Concrete recycling is not new...
- Post WW 2 Europe – concrete recycling performed extensively
- First major use in U.S. pavement construction was on Historic US Route 66 in Illinois in the 1940s
- Increased concrete recycling in US in 1970s/80s (environmental initiatives)

Today:
- RCA primarily used in unbound applications (base/fill)
- Over 100 pavement projects constructed in United States using RCA in concrete as partial or full replacement for coarse aggregate, fine aggregate or both
- Use driven by:
 - Need for more sustainable infrastructure
 - Demand for alternative aggregate sources
 - Cost savings

Use of RCA in Pavement Applications
- Concrete pavement
 - Conventional or 2-lift
- Asphalt pavement
- Aggregate shoulder
- Subbase
 - Unbound or stabilized
- Drainage layer
- Filter material
- Fill material

Acknowledgments
- Mark B. Snyder – Pavement Engineering and Research Consultants (PERC), LLC
- Peter Taylor, Iowa State University, CP Tech Center Director
- Gary Fick, The Transtec Group
- Tom Cackler – Woodland Consulting, Inc.
- Dale Harrington, Snyder & Associates
- American Concrete Pavement Association
- Federal Highway Administration
- Photo Contributors

Photo: Gary Fick, Transtec

Photo: Dwayne Stenlund, MnDOT

Annual RCA Production
2018 (USEPA 2020)
405.2 million tons

Beneficial Reuse
2018 (USEPA 2020)
334.0 million tons

Disposal
2018 (USEPA 2020)
71.2 million tons
Why recycle concrete and reuse RCA?

- Environmental benefits
 - Conserve natural resources (aggregates, fuel, landfill space)
 - Reduce greenhouse gas emissions
- Economic benefits
 - Lower costs – materials, disposal, hauling
 - Can reduce project competition time
 - Can provide performance enhancements (foundation layers)
- Social (community benefits)
 - Can reduce number of construction vehicles on roadways

Quantifying Sustainability

- Beltline Highway – Madison, WI
 - 1.5 mile segment reconstructed using a variety of recycled materials
 - RCA used in base course or embankment fill
 - 9,870 CY of RCA from onsite material utilized, crushed and graded onsite
 - Additional RCA sourced from offsite
 - Source concrete qualified for use using WisDOT’s specifications
 - Require AASHTO T 96 abrasion testing for off-site materials

The Recycling Process

- Evaluate source concrete – quality, contaminants
- Remove large amounts undesirable material (asphalt overlays/patching)
- Break and remove existing pavement
- Remove steel
- Crush and size
- RCA can be produced:
 - On-site with a mobile crusher
 - RCA for use in new concrete
 - Off-site using a stationary facility
 - urban areas, typically crush C&D waste from multiple projects

Quantifying Sustainability

- Beltline Highway – Madison, WI
 - LCCA → cost savings of approx. $130,000 at initial construction from RCA use
 - LCA → lifetime environmental impact reductions of:
 - Energy use (13% reduction),
 - Water consumption (12% reduction)
 - CO₂ emissions (13% reduction)
 - Hazardous waste (9% reduction)
 - LCA was performed with PaLATE tool (Horvath 2007, detailed in Bloom et al. 2016)
On-site processing with mobile crushing equipment

Stationary plants – off-site or on-site processing

Use front-end loaders and dump trucks for removal and transport

The Recycling Process

- Crushers
 - Jaw, cone, impact
 - Primary, secondary, sometimes tertiary
- Type and size of crusher determines:
 - Quantity of RCA produced
 - Gradation of RCA produced
 - Quantity of fines generated
- Crushing of “clean” quality concrete can give 1-2% material finer than No. 200 sieve (Fick 2017)

The Recycling Process

- Screening after primary crusher to remove oversized material
- Beneficiation—to remove joint sealant, dust, other light materials
 - Air blowing
 - Washing
 - Heavy media separation
- Screening
- Stockpiling
Characteristics of RCA

- RCA are composites – natural coarse aggregate + adhered mortar
- Differences in performance driven by mortar fraction
- mortar makes RCA
 - more porous
 - lower unit weight
 - higher abrasion loss
- Smaller sized particles = typically more mortar
- Volume of mortar fraction
 - quality of source concrete
 - crusher type
 - particle size being produced
- Often more angular than virgin aggregates, rougher texture

Characterization Tests for RCA

- Similar to virgin aggregates
 - Gradation, abrasion, susceptibility to ASR/D-cracking
- Many agencies require RCA meet same quality requirements as virgin aggregates
- Some agencies have additional requirements for RCA
 - particularly from non-agency sources
 - limits on contaminants and potentially deleterious substances
- AASHTO M 319 “Standard Specification for Reclaimed Concrete Aggregate for Unbound Soil-Aggregate Base Course.”
- ACPA (2009) provides recommended limits on contaminants
- Sulfate soundness tests should not be used for RCA (paste interferes with results)
- Alternative sulfate soundness tests in AASHTO M 319.

