	-2	=	46	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	158.6	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	165.1	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	174.6	(H)
TOTAL MIX WATER USED, (Ib/cy)	211.1	(I)
(D + G)		
W/C RATIO	0.37	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	238.8	_(K)
(E+I)		

UNIT WEIGHT TEST			% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE RETAINED #4
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE PASSING #4
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT		lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT		lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW		lb/cf	% PASSING #4 FROM JMF, P4JM
			% PASSING #4 FROM TOTAL MIX
MICROWAVE OVEN TEST			[((∑ Agg. Design WT.) x P4JMF)+
			[(∑ Agg. Design WT.) + (AVE CM /
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FACTOR, CF
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUSTED TOTAL WATER CON
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT A		lb/cy	ADJUSTED MIXING WATER CON
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RATIO

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	9 9 %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % % — x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, $\mathbf{AWT}_{\mathbf{M}}$ WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	4/5/2020
TIME	8:45 AM
TICKET #	41
LOT #	12
TEST #	31
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

D O T

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
775.7	
753.8	
167.5	
0.037	
0.005	
0.032	

0.25

7.7

43.97

36.27

145.1 lb/cf

ft³

lb

lb

lb

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	49
FREE MOISTURE, (lb/cy)	42
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

			1	1
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
37	149	3	3190	1365
38	149	3	3205	1370
39	149	0	3220	1355
40	149	0	3220	1360
41	147	2	3205	1355
42	146	0	3200	1350
43	145	0	3175	1355
44	145	4	3190	1365
45	145	3	3225	1370
46	145	7	3225	1370
AVE.	146.9	2.2	3205.5	1361.5
		AVE. CM	45	67

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570 (</u> B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3090	2978	
3046.6	2955.1	
380.6	263.8	
0.016	0.009	
0.012	0.012	
0.004	-0.003	

TOTAL

1080	679			
17	6	=	72	(C)
4	-2	=	44	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	149.1	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	155.3	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	177.0	(H)
TOTAL MIX WATER USED, (lb/cy)	199.3	(I)
TOTAL MIX WATER USED, (Ib/cy) (D + G)	199.3	(I)
	199.3 0.35	_(l) _(J)
(D+G)		
(D+G) W/C RATIO		
(D+G) W/C RATIO (1/AVE. CM)	0.35	_(J)

VOLUME OF UNIT WEIGHT BUCKET, VOL MASS OF UNIT WT. BUCKET, BWT MASS OF UNIT WT. BUCKET & CONCRETE, CBWT
MASS OF CONCRETE, (CBWT - BWT), CWT
UNIT WT. OF CONCRETE, CWT / VOL, UW

MICROWAVE OVEN TEST

UNIT WEIGHT TEST

MASS OF TRAY & CLOTH, WS	1367.9	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3133.2	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3027.2	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	235.2	lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	lb/cy
ESTIMATED MIXING WATER CONTENT, MW	207.5	lb/cy

ESTIMATED MIXING WATER CONTENT, MW $WT_M - WT_A$

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	780.1 g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	879.2 g
(WD - WR4) - WS	
% PASSING #4, P4	53.0 %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	52.8 %
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	—x 100
[(∑ Agg. Design WT.) + (AVE CM / A)]	X 100
CORRECTION FACTOR, CF	0.99
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT _M	232.8 lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	205.1 lb/cy
AWT _M - E	
ADJUSTED W/C RATIO	0.36
((AMW) / (AVE CM / A))	COMPARE TO (J)
	()

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/5/2020
TIME	12:50PM
TICKET #	100
LOT #	12
TEST #	32
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

nn

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
769.3	
749.2	
167.1	
0.035	
0.005	
0.030	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	46
FREE MOISTURE, (lb/cy)	40
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
96	142	8	3215	1355
97	144	11	3170	1370
98	144	8	3220	1365
99	144	9	3230	1355
100	144	7	3215	1355
101	144	6	3215	1365
102	144	3	3230	1360
103	144	0	3185	1350
104	144	3	3210	1355
105	144	10	3225	1350
AVE.	143.8	6.5	3211.5	1358
		AVE. CM	450	69.5

MIX DESIGN	3A21-43	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3179.3	3035.2	
3122.8	3011.9	
380.5	263.8	
0.021	0.008	
0.012	0.012	
0.009	-0.004	

TOTAL

1080	679			
23	5	=	74	(C)
10	-3	=	47	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	150.3	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	156.5	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	174.3	(H)
TOTAL MIX WATER USED, (lb/cy)	203.5	(I)
(D + G)		
(D+G) W/C RATIO	0.36	(J)
	0.36	_(J)
W/C RATIO	0.36	_(J) _(K)
W/C RATIO (1/ AVE. CM)		

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.97	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.27	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.1	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1367.3	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3079.7	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	2982	_g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	223.5	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.72	_lb/cy

195.8 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	801.3 g 813.4 g 50.4 %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	44.0 % 52.8 %
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	1.05
ADJUSTED TOTAL WATER CONTENT, $\mathbf{AWT}_{\mathbf{M}}$ WT _M X CF	234.7 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	1b/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.36 COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/5/2020
TIME	3:25 PM
TICKET #	126
LOT #	12
TEST #	33
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

m

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

1	
FA #1	FA #2
Sand	
773.5	
751	
167.1	
0.039	
0.005	
0.034	

DESIGN WT (OVEN DRY), (lb/cy)	1322
TOTAL MOISTURE, (lb/cy)	52
FREE MOISTURE, (lb/cy)	45
ABSORBED MOISTURE, (lb/cy)	6.61

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
122	145	0	3215	1360
123	143	4	3200	1380
124	144	5	3230	1375
125	144	1	3225	1350
126	144	3	3215	1355
127	144	2	3220	1380
128	144	16	3230	1350
129	145	10	3185	1350
130	150	20	3225	1350
131	152	20	3200	1355
AVE.	145.5	8.1	3214.5	1360.5
		AVE. CM	45	575

MIX DESIGN	3A21-43	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	222	
CEMENT, (lb/cy)	400	
FLY ASH, (lb/cy)	170	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>570</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
2993.4	3054.2	
2941.9	3030.8	
380.6	263.8	
0.02	0.008	
0.012	0.012	
0.008	-0.004	

TOTAL

1080	679			
22	5	=	79	(C)
9	-3	=	51	(D)
12.96	8.15	=	27.72	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	153.6	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	159.9	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	170.7	(H)
TOTAL MIX WATER USED, (lb/cy)	210.9	(I)
TOTAL MIX WATER USED, (Ib/cy) (D + G)	210.9	(I)
		(I) (J)
(D+G)		
(D+G) W/C RATIO	0.37	
(D+G) W/C RATIO (1/AVE. CM)	0.37	(J)

UNIT WEIGHT TEST			% PASSING #4
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAM
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAM
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.97	lb	(WD - WR4) - W
			% PASSING #4
MASS OF CONCRETE, (CBWT - BWT), CWT	36.27	lb	WP4 / (WD-WS
UNIT WT. OF CONCRETE, CWT / VOL, UW	145.1	lb/cf	% PASSING #4
			% PASSING #4
MICROWAVE OVEN TEST			[((∑ Agg. Desigr
			[(∑ Agg. Design
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 ·
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUSTED TO
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT_A		lb/cy	ADJUSTED MIX
Sum of Absorbed Moistures (E)			AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/

4 SIEVE

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	g g %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>%</u> x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/6/2020
TIME	7:40 AM
TICKET #	7
LOT #	13
TEST #	34
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

nn

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
764.7	
744.5	
167.1	
0.035	
0.005	
0.030	

DESIGN WT (OVEN DRY), (lb/cy)	1296
TOTAL MOISTURE, (lb/cy)	45
FREE MOISTURE, (lb/cy)	39
ABSORBED MOISTURE, (lb/cy)	6.48

WATER/CEMENT CALCULATION

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
3	152	22	3375	1440
4	155	15	3365	1430
5	159	11	3380	1430
6	161	7	3390	1430
7	161	11	3360	1435
8	161	9	3370	1435
9	161	7	3390	1455
10	160	7	3390	1430
11	160	12	3385	1435
12	160	12	3390	1445
AVE.	159.0	11.3	3379.5	1436.5
	AVE. CM		48	316

MIX DESIGN	3A41-49	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	234	
CEMENT, (lb/cy)	420	
FLY ASH, (lb/cy)	180	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>600</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3040.5	3123.6	
2993.9	3099.7	
380.5	263.2	
0.018	0.008	
0.012	0.012	
0.006	-0.004	

TOTAL

1059	666			
19	5	=	69	(C)
6	-3	=	42	(D)
12.71	7.99	=	27.18	(E)

170.3	(F)
177.3	(G)
190.9	(H)
219.3	(I)
0.36	(J)
246.5	(K)
	177.3 190.9 219.3 0.36

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.2	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.5	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.0	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1366	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3164.7	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3046.3	_g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	259.5	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.18	_lb/cy

232.3 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4	748.6 g
MASS. OF SAMPLE PASSING #4 SIEVE, WP4	<u>931.7</u> g
(WD - WR4) - WS	
% PASSING #4, P4	<u>55.4</u> %
WP4 / (WD-WS)	
% PASSING #4 FROM JMF, P4JMF	44.0 %
% PASSING #4 FROM TOTAL MIX, P4TM	<u>53.3</u> %
[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]	—x 100
[(∑ Agg. Design WT.) + (AVE CM / A)]	
CORRECTION FACTOR, CF	0.96
(100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M	249.1 lb/cy
WT _M X CF	COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW	221.9 lb/cy
AWT _M - E	
ADJUSTED W/C RATIO	0.37
((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/6/2020
TIME	11:15 AM
TICKET #	29
LOT #	13
TEST #	35
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DΟΤ

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
754.4	
736.2	
166.9	
0.032	
0.005	
0.027	

DESIGN WT (OVEN DRY), (lb/cy)	1296
TOTAL MOISTURE, (lb/cy)	41
FREE MOISTURE, (lb/cy)	35
ABSORBED MOISTURE, (lb/cy)	6.48

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
HORET #				
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
25	171	9	3370	1435
26	171	7	3330	1435
27	171	5	3360	1435
28	171	7	3350	1435
29	171	13	3380	1435
30	172	12	3365	1440
31	172	7	3350	1450
32	172	7	3385	1435
33	172	8	3375	1435
34	172	12	3330	1435
AVE.	171.5	8.7	3359.5	1437
		AVE. CM	479	96.5

MIX DESIGN	3A41-49	BATCH SIZE, (cy)	<u> 8 (</u> A)
WATER, (lb/cy)	234		
CEMENT, (lb/cy)	420		
FLY ASH, (lb/cy)	180	TOTAL C	EMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		=	<u>600</u> (B)
DESIGN W/C	0.39		

CA #1	CA #2	CA #3
3/4-	1 1/2	
3052.7	3000.1	
3011	2980.2	
380.6	263.6	
0.016	0.007	
0.012	0.012	
0.004	-0.005	

TOTAL

1059	666			
17	5	=	63	(C)
4	-3	=	36	(D)
12.71	7.99	=	27.18	(E)

TOTAL AVERAGE BATCH WATER, (GAL) (AVE. BATCH WATER + AVE. TEMPER WATER)	180.2	(F)
ACTUAL BATCH WATER USED, (lb/cy)		_ ` `
((F x 8.33) / A)	187.6	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	195.8	(H)
TOTAL MIX WATER USED, (lb/cy)	223.6	(I)
(D + G)		
W/C RATIO	0.37	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	250.8	(K)
(E+I)		

UNIT WEIGHT TEST		-	% PASSING #4 SIEVE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25 ft	t ³	MASS OF SAMPLE RETAINED #4 SIEVE, WR4
MASS OF UNIT WT. BUCKET, BWT	7.7 lt	b I	MASS. OF SAMPLE PASSING #4 SIEVE, WP4
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.2 lt	b	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT	<u>36.5</u> lk	b	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.0 lt	b/cf	% PASSING #4 FROM JMF, P4JMF
		(% PASSING #4 FROM TOTAL MIX, P4TM
MICROWAVE OVEN TEST		1	[((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A)]
		1	[(∑ Agg. Design WT.) + (AVE CM / A)]
MASS OF TRAY & CLOTH, WS	g	J	
MASS OF TRAY, CLOTH & WET CONCRETE, WF	g	g (CORRECTION FACTOR, CF
MASS OF PAN, CLOTH & DRY CONCRETE, WD	g	g ((100 - P4 / 100 - P4TM)
TOTAL MEASURED WATER CONTENT, WT_M	lk	b/cy	ADJUSTED TOTAL WATER CONTENT, AWT_{M}
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT	IF	b/cy	ADJUSTED MIXING WATER CONTENT, AMW
	ir	,	AWTM - E
Sum of Absorbed Moistures (E)		,	
ESTIMATED MIXING WATER CONTENT, MW	lk	b/cy	ADJUSTED W/C RATIO
		-	

((AMW) / (AVE CM / A))

T

COMPARE	TO (J)

COMPARE TO (K)

g

__g

____%

44.0 %

-x 100

%

lb/cy

lb/cy

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/6/2020
TIME	3:20 PM
TICKET #	45
LOT #	13
TEST #	36
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

m

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
758.8	
739.7	
167.1	
0.033	
0.005	
0.028	

DESIGN WT (OVEN DRY), (lb/cy)	1296
TOTAL MOISTURE, (lb/cy)	43
FREE MOISTURE, (lb/cy)	36
ABSORBED MOISTURE, (lb/cy)	6.48

WATER/CEMENT CALCULATION

 $WT_M - WT_A$

TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
41	172	16	3370	1430
42	174	13	3365	1430
43	174	9	3375	1430
44	174	5	3365	1435
45	171	5	3385	1470
46	171	5	3335	1430
47	171	9	3365	1430
48	171	11	3365	1435
49	171	16	3330	1430
50	171	12	3350	1435
AVE.	172.0	10.1	3360.5	1435.5
		AVE. CM	4796	

MIX DESIGN	3A41-49	BATCH SIZE, (cy) <u>8</u> (A)
WATER, (lb/cy)	234	
CEMENT, (lb/cy)	420	
FLY ASH, (lb/cy)	180	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>600</u> (B)
DESIGN W/C	0.39	

	CA #1	CA #2	CA #3
	3/4-	1 1/2	
	2933.6	3020.8	
	2885.9	2988.8	
	380.6	263.6	
	0.019	0.012	
	0.012	0.012	
	0.007	0.000	

TOTAL

1059	666			
20	8	=	71	(C)
7	0	=	43	(D)
12.71	7.99	=	27.18	(E)

TOTAL AVERAGE BATCH WATER, (GAL)		
(AVE. BATCH WATER + AVE. TEMPER WATER)	182.1	(F)
ACTUAL BATCH WATER USED, (lb/cy)		
((F x 8.33) / A)	189.6	(G)
MAXIMUM BATCH WATER AVAILABLE, (GAL)		
(((AVE. CM * 0.40) - D)*A) / 8.33))	189.0	(H)
TOTAL MIX WATER USED, (lb/cy)	232.6	(I)
(D + G)		
W/C RATIO	0.39	(J)
(I / AVE. CM)		
TOTAL WATER IN CONCRETE, (Ib/cy)	259.8	(K)
(E+I)		

UNIT WEIGHT TEST			% PASSING #4 SIE
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³	MASS OF SAMPLE
MASS OF UNIT WT. BUCKET, BWT	7.7	lb	MASS. OF SAMPLE
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	44.2	lb	(WD - WR4) - WS
			% PASSING #4, P4
MASS OF CONCRETE, (CBWT - BWT), CWT	36.5	lb	WP4 / (WD-WS)
UNIT WT. OF CONCRETE, CWT / VOL, UW	146.0	lb/cf	% PASSING #4 FRO
			% PASSING #4 FRO
MICROWAVE OVEN TEST			[((∑ Agg. Design W1
			[(∑ Agg. Design WT
MASS OF TRAY & CLOTH, WS		g	
MASS OF TRAY, CLOTH & WET CONCRETE, WF		g	CORRECTION FAC
MASS OF PAN, CLOTH & DRY CONCRETE, WD		g	(100 - P4 / 100 - P41
TOTAL MEASURED WATER CONTENT, WT_M		lb/cy	ADJUSTED TOTAL
(WF - WD / WF - WS) x 27 x UW			WT _M X CF
ESTIMATED ABSORBED WATER CONTENT, WT		lb/cy	ADJUSTED MIXING
Sum of Absorbed Moistures (E)		ib/Cy	AWT _M - E
ESTIMATED MIXING WATER CONTENT, MW		lb/cy	ADJUSTED W/C RA
· · · · · · · · · · · · · · · · · · ·		_ `	

EVE

T

MASS OF SAMPLE RETAINED #4 SIEVE, WR MASS. OF SAMPLE PASSING #4 SIEVE, WP4	0
(WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	%
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((∑ Agg. Design WT.) x P4JMF)+ (AVE CM / A) [(∑ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % %)]x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	
ADJUSTED TOTAL WATER CONTENT, AWT_M WT _M X CF	Ib/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	COMPARE TO (J)