Typical Characteristics of RCA

<table>
<thead>
<tr>
<th>Property</th>
<th>Natural Aggregate*</th>
<th>RCA*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shape and texture</td>
<td>Well-rounded, smooth (gravel) to angular and rough (crushed rock)</td>
<td>Angular with rough surface</td>
</tr>
<tr>
<td>Absorption capacity (%)</td>
<td>0.8 – 3.7</td>
<td>3.7 – 8.7</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>2.4 – 2.9</td>
<td>2.1 – 2.4</td>
</tr>
<tr>
<td>L.A. Abrasion Test mass loss (%)</td>
<td>15 – 30</td>
<td>20 – 45</td>
</tr>
<tr>
<td>Sodium sulfate soundness test mass loss (%)</td>
<td>7 - 21</td>
<td>18 – 59</td>
</tr>
<tr>
<td>Magnesium sulfate soundness test mass loss (%)</td>
<td>4 - 7</td>
<td>1 – 9</td>
</tr>
<tr>
<td>Chloride content [lb/yd³]</td>
<td>0 – 2</td>
<td>1 - 12</td>
</tr>
</tbody>
</table>

* Data for are for as-produced material, including both fine and coarse material. From ACPA (2009).

Unbound uses of RCA

- Unstabilized base and fill material
- Most common application for RCA in United States
- 38+ of 44 states using RCA
- Some states believe RCA outperforms virgin aggregate as an unstabilized subbase
 - Secondary cementing from exposed cement in crushed RCA
 - Some level of contaminant material is tolerable
- 2016 RCA benchmarking survey (Cackler 2018)
Influence of RCA on Unbound Applications

- Potential for improved performance of RCA compared to virgin aggregates
- RCA particles tend to be more angular, rough-textured
- Potential for re-cementation of particles (particularly fines) can improve stability
- Literature appears to have no reports of pavement performance problems related to structural deficiencies in properly designed/constructed RCA bases

Potential drainage issues

- RCA used successfully in dense-graded undrained foundation layers and fill
- Can have precipitate formation in drainable bases, drain-pipe backfill, and dense-graded base layers that carry water to pavement drain systems
 - “Calcareous tufa” – crushed concrete dust and calcium carbonate precipitate
 - Can clog fabrics and form deposits, but often do not completely prevent discharge flow
 - Often occurs early in pavement life, and rate of accumulation dissipates.

Benefits of on-grade recycling (Fick 2017):

- No hauling required
- Significant cost savings
- Reduced exposure to traffic

Preventing drainage structure clogging

- Minimize use of RCA fines
- Blend RCA and virgin materials
- Use largest practical RCA particle sizes
- Wash the RCA to reduce insoluble residue (crusher dust) deposits
- Use high-permittivity fabric
- Wrap trench, not pipe
- Consider daylighted subbase
- Stabilize the base

Cement-stabilized and lean concrete bases

- Stabilization helps to prevent migration of crusher fines, mitigates high pH runoff
- Physical and mechanical properties of the RCA must be considered in the design and production
- RCA used in lean concrete base on I-710 in Los Angeles, CA
- RCA produced from existing concrete pavement used to provide 100% coarse and fine aggregate
New Concrete Mixtures

- RCA can be (and has been) used as the primary or sole aggregate source in new concrete pavements
- Can also be used as partial substitute for virgin fine or coarse aggregate
- 1995 IH 10 project – Houston, TX
- CRCP with 100% RCA (fine & coarse aggregates), still in service
- RCA commonly used in the lower lift of two-lift concrete pavements in Europe

Influence of RCA on Fresh Concrete Properties

- RCA concrete can be batched, mixed, transported, and placed using the same methods as conventional concrete.
- Differences in RCA from natural aggregate cause changes in concrete properties

<table>
<thead>
<tr>
<th>Property/Characteristic</th>
<th>Range of Expected Changes from Similar Mixtures using Virgin Aggregates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water demand</td>
<td>Coarse RCA Only Greater Coarse and Fine RCA Much greater</td>
</tr>
<tr>
<td>Air void system</td>
<td>Similar Increased (reported air content will include air in the source concrete paste)</td>
</tr>
<tr>
<td>Unit weight</td>
<td>Slightly lower Lower</td>
</tr>
<tr>
<td>Finishability</td>
<td>Slightly more difficult More difficult</td>
</tr>
<tr>
<td>Bleeding</td>
<td>Slightly less Less</td>
</tr>
<tr>
<td>Finishing characteristics</td>
<td>Similar May be harsher to finish</td>
</tr>
<tr>
<td>Setting time</td>
<td>May be accelerated May be accelerated</td>
</tr>
</tbody>
</table>