Concrete W/C Ratio Calculation Worksheet

S.P.	2782-327
DATE	5/7/2014
TIME	7:50 AM
TICKET #	10
LOT #	14
TEST #	37
TESTER	Mark Kosmalski
ENGINEER	Jon Erickson

BATCH REPORT

DOT

FRACTION
WT OF SAMPLE + PAN (WET), (g)
WT OF SAMPLE + PAN (DRY), (g)
WT OF PAN, (g)
TOTAL MOISTURE FACTOR
ABSORPTION FACTOR
FREE MOISTURE FACTOR

FA #1	FA #2
Sand	
741.9	
722.8	
168.6	
0.034	
0.005	
0.029	

DESIGN WT (OVEN DRY), (lb/cy)	
TOTAL MOISTURE, (lb/cy)	
FREE MOISTURE, (lb/cy)	
ABSORBED MOISTURE, (lb/cy)	

WATER/CEMENT CALCULATION

1	I			1
TICKET #	BATCH	TEMPER	CEMENT	FLY ASH/SLAG
	WATER	WATER	CONTENT	CONTENT
	(GAL)	(GAL)	(lbs)	(lbs)
6	154	0	3340	1430
7	151	2	3365	1435
8	151	3	3340	1435
9	151	3	3385	1435
10	151	4	3355	1435
11	151	3	3355	1435
12	151	3	3365	1435
13	151	6	3365	1435
14	151	13	3330	1435
15	151	8	3390	1435
AVE.	151.3	4.5	3359	1434.5
		AVE. CM	479	93.5

MIX DESIGN	3A41-49	BATCH SIZE, (cy) 8 (A)
WATER, (lb/cy)	234	
CEMENT, (lb/cy)	420	
FLY ASH, (lb/cy)	180	TOTAL CEMENTITIOUS, (lb/cy)
SLAG, (lb/cy)		= <u>600</u> (B)
DESIGN W/C	0.39	

CA #1	CA #2	CA #3
3/4-	1 1/2	
3067.6	2980.7	
3006.7	2954.6	
380	249.8	
0.023	0.01	
0.012	0.012	
0.011	-0.002	

TOTAL

1059	666			
24	7	=	75	(C)
12	-1	=	49	(D)
12.71	7.99	=	27.18	(E)

155.8	(F)
162.2	(G)
183.1	(H)
211.2	(I)
0.35	(J)
238.4	(K)
	162.2 183.1 211.2 0.35

UNIT WEIGHT TEST		
VOLUME OF UNIT WEIGHT BUCKET, VOL	0.25	ft ³
MASS OF UNIT WT. BUCKET, BWT	7.7	lb
MASS OF UNIT WT. BUCKET & CONCRETE, CBWT	43.9	lb
MASS OF CONCRETE, (CBWT - BWT), CWT	36.2	lb
UNIT WT. OF CONCRETE, CWT / VOL, UW	144.8	_lb/cf
MICROWAVE OVEN TEST		
MASS OF TRAY & CLOTH, WS	1367.7	g
MASS OF TRAY, CLOTH & WET CONCRETE, WF	3147.5	g
MASS OF PAN, CLOTH & DRY CONCRETE, WD	3039.7	g
TOTAL MEASURED WATER CONTENT, WT_M (WF - WD / WF - WS) x 27 x UW	236.8	_lb/cy
ESTIMATED ABSORBED WATER CONTENT, WT _A Sum of Absorbed Moistures (E)	27.18	lb/cy

209.6 lb/cy

ESTIMATED MIXING WATER CONTENT, MW WT_M - WT_A

MASS OF SAMPLE RETAINED #4 SIEVE, WR4 MASS. OF SAMPLE PASSING #4 SIEVE, WP4 (WD - WR4) - WS % PASSING #4, P4 WP4 / (WD-WS)	741.2 g 930.8 g 55.7 %
% PASSING #4 FROM JMF, P4JMF % PASSING #4 FROM TOTAL MIX, P4TM [((Σ Agg. Design WT.) x P4JMF)+ (AVE CM / A)] [(Σ Agg. Design WT.) + (AVE CM / A)]	<u>44.0</u> % <u>53.3</u> % —x 100
CORRECTION FACTOR, CF (100 - P4 / 100 - P4TM)	0.95
ADJUSTED TOTAL WATER CONTENT, $\mathbf{AWT}_{\mathbf{M}}$ WT _M X CF	225 lb/cy COMPARE TO (K)
ADJUSTED MIXING WATER CONTENT, AMW AWT _M - E	197.8lb/cy
ADJUSTED W/C RATIO ((AMW) / (AVE CM / A))	0.33 COMPARE TO (J)

B3.2: Concrete: Ingredients Summary

m **DOT**

Minnesota Department of Transportation Concrete Ingredient Summary

	S.P.: 2782-327	Engineer:	Jon Erickson		Total Batched Qua	ntity (cubic yards)	14,366
	Plant: Shafer X433	Inspector:	Mark Kosmalski	_	Final Cement Over	rrun/Underrun (%)	0.14
Date	Product Type	Batched Quantity (Ib)	Required Quantity (Ib)	Daily Overrun/Underrrun (%)	Cummulative Overrun/Underrrun (%)	Міх Туре	Batched Quantity (cubic yards)
4/21/20	Cement	576.15	575.50	0.11	0.11	3A21-43	2877.5
	Fly Ash/Slag	245.10	244.59	0.21	0.21		
	Water	51,678.00	51,680.00	0.00	0.00		
	FA#1	1,962.58	1,966.18	-0.18	-0.18		
	FA#2						
	FA#3						
	CA#1	1,577.44	1,583.46	-0.38	-0.38		
	CA#2	998.58	989.64	0.90	0.90		
	CA#3						
	CA#4					Waste	
4/22/20	Cement	403.67	402.72	0.24	0.16	3A21-43	1784
	Fly Ash/Slag	168.91	168.44	0.28	0.24	3A21-45	224
	Water	35,701.00	35,838.00	-0.38	-0.16		
	FA#1	1,361.19	1,369.31	-0.59	-0.35		
	FA#2						
	FA#3						
	CA#1	1,102.66	1,107.53	-0.44	-0.40		
	CA#2	694.76	691.01	0.54	0.76		
	CA#3						
	CA#4					Waste	
4/23/20	Cement	112.05	112.00	0.04	0.15	3A21-52 COL	560
	Fly Ash/Slag	47.54	47.60	-0.13	0.20		
	Water	8,100.00	8,100.00	0.00	-0.15		
	FA#1	380.78	381.51	-0.19	-0.33		
	FA#2						
	FA#3						
	CA#1	308.72	309.26	-0.17	-0.38		
	CA#2	193.76	192.23	0.80	0.76		
	CA#3						
	CA#4					Waste	
4/24/20	Cement	399.32	398.40	0.23	0.17	3A21-43	1992
	Fly Ash/Slag	169.44	169.32	0.07	0.17		
	Water	36,619.00	36,620.00	0.00	-0.11		
	FA#1	1,352.92	1,355.79	-0.21	-0.30		
	FA#2						
	FA#3						
	CA#1	1,096.81	1,098.53	-0.16	-0.32		
	CA#2	692.57	685.04	1.10	0.85		
	CA#3						
	CA#4					Waste	

Minnesota Department of Transportation

Concrete Ingredient Summary

OT S.P.:	2782-327	Engineer	Jon Erickson		Total Batched Qu	antity (cubic yards)	14,366 0.14
Plant:	Shafer X433	Inspector	Mark Kosmalski		Final Cement Ove	errun/Underrun (%)	
4/25/20	Cement	110.52	110.40	0.11	0.17	3A21-42	552
	Fly Ash/Slag	44.18	44.16	0.05	0.16	0/12/12	002
	Water	10,204.00	10,204.00	0.00	-0.10		
	FA#1	377.29	378.25	-0.25	-0.30		
	FA#2						
	FA#3						
	CA#1	305.70	306.15	-0.15	-0.31		
	CA#2	192.58	190.68	1.00	0.86		
	CA#3						
	CA#4					Waste	
4/27/20	Cement	193.71	193.60	0.06	0.16	3a21-43	968
	Fly Ash/Slag	82.29	82.28	0.01	0.14		
	Water	17,405.00	17,405.00	0.00	-0.09		
	FA#1	657.32	658.65	-0.20	-0.29		
	FA#2	533.36	534.36	-0.19	-0.19		
	FA#3	335.07	331.44	1.10	1.10		
	CA#1						
	CA#2						
	CA#3						
	CA#4					Waste	
4/29/20	Cement	217.85	217.60	0.11	0.15	3A21-43	1088
	Fly Ash/Slag	92.43	92.48	-0.05	0.12		
	Water	16,486.00	16,486.00	0.00	-0.08		
	FA#1	751.66	752.64	-0.13	-0.27		
	FA#2						
	FA#3						
	CA#1	599.99	601.12	-0.19	-0.29		
	CA#2	380.01	375.04	1.33	0.92		
_	CA#3						
	CA#4					Waste	
4/30/20	Cement	57.02	57.12	-0.18	0.14	24	3A41-49
	Fly Ash/Slag	24.44	24.48	-0.16	0.11	248	3A41-53 COL
_	Water	4,063.00	4,063.00	0.00	-0.08		
	FA#1	184.68	185.06	-0.21	-0.27		
	FA#2						
	FA#3						
	CA#1	148.31	148.63	-0.22	-0.29		
	CA#2	94.42	93.10	1.42	0.93		
	CA#3						
	CA#4					Waste	

Minnes

Minnesota Department of Transportation Concrete Ingredient Summary

OT S.P.:	2782-327	Engineer:	Jon Erickson		Total Batched Qu	antity (cubic yards)	14,366
Plant:	Shafer X433	Inspector:	Mark Kosmalski		Final Cement Ove	errun/Underrun (%)	0.14
5/1/20							
3/ 1/20	Cement	122.28	122.24	0.03	0.14	3A21-43	376
	Fly Ash/Slag	52.10	52.12	-0.04	0.10		
	Water	10,719.00	10,719.00	0.00	-0.07		
	FA#1	407.89	408.69	-0.20	-0.27		
	FA#2						
	FA#3						
	CA#1	328.01	328.56	-0.17	-0.28		
	CA#2	207.60	204.87	1.33	0.95		
	CA#3						
	CA#4					Waste	
5/2/20	Cement	330.40	329.60	0.24	0.15	3A21-43	1648
	Fly Ash/Slag	140.39	140.08	0.22	0.12		
	Water	27,649.00	27,649.00	0.00	-0.06		
	FA#1	1,131.66	1,133.58	-0.17	-0.25		
	FA#2						
	FA#3						
	CA#1	907.26	908.30	-0.11	-0.26		
	CA#2	573.70	566.47	1.28	1.00		
	CA#3						
	CA#4					Waste	
5/4/20	Cement	89.46	89.60	-0.16	0.14	3a21-43	448
	Fly Ash/Slag	38.07	38.08	-0.03	0.11		
	Water	8,105.00	8,105.00	0.00	-0.06		
	FA#1	303.75	304.37	-0.20	-0.25		
	FA#2						
	FA#3						
	CA#1	246.68	246.99	-0.13	-0.26		
	CA#2	155.95	154.54	0.91	1.00		
	CA#3						
	CA#4					Waste	
5/5/20	Cement	239.08	238.40	0.29	0.15	3A21-43	1192
	Fly Ash/Slag	101.24	101.32	-0.08	0.10		
	Water	21,755.00	21,756.00	0.00	-0.06		
	FA#1	815.61	817.40	-0.22	-0.25		
	FA#2	0.001	00	U.22	0.20		
	FA#3						
	CA#1	653.58	654.89	-0.20	-0.25	1	
	CA#1 CA#2	412.73	408.56	1.02	1.00	1	
	CA#2	412.73	400.00	1.02	1.00		
	CA#3 CA#4					Waste	

Minnesota

Minnesota Department of Transportation Concrete Ingredient Summary

OT S.P.:	2782-327	Engineer:	Jon Erickson		Total Batched Qua	ntity (cubic yards)	14,366
Plant:	Shafer X433	Inspector:	Mark Kosmalski		Final Cement Ove		0.14
5/6/20	Cement	85.70	85.68	0.02	0.15	3A41-49	408
	Fly Ash/Slag	36.67	36.72	-0.14	0.09		
	Water	8,390.00	8,390.00	0.00	-0.05		
	FA#1	272.93	273.34	-0.15	-0.25		
	FA#2						
	FA#3						
	CA#1	219.37	219.81	-0.20	-0.25		
	CA#2	137.80	136.86	0.69	0.99		
	CA#3						
	CA#4					Waste	
5/7/20	Cement	52.05	52.08	-0.06	0.14	3A41-49	248
	Fly Ash/Slag	22.30	22.32	-0.09	0.09		
	Water	5,008.00	5,008.00	0.00	-0.05		
	FA#1	166.02	166.41	-0.23	-0.25		
	FA#2						
	FA#3						
	CA#1	133.48	133.70	-0.16	-0.25		
	CA#2	83.59	83.14	0.54	0.98		
	CA#3						
	CA#4					Waste	
	Cement						
	Fly Ash/Slag						
	Water						
	FA#1						
	FA#2						
	FA#3						
	CA#1						
	CA#2						
	CA#3						
	CA#4					Waste	
	Cement						
	Fly Ash/Slag						
	Water						
	FA#1						
	FA#2						
	FA#3						
	CA#1						
	CA#2						
	CA#3						
	CA#3					Waste	

B3.3: Concrete: Unit Weight

Concrete Unit weight

TEST #	1	2	3	4	5	6	7	8	9	10
Date	4/21/20	4/21/20	4/21/20	4/22/20	4/22/20	4/22/20	4/23/20	4/23/20	4/23/20	4/24/20
Unit weight (lb/yd ³)	144.80	144.80	144.80	#N/A	146.40	146.40	144.80	144.80	144.80	146.00
TEST #	11	12	13	14	15	16	17	18	19	20
Date	4/24/20	4/24/20	4/25/20	4/25/20	4/27/20	4/27/20	4/27/20	4/29/20	4/29/20	4/29/20
Unit weight (lb/yd ³)	146.00	146.00	145.40	145.40	146.80	#N/A	#N/A	145.20	145.20	145.20
TEST #	21	22	23	24	25	26	27	28	29	30
Date	4/30/20	4/29/20	5/1/20	5/1/20	5/1/20	5/2/20	5/2/20	5/4/20	5/4/20	5/4/20
Unit weight (lb/yd ³)	140.80	#N/A	144.60	144.60	144.60	146.20	146.20	145.20	#N/A	#N/A

TEST #	31	32	33	34	35	36	37
Date	4/5/20	5/5/20	5/5/20	5/6/20	5/6/20	5/6/20	5/7/14
Unit weight (lb/yd ³)	145.10	145.10	145.10	146.00	146.00	146.00	144.80

B3.4: Concrete: Fresh Air Content

Date Time Place Temp Air Beams ACF Total Yds Slump Mix 4/21/20 7:15 AM Plant 60 10 3A21-43 7:30 AM 660+15 60 8.8 9:08 AM 655+50 59 8.8 10:08 AM 651+75 62 8.5 11:20 AM 647+75 62 8.4 12:25 PM 643+00 61 7.4 1:10 PM 640+50 61 84BC 1:20 PM 640+00 61 7.7 1:58 PM 638+50 62 8.1 2:15 PM 638+50 62 6.9 1.2 3:00 PM 635+00 61 8.7 3:15 PM 635+00 61 8.1 0.6 3:40 PM 631+00 62 8.8 5:00 PM 627+00 60 7.5 197 SP 2782-327 4/21/2020 2878 Патри Солой рак Соной 7:15 Ат 660+00 60 86 сока With Conorandon 8:45 Ат 656+00 62 84 86 ВАБК FROMS 1:58 PM 638+50 62 72 GORR WITH CONTRACTOR 6:05 PM 624+20 61 84ADEF

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
4/22/20	6:53 AM	Plant	57	7.7				•	3A21-43
	7:10 AM	620+35	60	7.4					3A21-43
	8:10 AM	617+00	60	7.5					3A21-43
	9:10 AM	614+50	59	8.8					3A21-43
	9:18 AM	614+50	59	7.8		1			3A21-43
	10:28 AM	607+65	57	8.5					3A21-43
	11:28 AM	604+25	59	7.9	-				3A21-43
	12:59 PM	599+50	59	8.4					3A21-43
	1:21 PM	598+50	56		85 A-F				3A21-43
	1:40 PM	597+25	56	8.2					3A21-45
	3:23 PM	Plant	56	9					3A21-45
	3:35 PM	666+10	58	8.8					3A21-45
	4:10 PM	664+00	57		86 A-D				3A21-45
	4:13 PM	663+75	57	8.1					3A21-45
	4:18 PM	663+75	57	7.4		0.7			3A21-45

3A21-43=1784 3A21-45=224

7:10 62.0+30 7! 63 9:25 613+35 BEFOR 7? AFFER 7? 61° MJW 4:05 664+20 8° 60°

9 .

.**.**.