From FHWA 2007, ACI 2001

Mitigating reduced workability

1) Select and use crushing equipment and operating practices that decrease dust and reduce angularity of RCA
2) Maintain high moisture content of RCA prior to batching using sprinklers
3) Adjust mixture proportions to improve workability
 - increase paste content
 - increase both water and cementitious materials while maintaining w/cm ratio
 - use SCMs
 - research has suggested water demand of RCA concrete can be reduced by 12.5% with use of fly ash at 20% replacement with a superplasticizers
 - limit use of RCA as fine aggregate
 - ACPA (2009) recommends no more than 30% replacement rate

Other Fresh Concrete Properties

- Air void system
 - RCA concrete includes air void system of mortar fraction of RCA
 - "clean" RCA does not significantly influence performance of air entraining admixtures
- Pressure method is sensitive to porosity – use aggregate correction factor or volumetric air content for RCA with high absorption
- Unit weight
 - Tends to be 10-15% lower than conventional concrete
- Bleeding/Finishability
 - Bleeding often reduced
 - If mechanical methods used, finishability not significantly affected.
- Setting time
 - Can be 30-60 minutes shorter than conventional mixtures (Obla et al. 2007)
Influence of RCA on Hardened Concrete Properties

- RCA successfully used to produce concrete with adequate mechanical properties and good durability
- Hardened properties will be influenced by RCA characteristics

<table>
<thead>
<tr>
<th>Property</th>
<th>RCA used as Coarse Aggregate</th>
<th>RCA used as Coarse and Fine Aggregate</th>
<th>Potential Adjustments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compressive strength</td>
<td>0% to 24% less</td>
<td>15% to 30% less</td>
<td>Reduce w/cm ratio</td>
</tr>
<tr>
<td>Tensile strength</td>
<td>0% to 10% less</td>
<td>10% to 20% less</td>
<td>Reduce w/cm ratio</td>
</tr>
<tr>
<td>Strength variation</td>
<td>Slightly greater</td>
<td>Slightly greater</td>
<td>Increase average strength (compared to specified strength)</td>
</tr>
<tr>
<td>Modulus of elasticity</td>
<td>10% to 33% less</td>
<td>25% to 40% less</td>
<td>This may be considered a benefit with regard to cracking of slabs on grade</td>
</tr>
<tr>
<td>Specific gravity</td>
<td>0% to 20% lower</td>
<td>3% to 15% lower</td>
<td>None recommended</td>
</tr>
<tr>
<td>EMI</td>
<td>0% to 35% greater</td>
<td>10% to 30% greater</td>
<td>Reduce panel sizes</td>
</tr>
<tr>
<td>Drying shrinkage</td>
<td>20% to 50% greater</td>
<td>70% to 100% greater</td>
<td>Reduce panel sizes</td>
</tr>
<tr>
<td>Creep</td>
<td>40% to 60% greater</td>
<td>70% to 80% greater</td>
<td>Typically not an issue in pavement applications</td>
</tr>
<tr>
<td>Bond strength</td>
<td>Similar to conventional concrete, or slightly less</td>
<td>Similar to conventional concrete, or slightly less</td>
<td>None recommended</td>
</tr>
<tr>
<td>Permeability</td>
<td>0% to 500% greater</td>
<td>5% to 500% greater</td>
<td>Reduce w/cm ratio</td>
</tr>
</tbody>
</table>

Mitigating Impacts of RCA on Concrete Durability

- RCA can reduce strength
 - Adjust (lower) the w/cm ratio while using water reducing admixtures to achieve the desired workability
 - Prewet the RCA – supports enhanced hydration of residual cement and supports internal curing benefits
 - Use RCA as only a fraction of the natural aggregate
 - Try to reduce variability of the source concrete

- RCA can increase drying shrinkage
 - Reduce the paste content
 - Lower the w/cm ratio
 - Use SCMs

Mitigating Impacts of RCA on Concrete Durability

- Alkali-Aggregate Reactivity
 - Susceptibility of RCA concrete to AAR depends on remaining reactivity of aggregates in the source concrete
 - Crushing process may also result in exposure of new unreacted or partially reacted material in the RCA
 - Follow AASHTO R 80 protocol for assessing risk of alkali-silica reactivity (ASR)
 - Conventional AAR mitigation approaches can be used
 - SCMs and lithium compounds
 - Blending of AAR-susceptible RCA with non-reactive aggregates

- D-cracking
 - Susceptibility of RCA concrete to D-cracking depends on source concrete’s aggregates
 - May be reduced since new concrete contains a lower volume of original aggregate
 - Certain pavement projects constructed with RCA susceptible to ASR and D-cracking have showed acceptable field performance (Snyder et al. 2018, Zeller 2016)
Use of RCA in Concrete Mixtures