RpT # 76

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
4/23/20	7:34 AM	Plant	63	10.1				•	3A21-52
	7:50 AM	764+75	73	8			,		
	2:20 PM	757+30	65	8.3					
	2:28 PM	757+30	65	7.9		0.4	6	er L	h
	5:41 PM	763+75	63		87 A-D		56	5/1	Υ -
	750 A	M NBS	TRANG	764+	40 6	52° 8	7 - Co.	vr 8	Ø
. ,	酮 12	:20 No	3 TRAN	7574	'00 Å	34° 1	BERON -	7 ⁷ (6-AFTER
	<i>3</i> :	10pn St	3 TRANSIT	75	7+80	67-	8-		

•

.

÷

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
4/24/20	6:48 AM	Plant	59	7.9				•	3A21-43
	7:04 AM	569+95	64	6.5					
	10:40 AM	650+35	58	7.1					
	10:49 AM	650+35	58	6.7		0.4			
	12:10 PM	643+50	59	7.3					
	1:10 PM	635+25	62	8.5					
	2:45 PM	625+25	57	7.9					
	3:45 PM	617+75	57	7.1					
	4:45 PM	609+25	57	7.3					
	4:53 PM	609+25	58	6.2		1.1			
	5:14 PM	606+50	58	8	8 A-F				
	5:24 PM	605+00	57	7.5					

i i 1992

7:10 SB350 659+95 6= 63² 11:00 SB35 648+60 6' BEFOR 6' PETER 61² 1:40 SB350 633+90 8² 60² MOW

,

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
4/25/20	7:07 AM	Plant	60	9.2				F	3A21-42
	7:25 AM	603+25	65	8.2					
	8:10 AM	602+00	65	7.6					
	8:20 AM	602+00	66	6.6		1			
	. 8:30 AM	599+65	65		89 B-E				
	12:00 PM	29+25	67	7.2					
	12:10 PM	29+25	67	6.7		0.5			
	1:15 PM	25+75	66		89 A, F-I				
							552		
	7: 20 A FU 1 : 10 AM GR3	<i>TEMP</i> 62 63 5w 664700	Air B B 7 DEF	5 Sec	Din Temp 89 ARTER		35 W	66 # +E	0 EHLD
	109	on 664700.	1/4-1	5r 4	1 · 47: 1 · 94				

.

.

.

ه

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slumn	Mix
4/27/20	7:57 AM		57	8	Doumo	1101		Olamp	3A21-43
	8:08 AM	666+08	62	6.5					01421 10
	, 8:20 AM	666+25	59	7.8					
	10:20 AM	39+60	57		90B-E				
	12:10 PM		57	8.9					
1	12:22 PM		57	7		1.9			
1	1:15 PM		62	8.7					
	5:38 PM		60	8.9					
	5:47 PM		60	7.8		1.1			
j.	6:10 PM		60		90 A,F-H				
		c lin	~ 2-				968		
8:08 A	M 661	6 + 10	6-	60-	15.02 4 6	Main 7 C			
8:08 A.	1 666	+25	75	- -		174-6.78	,		
9:00 PM 9:20 PM 9:50 4:10	311 EN	7 38476	BER	or 8 - 4	AF	TER 7-	E MTu)		
4:10	5B35E	627+	20 1	72	60	1	Ann		

.

•

•

:

Date	Time	Place	Те	mp	Air	Beams	ACF	Total Yds	Slump	Mix
4/29/20	7:07 AM	Plant		55	9.2					3A21-43
	7:21 AM	624+90		58	8.8					
	9:43 AM	612+85		52	8.8					
	9:51 AM	612+85		52	7.9		1.1			
	12:08 PM	598+90		52	8.8					
	12:15 PM	598+90		52	7.8		1			
	6:44 PM	657+45		58	8.6					
	7:10 PM	659+50		57	- 191	-E				
					- 191			1088		
7:25	62	9+90	57	4. -	1		4.5			
11:5	5 608	475	7 ⁵ .Bfr	pni	70 AFIK	54	RIR. 45			

-

.

•

.

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
4/30/20	6:46 AM	Plant	53	9				•	3A41-49
	7:02 AM	738+60	57	7.2				3.75"	3A41-49
	7:23 AM	740+00	57		92 ABC		Mix Verif.		3A41-49
	8:51 AM	Plant	55	10.1					3A41-53
	9:10 AM	764+25	55	8.2				2.5"	3A41-53
	3:49 PM	757+00	60	7.9					3A41-53
	3:52 PM	757+00	60	7		0.9			3A41-53
	4:30 PM	758+00	60		93 A-E		(Red)		3A41-53
							3A41-49 24	l Yards	

3A41-53 248 Yards 272 Yards Total

0 @ 3 # 41 - 49 (5865 REPARE) 272 Yards Total MNPOT 72 CONT 72 SLOWN 34 CONO TAM 59

@ 3041 - 53 (RED) AB TRANSIT 764+70 MNDOT 9- CONTRACTOR 83 SLUMP 34 CONCTEMP 57

• • •

Date	Time	Place	Temp	Аіг	Beams	ACF	Total Yds	Slump	Mix
5/1/20	6:50 AM	Plant	57	9.4					3A21-43
	7:15 AM		61	. 8.6					3A21-43
	11:48 AM		60	8.1					3A21-43
	11:52 AM	750+00	61	7.4	1	0.7			3A21-43
	12:00 PM	740+50	62		94A V1-3				3A21-43
	1:46 PM	Plant	65	9.6					3A41-49
	2:05 PM		68	9.5					3A41-49
	2:25 PM		64	8.4				2-1/2"	3A41-49
	5:30 PM	735+50	67		95A				3A41-49
							376		3A21-43
							224		3A41-49
			12 MARP	Nec			600		Total
	7:18m	- 52+20	12111p	Air 8,8	S.				
		01120	60 -	\mathcal{G},\mathcal{G}	69				
	11:50	-750ta)	6.00	0.0	~				
	~~	WJV CI	$(0)^{\circ}$	8.2	3				
					6				

-

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
5/2/20	6:48 AM	Plant	59	8.8					3A21-43
	7:08 AM	725+00	63	8					
	8:31 AM	728+75	58	7.6					
	8:45 AM	728+75	58	6.7		0.9			
	9:31 AM	732+25	59	7.2					
	10:42 AM	737+00	59	7.8					
	11:54 AM	739+75	64	8.4					
	2:01 PM	746+50	66	7.2					
	2:13 PM	746+50	66	6.8		0.4			
	2:30 PM	746+75	66	g	6 A				
							1648		

·

7:10-725400 63° 8.1 % 10:43-737+00 59° 7.2 73

.

·

.

 \rangle

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
5/4/20	7:01 AM	Plant	53	9.8				-	3A21-43
	7:16 AM	39+85	60	8.8					
	11:08 AM	26+25	61	7.6					
	11:19 AM	26+25	61	7.2		0.4			
	2:25 PM	74+80	63	7.9					
	2:34 PM	74+80	63	7.1		0.8			
		72+20	63	9	7 A				
							448		
	7:19	20 0		_	C				
	< 1 M	36-182	(aO)	0,8	75				
	B U'.]]	26+255	60	n	9				
			~	1.2	40				

,

- 11

Date 5/5/20	Time 6:49 AM 7:12 AM 8:50 AM 10:58 AM 11:11 AM 3:22 PM 3:30 PM	725+03 732+00 740+75 740+75 728+15	Temp 10.2 8.9 8.8 8 7.4 7.6 6.5	Air	Beams	ACF	Total Yds	Slump	Міх ЗА21-43
	4:01 PM			8A	×.		1192		

7/15	757-103-	54°	9.07
	740+75-	60°	7.5%

Date	Time	Place	Temp	Air	Beams	ACF	Total Yds	Slump	Mix
5/6/20	6:53 AM Pla	ant	53	9.6				•	3A41-49
	7:10 AM 74	0+50	61	8.8				4 1/4"	
	1:21 PM 73	7+50	61	8.4				4"	
	4:30 PM 45	+00	62	Ş	99 A 49V				
							408		
@ 7:09	740+50	Conte	mier 9 ⁸	pros	vor 87	Тент 54	- SLUMP	41	
12:5	9 pm				-71	60	SLUND	3/2	

•

,

		Time 6:43 AM) T	emp 50	Air	Beams	ACF	Total Yds	Slump	Mix 3A41-49
		7:03 AM 2:00 AM	726+40 C-Repair		58 62	1	00A				
				4				1. II	248	3	- T- 110
7	os an	Con	MACTOR	8 <u>8</u>	MUP	07 87	SLUMP	ц Щ."	CoweTER	57	AraTen 42
11	:00Am	35 Ex	IT			8 <u>2</u>	SLUMP	3/2	CONTEM	62	MIR TE 53

Gps AREA PG1, PT1., P63, P64

· .

35W/Lake St./Orange Line

MINNESOTA DEPARTMENT OF TRANSPORTATION

Use reverse side for sketches

.

Date / /		Dened H-	DAILY CONCRE	TE PAVING ACCO	MPLISHMENT REPO	ORT		
	<u>√</u>	Report No	#89	S.P. 2782-327	Inspector	3		······································
	PAVEME			Alignment/Station	n F	REINFORCI	NG STEEL	
Alignment	Aller	-			Туре	L.F./ Each	Size (dia)	Pounds
Station Start		1			Drill & Grout (Epoxy)			<u> </u>
Station Stop						\times]	
Distance					Drill & Grout (Special)			
Width	VAR	• •			· · ·	\times		
8")9" 10" 12"	Concrete Pav	/. (Base)		<u> </u>				
Concrete Pav, (S			1 2 Sq Ya		1 .			
High Early streng	ith							
Bridge Appr. Pan	els (Sta.)							
Terminal Headen	s (Sta.)				÷			
	· · · ·			· · · · · · · · · · · · · · · · · · ·				
SU	PPLEMENTA	L REINFORCE	MENT		· · · · · · · · · · · · · · · · · · ·			·
Туре	L.F	Size	Pounds	<u> </u>				
Epoxy- No. 4				· · ·				
<u></u>	X							
Epoxy- No. 5								
							1.001	
							NT ITEMS	
						DE DOWELS /		TION ANGLES
	ar de la composition de la composition Composition de la composition de la comp				Туре	Loc.		Lin. Ft.
		<u> </u>			Dowel Bar	\times	•	
		• 1						
		DDODUOTION T			1.25" Dowel (High Perf)	\times		
		PRODUCTION D				· · ·		
Mix No.	Batches	CY Mixed	CY Waste					
Empsains		71.5			-			
		· · ·						
				r				
		2						
Y Req'd		·····					a	
ïeld				F	Remarks/Notes		newana	pun Ct-y
	FLEXURA	L STRENGTH	-			108	814	CATZ
		Sta. to Sta.		Yds Represented				
102A-D	ALLEY			71.5				
	2							
						ى نى_	1	
						Construction of the second	X	····
				· ·	- Statistic	And the second s		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	I			<u>.</u>	State State State	· · · · ·	and the second of the second o	
		Tockin			for an and a serie	- lang	and mark and the second second) for the second
		- 1 0 0 km A				ممزحم		S

estiv) MADOT Strafer 8.0 8.0 Original - Projectinie cc: Contractor 41/2 74 P 685 P w146 -2 Continp 740 Au Temp 680

а

B3.5: Concrete: SAM

	Date	10/10/2018	10/10/2018	4/21/2020	4/21/2020	4/21/2020	4/21/2020
Lo	ocation	Lab	Field	638+50	638+50	635+00	635+00
Те	est No.	Example	Example	1	2	3	4
First	14.5 psi	9.93	9.27	5.85	6.42	5.62	6.09
Run	30 psi	23.38	22.30	15.90	16.80	14.88	16.37
Null	45 psi	37.65	36.37	26.84	28.95	26.18	27.99
Second	14.5 psi	10.43	9.49	5.95	6.54	5.73	6.21
Run	30 psi	23.50	22.55	15.96	16.77	14.97	16.59
Kuli	45 psi	38.40	36.61	26.95	28.82	26.51	28.46
Air Co	ontent (%)	2.5	3.1	8.1	6.9	8.7	8.1
SAM	@ 14.5 psi	0.50	0.22	0.10	0.12	0.11	0.12
SAM	(@ 30 psi	0.12	0.25	0.06	-0.03	0.09	0.22
SAM	(@ 45 psi	0.75	0.24	0.11	-0.13	0.33	0.47
SAM	's Chance	1.00	0.26	0.64	0.01	1.00	1.00
R	esult:	Likely Correct	Ran Incorrect	Likely Correct	Ran Incorrect	Likely Correct	Likely Correct
	slump [in]						
Fresh	temp. [F]			67.00	67.0	62.0	62
Prop.	Unit Weight [pcf]						
	w/c ratio						
	Coarse 1			1080	1080	1080	1080
	Coarse 2			679	679	679	679
	Fine			1322	1322	1322	1322
Mix	Cement			400	400	400	400
Design	Fly Ash			170	170	170	170
[lb/yd ³]	Water			222	222	222	222
				0.5.0	0.5-3	0.5-3	0.5-3
	AEA			0.5-3	0.5-3	0.3-3	0.3-3
[lo, yu]	AEA WR			0.5-3	0.5-3	0.3-3	0.3-3

	Date	4/22/2020	4//22/2020	4/22/2020	4/22/2020	4/24/2020	4/24/2020
Lo	ocation	614+50	614+50	633+75	633+75	650+35	650+35
Те	est No.	5	6	7	8	9	10
First	14.5 psi	5.33	5.99	6.19	6.52	5.78	6.02
Run	30 psi	14.68	15.82	16.14	16.88	15.99	16.78
Kull	45 psi	25.84	27.40	28.05	29.05	27.34	28.12
C	14.5 psi	5.32	6.05	6.23	6.60	5.79	6.09
Second Run	30 psi	14.44	15.70	16.21	16.89	16.24	16.30
Kun	45 psi	25.62	27.30	28.19	29.00	27.44	28.22
Air Co	ontent (%)	8.8	7.8	8.1	7.4	7.1	6.7
SAM	@ 14.5 psi	-0.01	0.06	0.04	0.08	0.01	0.07
SAM	@ 30 psi	-0.24	-0.12	0.07	0.01	0.25	-0.48
SAM	@ 45 psi	-0.22	-0.10	0.14	-0.05	0.10	0.10
SAM	's Chance	0.27	0.29	0.83	0.06	0.03	1.00
R	esult:	Ran Incorrect	Ran Incorrect	Likely Correct	Ran Incorrect	Ran Incorrect	Ran Incorrect
	slump [in]						
Fresh	temp. [F]	59	59	57	57	58	58
Prop.	Unit Weight [pcf]						
	w/c ratio						
	Coarse 1	1080	1080	1087	1087	1080	1080
	Coarse 2	679	679	683	683	679	679
	Fine	1322	1322	1331	1331	1322	1322
Mix	Cement	400	400	410	410	400	400
Design	Fly Ash	170	170	150	150	170	170
$[lb/yd^3]$	Water	222	222	218	218	222	222
	AEA	0.5-3	0.5-3	0.5-3	0.5-3	0.5-3	0.5-3
	WR	0-8	0-8	0-8	0-8	0-8	0-8
	SP						

	Date	4/24/2020	4/24/2020	4/25/2020	4//25/20	4/27/2020	4/27/2020
Lo	ocation	609+25	609+25	602+00	602+00	76+69	76+69
Те	est No.	11	12	13	14	15	16
First	14.5 psi	5.64	6.10	5.85	6.03	6.18	5.93
Run	30 psi	14.75	15.23	14.39	15.76	16.63	15.45
Kull	45 psi	26.22	27.74	26.89	27.81	28.03	26.32
Second	14.5 psi	5.74	6.13	5.86	6.07	6.24	5.99
Second Run	30 psi	14.83	15.29	14.66	15.89	16.75	15.58
Kuli	45 psi	26.35	27.82	27.12	28.02	28.21	26.40
Air Co	ontent (%)	7.3	6.2	7.6	6.6	8.9	7.0
SAM	@ 14.5 psi	0.10	0.03	0.01	0.04	0.06	0.06
SAM	a 30 psi	0.08	0.06	0.27	0.13	0.12	0.13
SAM	@ 45 psi	0.13	0.08	0.23	0.21	0.18	0.08
SAM	's Chance	0.66	0.54	0.41	0.90	0.80	0.16
R	esult:	Likely Correct	Likely Correct	Ran Incorrect	Likely Correct	Likely Correct	Ran Incorrect
	slump [in]						
	111						
Fresh	temp. [F]	57	58	65	66	57	57
Fresh Prop.		57	58	65	66	57	57
	temp. [F] Unit Weight [pcf] w/c ratio		58	65	66	57	57
	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1	1080	1080	65 1080	1080	57 1080	1080
	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2	1080 679	1080 679	1080 679	1080 679	1080 679	1080 679
Prop.	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322
Prop. Mix	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400
Prop.	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222
Prop. Mix	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water AEA	1080 679 1322 400 170	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170	1080 679 1322 400 170
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222