- ACPA EB043P - Recycling Concrete Pavements
- NRMCA Report - Crushed Returned Concrete as Aggregates for New Concrete (2007)
- AASHTO M319, MP16.
- U.S. FHWA TA 5040.37
- ASTM, ISO, (BS) EN and other standards

Mixture Proportioning Approaches for RCA Concrete

- Direct replacement method – treats RCA as conventional aggregate
 - Absolute volume method (ACI 211, ACI 325) used successfully for many projects
- New methods recently developed specifically for RCA
 - Equivalent mortar volume method (Fathifazl et al. 2009)
 - Ensures mortar content of RCA mixture is equal to that of the conventional mixture
 - Empirical method (Hu et. al 2013)
 - Nomograph-based procedure
 - NJIT method (Adams and Jayasuriya 2019)
 - Developed using models produced from statistical analysis of more than 100 published studies on RCA concrete
 - University of Nebraska method (Mamirov et al. 2021)
 - Uses optimized particle packing models, then a minimum excess paste-to-aggregate ratio

Guidance – Recent! 2018

- Ch. 1: Introduction to Concrete Pavement Recycling
- Ch. 2: Economics and Sustainability
- Ch. 3: Project Selection and Scoping
- Ch. 4: Using RCA in Pavement Base Products
- Ch. 5: Using RCA in Unbound Aggregate Shoulders
- Ch. 6: Using RCA in Concrete Paving Mixtures
- Ch. 7: Mitigating Environmental Concerns

92 pages of useful technical info, many case studies, and up-to-date implementation guidance

Ch. 3 Project Selection and Scoping

Structured around a flowchart showing typical project selection and scoping process

- Includes checklist of considerations for use of RCA in different applications
 - Materials considerations
 - Production considerations
 - Other considerations
Ch. 3 Project Selection and Scoping

Guideline – Coming Soon

- Use of RCA in Concrete Paving Mixtures
- Use of Construction Byproducts in Concrete Paving Projects
 - RCA and RCA fines
 - Discusses use in bound/unbound bases, fills, concrete
- ACI 555
 - Reuse of Hardened Concrete
 - Use of Recycled Concrete Aggregate in Unbound Applications

Checklist of considerations for use of RCA in different applications

<table>
<thead>
<tr>
<th>RCA use</th>
<th>Production Considerations</th>
<th>Other Considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>New RCA concrete and stabilized base materials</td>
<td>Processing options</td>
<td>Project staging</td>
</tr>
<tr>
<td>Unbound bases and drainage layers</td>
<td>Hauling</td>
<td>Costs</td>
</tr>
<tr>
<td>Filter material around drainage structures</td>
<td>Crusher types</td>
<td>Environmental considerations</td>
</tr>
<tr>
<td>Fill (beneficial reuse of fines) not in pavement structure</td>
<td>Production rates/storage</td>
<td>Permitting</td>
</tr>
<tr>
<td></td>
<td>QA/QC</td>
<td>Public perception</td>
</tr>
<tr>
<td></td>
<td>Residuals management</td>
<td></td>
</tr>
</tbody>
</table>

References

Recycled Concrete Aggregates

Matt Fonte
Concrete Operations Manager
Castle Rock Construction Company (CRCC)

CRCC’s Recent History with RCA

At the end of 2021:
~ 2,000,000 SY of concrete pavement with RCA
~ 500,000 CY of RCA concrete produced
~ 150,000 Tons of RCA
~ $1,500,000 saving on material alone

Why CRCC uses Recycled Concrete for Aggregates

• More competitive at bid time
• There is a large cost savings to the owner
• Improves our quality
• We produce smoother pavements using RCA
• Recycling is the responsible way to conserve our natural resources

Aggregate Qualifications

• RCA should be classified to meet C33 requirements
• Consideration should be given to the following test.
 • Magnesium sulfate soundness test
 • Light weight particles test
 • LA abrasion test.
What about ASR?

- Can you use concrete with known ASR as an RCA? Yes
- Will Type F Fly Ash Mitigate ASR? Yes

The Crushers

- Closed Circuit Cone Crusher
- Open Circuit Jaw Crusher
- Recycled Concrete
- Road Base

Stockpiles & Segregation

Wetting The Aggregates
The Log Washer

McLanahan Corporation

• Designed by Samuel Calvin McLanahan
• Patent was granted in 1891
• Original design the paddles attached to 2 wood log shafts.

Coarse Material Washer

Same principle as the log washer

What do you do with the dirty water?

Series of ponds and weirs

Occasionally clean the sediment out of the ponds
Then we go pour some concrete

Any Reason You Wouldn’t Use RCA?