	Date	4/27/2020	4/27/2020	4/29/2020	4/29/2020	4/29/2020	4/29/2020
Lo	ocation	596+65	596+65	612+85	612+85	598+90	598+90
Те	est No.	17	18	19	20	21	22
First	14.5 psi	6.58	6.23	6.22	5.86	5.33	5.98
Run	30 psi	16.25	16.01	16.74	15.33	14.10	15.59
Kun	45 psi	27.86	27.59	27.93	25.89	24.85	27.14
C	14.5 psi	6.59	6.27	6.28	5.89	5.23	5.97
Second	30 psi	16.36	16.09	16.81	15.46	13.92	15.61
Run	45 psi	27.99	27.62	28.02	26.01	24.26	27.15
Air Co	ontent (%)	8.9	7.8	8.9	7.0	8.8	7.8
SAM	@ 14.5 psi	0.01	0.04	0.06	0.03	-0.10	-0.01
SAM	(@ 30 psi	0.11	0.08	0.07	0.13	-0.18	0.02
SAM	(@ 45 psi	0.13	0.03	0.09	0.12	-0.59	0.01
SAM	's Chance	0.64	0.14	0.51	0.42	0.00	0.36
R	esult:	Likely Correct	Ran Incorrect	Likely Correct	Ran Incorrect	Ran Incorrect	Ran Incorrect
	slump [in]						
Fresh	temp. [F]	60	60	52	52	52	52
Prop.	Unit Weight [pcf]						
	w/c ratio						
	Coarse 1	1080	1080	1080	1080	1080	1080
	Coarse 2	679	670	679	679	679	679
			679				
	Fine	1322	1322	1322	1322	1322	1322
Mix	Fine Cement	1322 400	1322 400	1322 400	1322 400	1322 400	1322 400
Mix Design	Fine Cement Fly Ash	1322 400 170	1322 400 170	1322 400 170	1322 400 170	1322 400 170	1322 400 170
Design	Fine Cement Fly Ash Water	1322 400 170 222	1322 400 170 222	1322 400 170 222	1322 400 170 222	1322 400 170 222	1322 400 170 222
	Fine Cement Fly Ash	1322 400 170	1322 400 170	1322 400 170	1322 400 170	1322 400 170	1322 400 170
Design	Fine Cement Fly Ash Water	1322 400 170 222	1322 400 170 222	1322 400 170 222	1322 400 170 222	1322 400 170 222	1322 400 170 222

	Date	5/1/2020	5/1/2020	5/2/2020	5/2/2020	5/2/2020	5/2/2020
Lo	ocation	750+00	750+00	728+75	728+75	746+50	746+50
Т	est No.	23	24	25	26	27	28
First	14.5 psi	6.03	6.12	6.10	6.54	6.33	5.99
Run	30 psi	16.22	16.41	15.80	16.81	15.99	16.12
Kun	45 psi	27.96	28.89	27.41	28.89	28.43	27.83
Second	14.5 psi	6.09	6.16	6.18	6.59	6.41	6.03
Run	30 psi	16.24	16.49	15.96	16.93	16.02	16.16
Kull	45 psi	27.98	29.04	27.59	29.07	28.56	28.01
Air Co	ontent (%)	8.1	7.4	7.6	6.7	7.2	6.8
	@ 14.5 psi	0.06	0.04	0.08	0.05	0.08	0.04
SAM	[@ 30 psi	0.02	0.08	0.16	0.12	0.03	0.04
	[@ 45 psi	0.02	0.15	0.18	0.18	0.13	0.18
SAM	's Chance	0.31	0.84	0.58	0.81	0.88	0.97
R	lesult:	Ran Incorrect	Likely Correct	Likely Correct	Likely Correct	Likely Correct	Likely Correct
	slump [in]						
Fresh	slump [in] temp. [F]	60	61	58	58	66	66
Fresh Prop.	temp. [F] Unit Weight [pcf]	60	61	58	58	66	66
	temp. [F] Unit Weight [pcf] w/c ratio						
	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1	1080	1080	1080	1080	1080	1080
	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2	1080 679	1080 679	1080 679	1080 679	1080 679	1080 679
Prop.	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322
Prop. Mix	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170
Prop. Mix	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water AEA	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222

	Date	5/4/2020	5/4/2020	5/4/2020	5/4/2020	5/5/2020	5/5/2020
Le	ocation	26+25	26+25	74+80	74+80	740+75	740+75
Т	est No.	29	30	31	32	33	34
First	14.5 psi	6.07	6.25	5.94	6.31	5.89	6.68
Run	30 psi	15.45	15.90	15.45	16.26	15.37	17.21
Kun	45 psi	26.78	27.54	26.92	28.15	26.79	29.27
Second	14.5 psi	6.17	6.36	6.03	6.44	5.92	6.78
Run	30 psi	15.66	16.10	15.62	16.48	15.48	17.29
Kuli	45 psi	27.09	27.72	27.11	28.34	26.95	29.51
Air Co	ontent (%)	7.6	7.2	7.9	7.1	8.0	7.4
	@ 14.5 psi	0.10	0.11	0.09	0.13	0.03	0.10
SAM	a 30 psi	0.21	0.20	0.17	0.22	0.11	0.08
	a 45 psi	0.31	0.18	0.19	0.19	0.16	0.24
SAM	's Chance	0.94	0.30	0.58	0.24	0.78	0.98
R	esult:	Likely Correct	Ran Incorrect	Likely Correct	Ran Incorrect	Likely Correct	Likely Correct
	slump [in]						
	siump [m]						
Fresh	temp. [F]	61	61	63	63	61	61
Fresh Prop.		61	61	63	63	61	61
	temp. [F] Unit Weight [pcf] w/c ratio	61	61	63	63	61	61
	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1	1080	1080	1080	1080	1080	1080
	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2	1080 679	1080 679	1080 679	1080 679	1080 679	1080 679
Prop.	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322	1080 679 1322
Prop. Mix	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400	1080 679 1322 400
Prop.	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170	1080 679 1322 400 170
Prop. Mix	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water AEA	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3	1080 679 1322 400 170 222 0.5-3
Prop. Mix Design	temp. [F] Unit Weight [pcf] w/c ratio Coarse 1 Coarse 2 Fine Cement Fly Ash Water	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222	1080 679 1322 400 170 222

	Date	5/5/2020	5/5/2020				
Lo	ocation	728+15	728+15				
Те	est No.	35	36				
First	14.5 psi	6.09	6.66				
	30 psi	15.84	17.00				
Run	45 psi	27.42	29.20				
Second	14.5 psi	6.17	6.78				
Second Run	30 psi	16.02	17.21				
Kuli	45 psi	27.67	29.42				
Air Co	ontent (%)	7.6	6.5				
SAM	@ 14.5 psi	0.08	0.12				
SAM	(@ 30 psi	0.18	0.21				
SAM	(@ 45 psi	0.25	0.22				
SAM	's Chance	0.86	0.50				
R	esult:	Likely Correct	Likely Correct	Insert Pressure Steps Above	Insert Pressure Steps Above	Insert Pressure Steps Above	Insert Pressure Steps Above
	slump [in]						
Fresh	temp. [F]	64	64				
Prop.	Unit Weight [pcf]						
	w/c ratio						
	Coarse 1	1080	1080				
	Coarse 2	679	679				
	Fine	1322	1322				
Mix	Cement	400	400				
Design	Fly Ash	170	170				
$[lb/yd^3]$	Water	222	222				
	AEA	0.5-3	0.5-3				
	WR	0-8	0-8				
	SP						

B4.1: Concrete: Hardened Air

PROJECT:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

> 200 100 0

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020

AET PROJECT NO: 29-20883

#12A

Conformance:	The concrete contains an air void
	system which is consistent with
	current American Concrete Institute
	(ACI) recommendations for freeze-
	thaw resistance.
~	

Sample Data

Sample ID:

Description:	Hardened C	Concrete Cylinder
Dimensions:	152 mm (6") diameter by
	305 mi	m (12") long
Test Data:	By ASTM C	2457, Procedure A
Air Void Conten	t %	6.3
Entrained, $\% < 0$.040"(1mm)	4.9
Entrapped, $\% > 0$.040"(1mm)	1.4
Air Voids/inch		17.2
Specific Surface,	in ² /in ³	1090
Spacing Factor, i	nches	0.003
Paste Content, %	estimated	22
Magnification		75x
Traverse Length,	inches	90
Test Date		11/2/2020
Test Performed H	By	J. Duggan
Report Prepared By:		
	т. с. т.	

American Engineering Testing, Inc.

11

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

- ^ッ っ ニ ニ ス ス ス ス テ - 4 9 ス に こ CHORD LENGTH (1x0.0006666667")

Magnification: 30x Description: Hardened air void system.

PROJECT:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020

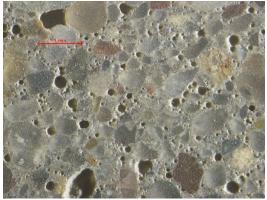
AET PROJECT NO: 29-20883

Conformance: The concrete contains an air void system which is consistent with

system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance.

#13

Sample Data


Sample ID:

Description:	Hardened C	Concrete Cylinder
Dimensions:	152 mm (6") diameter by
	305 m	m (12") long
Data:	By ASTM C	C457, Procedure A
Air Void Conter	nt %	5.6
Entrained, % < 0	0.040"(1mm)	4.7
D 1 0/2 /		0.0

Test Data:	By ASTM C457, Proce	ed
Air Void Content	% 5.6	
Entrained, % < 0.0	040"(1mm) 4.7	
Entrapped, %> 0.0	040"(1mm) 0.9	
Air Voids/inch	15.1	
Specific Surface, i	in ² /in ³ 1090	
Spacing Factor, in	ches 0.003	
Paste Content, % e	estimated 19	
Magnification	75x	
Traverse Length, i	inches 96	
Test Date	11/3/202	0
Test Performed By	y J. Duggar	n
Report Prepared By:		

American Engineering Testing, Inc.

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

PROJECT:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

600 500

> 100 0

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020

AET PROJECT NO: 29-20883

Sample ID: Conformance:	The concrete of system which current Americ (ACI) recommo	#14A contains an air void is consistent with an Concrete Institute endations for freeze-	
	thaw resistance.		
Sample Data			
Description:	Hardened C	Concrete Cylinder	
Dimensions:	152 mm (6") diameter by	
	305 mi	m (12") long	
Test Data:	By ASTM C	457, Procedure A	
Air Void Cont	tent %	5.4	
Entrained, %	Entrained, % < 0.040"(1mm)		
Entrapped, %	> 0.040"(1mm)	1.3	
Air Voids/incl	h	12.4	
Specific Surfa	ce, in ² /in ³	920	
Spacing Facto	r, inches	0.004	
Paste Content	, % estimated	19	
Magnification		75x	
Traverse Leng	th, inches	102	
Test Date		11/3/2020	
Test Performe	d By	J. Duggan	
Report Prepared By:			
	т. (° т		

American Engineering Testing, Inc.

N 11

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

PROJECT:

Sample ID:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020

AET PROJECT NO: 29-20883

Conformance:	system which current America	contains an air void is consistent with an Concrete Institute endations for freeze-
Sample Data		
Description:	Hardened C	Concrete Cylinder
Dimensions:	152 mm (6") diameter by
	305 mi	m (12") long
Test Data:	By ASTM C	457, Procedure A
Air Void Cont	tent %	6.4
Entrained, %	< 0.040"(1mm)	5.3
Entrapped, %	> 0.040"(1mm)	1.1
Air Voids/incl	n	16.1
Specific Surfa	ce, in ² /in ³	1010
Spacing Facto	r, inches	0.003
Paste Content	, % estimated	17
Magnification		75x
Traverse Leng	th, inches	96
Test Date		10/29/2020

#25

J. Duggan

American Engineering Testing, Inc.

Test Performed By

Report Prepared By:

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

PROJECT:

Sample ID:

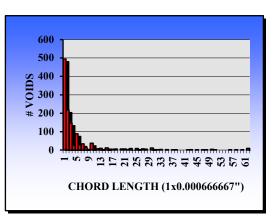
I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020


AET PROJECT NO: 29-20883

Conformance: The concrete contains an air void system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance. Sample Data Description: Hardened Concrete Cylinder 152 mm (6") diameter by Dimensions: 305 mm (12") long Test Data: By ASTM C457, Procedure A Air Void Content % 4.5 Entrained, % < 0.040''(1mm)3.9 Entrapped, % > 0.040''(1mm)0.6 Air Voids/inch 12.0 Specific Surface, in²/in³ 1080 Spacing Factor, inches 0.004 Paste Content, % estimated 20 Magnification 75x Traverse Length, inches 102

#26

10/30/2020

J. Duggan

Test Performed By Report Prepared By: American Engineering Testing, Inc.

Test Date

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

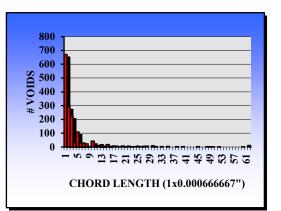
PROJECT:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT **395 JOHN IRELAND BLVD** ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN


DATE: **NOVEMBER 10, 2020**

AET PROJECT NO: 29-20883

system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance. Sample Data Description: Hardened Concrete Cylinder 152 mm (6") diameter by Dimensions: 305 mm (12") long Test Data: By ASTM C457, Procedure A Air Void Content % 5.5

#27

The concrete contains an air void

Sample ID:

Conformance:

Entrained, % < 0.040"(1mm)4.6 Entrapped, % > 0.040''(1mm)0.9 Air Voids/inch 15.9 Specific Surface, in²/in³ 1160 Spacing Factor, inches 0.003 Paste Content, % estimated 18 Magnification 75x Traverse Length, inches 102 Test Date 11/2/2020 Test Performed By J. Duggan Report Prepared By:

American Engineering Testing, Inc.

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

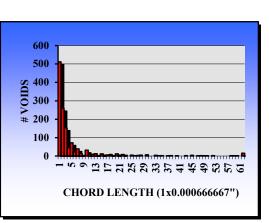
PROJECT:

Sample ID:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899


ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020

AET PROJECT NO: 29-20883

Conformance: The concrete contains an air void system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance. Sample Data Description: Hardened Concrete Cylinder 152 mm (6") diameter by Dimensions: 305 mm (12") long Test Data: By ASTM C457, Procedure A Air Void Content % 4.9 Entrained, % < 0.040"(1mm)4.1 Entrapped, %> 0.040"(1mm) 0.8 Air Voids/inch 12.8 Specific Surface, in²/in³ 1060 Spacing Factor, inches 0.003 Paste Content, % estimated 17 Magnification 75x Traverse Length, inches 102

#28

Paste Content, % estimated1/Magnification75xTraverse Length, inches102Test Date10/30/2020Test Performed ByJ. DugganReport Prepared By:American Engineering Testing, Inc.

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

PROJECT:

Sample ID:

Conformance:

I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

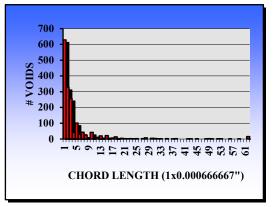
MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020

AET PROJECT NO: 29-20883

system which is consistent with current American Concrete Institute (ACI) recommendations for freezethaw resistance. Sample Data Description: Hardened Concrete Cylinder Dimensions: 152 mm (6") diameter by 305 mm (12") long Test Data: By ASTM C457, Procedure A


#29

The concrete contains an air void

Air Void Content % 6.2 Entrained, % < 0.040"(1mm)4.7 Entrapped, % > 0.040''(1mm)1.5 Air Voids/inch 16.3 Specific Surface, in²/in³ 1050 Spacing Factor, inches 0.002 Paste Content, % estimated 16 Magnification 75x Traverse Length, inches 102 Test Date 11/2/2020 Test Performed By J. Duggan

Report Prepared By American Engineering Testing, Inc.

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.

PROJECT:

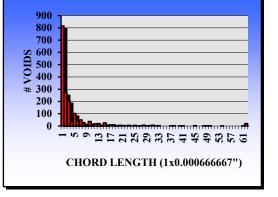
I-35W AT LAKE ST HENNEPIN COUNTY S.P. 2782-327

REPORTED TO:

MINNESOTA DEPT OF TRANSPORTATION CONSULTANT SERVICES UNIT 395 JOHN IRELAND BLVD ST. PAUL, MN 55155-1899

ATTN: MARIA MASTEN

DATE: NOVEMBER 10, 2020


AET PROJECT NO: 29-20883

Sample ID:		#30
Conformance:	The concrete of	contains an air void
	system which	is consistent with
	current Americ	an Concrete Institute
	(ACI) recomme	endations for freeze-
	thaw resistance.	
Sample Data		
Description:	Hardened C	Concrete Cylinder
Dimensions:	152 mm (6") diameter by
	305 mi	m (12") long
Test Data:	By ASTM C	457, Procedure A
Air Void Con	tent %	6.8
Entrained, %	< 0.040"(1mm)	5.2
Entrapped, %	> 0.040"(1mm)	1.6
Air Voids/inc	h	18.6
Specific Surfa	ice, in ² /in ³	1090
Spacing Facto	or, inches	0.002
Paste Content	, % estimated	17
Magnification	l	75x
Traverse Leng	gth, inches	96
Test Date		11/3/2020
Test Performe	ed By	J. Duggan
Report Prepared By:		

American Engineering Testing, Inc.

11 1

Blake M. Lemcke, PG Senior Petrographer/Geologist MN License #50337

Magnification: 30x Description: Hardened air void system.